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Abstract

Vision Transformers have proven their versatility and
utility for complex computer vision tasks, such as land
cover segmentation in remote sensing applications. While
performing on par or even outperforming other methods
like Convolutional Neural Networks (CNNs), Transformers
tend to require even larger datasets with fine-grained an-
notations (e.g., pixel-level labels for land cover segmenta-
tion). To overcome this limitation, we propose a weakly-
supervised vision Transformer that leverages image-level
labels to learn a semantic segmentation task to reduce the
human annotation load. We achieve this by slightly modi-
fying the architecture of the vision Transformer through the
use of gating units in each attention head to enforce sparsity
during training and thereby retaining only the most mean-
ingful heads. This allows us to directly infer pixel-level
labels from image-level labels by post-processing the un-
pruned attention heads of the model and refining our predic-
tions by iteratively training a segmentation model with high
fidelity. Training and evaluation on the DFC2020 dataset
show that our method1 not only generates high-quality seg-
mentation masks using image-level labels, but also per-
forms on par with fully-supervised training relying on pixel-
level labels. Finally, our results show that our method is
able to perform weakly-supervised semantic segmentation
even on small-scale datasets.

1. Introduction
Over the past few decades, access to public data from

Earth observing satellites has drastically improved, making
it easier to automate large-scale land cover mapping through
advances in machine learning and high-performance com-
puting. However, this task remains challenging due to the
scarcity of labeled data. The increasing complexity of state-
of-the-art predictive models and the heterogeneity of land

1Code is available on github.com/HSG-AIML/sparse-vit-
wsss

Figure 1. Our method uses training images with image-level la-
bels (top left) to learn semantic segmentation (top right) in a
weakly-supervised way. The second line shows the pseudomask
obtained from the vision Transformer’s sparse attention heads, as
well as two iterations of refinement. We find that our segmentation
method produces a result very similar to the ground truth.

cover classes further compound this requirement. Tradi-
tional machine learning algorithms that rely solely on accu-
rate labeled data (strong supervision) therefore have limited
performance in this domain.

Weakly supervised semantic segmentation (WSSS) aims
to decrease the high cost associated with annotating
”strong” pixel-level masks by relying on ”weak” labels,
such as bounding boxes [25], scribbles [12] and image-level
labels [5]. This work aims to perform WSSS based on the
least expensive, but most challenging label to use, which is
the image-level class label. In this case, the standard WSSS
process consists of three steps: first, training a multi-label
classification model based on the image-level class labels;
second, creating a binary mask for each class (pseudomask)
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and third, using this pseudomask to train a segmentation
model in a standard, fully-supervised manner.

In contrast to previous approaches (see Section 2), we
propose to explore representations learned by vision Trans-
former (ViT) models [6]. By examining the attention maps
generated by ViTs, we can gain deeper insights into how the
model actually perceives visual data. ViTs consist of multi-
ple Transformer blocks, each containing multiple heads that
project the input into different embedding subspaces to pro-
cess various image features. Therefore, analyzing the at-
tention maps of individual heads can help in understanding
what particular regions of the image are being attended to
by each head.

At the same time, several works have revealed that not
all heads in a Transformer are equally important [17, 29].
As a result, one could potentially remove or ”prune” the in-
efficient heads and retain only the ones that have the most
significant impact on the task. Studies conducted on NLP-
domain Transformers [29] have shown that the use of a
pruning technique relying on stochastic gates reduces the
risk of removing important and meaningful heads. Conse-
quently, this approach allows for the removal of most heads
while maintaining the same level of performance.

This work aims to explore the use of weak supervision,
specifically using image-level labels, as a solution to the
challenge of replacing precise and therefore expensive
groundtruth segmentation maps in land cover mapping
(Figure 1). To achieve this, we propose to train a sparse
vision Transformer for multi-label classification using
learnable binary gating functions for the heads, which
determine whether the head should be pruned or not. After
training on image-level labels, we extract the representa-
tions from the remaining heads, cluster them, and construct
pseudomasks serving as labels for training a segmentation
model.

The contributions of this work are as follows:

• We demonstrate that in remote sensing, the vast ma-
jority of heads in vision Transformers can be removed
without seriously affecting performance.

• We show that the remaining heads are meaningful and
specialized, and can be utilized to infer pseudomasks
for land cover mapping.

• In a comparison with the fully-supervised segmenta-
tion setup, we show that our weakly-supervised ap-
proach yields similar performances while only relying
on image-level labels.

• Our work further illustrates that weak supervision
combined with attention sparsity can effectively re-
duce the need of fine-grained labeled data, even on
small-scale datasets.

2. Related Work
2.1. Weak Supervision.

Weak supervision is a branch of machine learning where
training data is imperfect, as opposed to the traditional ap-
proach of fully-supervised learning where each example is
expected to be annotated with precise and consistent labels.
The supervision signals can come from various sources and
may not always fully capture the underlying semantics of
the image. In this section we will cover related works deal-
ing with imprecise annotations including the case of coarse
labels for learning semantic segmentation of images.

Recent interest in weakly-supervised semantic segmen-
tation methods can be attributed to their simplicity and
availability of noisy labels. Different types of annota-
tions can be used for supervision, including bounding boxes
[11, 25], scribbles [12, 27] or image-level labels [5, 30].
Usual steps consist of first training a model with the weak
labels, generating a pseudo segmentation mask with poten-
tial refinement methods and finally training a segmentation
model in a standard fully-supervised fashion. The most
common method is to train a classification network using
image-level labels as it requires minimal costs. Class ac-
tivation maps (CAMs) [32] are typically used to generate
pseudo labels for segmentation networks. However, some
limitations to the activation maps acquired from the classi-
fication network include the fact that they only locate the
most discriminative part of objects. To overcome this issue,
Ahn and Kwak [2] propose to propagate CAMs’ local re-
sponses to nearby areas that belong to the same semantic
entity, using a semantic affinity network. Moreover, Wang
et al. [30] use view consistency to encourage the semantic
consistency between CAMs obtained from different spatial
perturbations of the same image. Meanwhile, Ahlswede et
al. [1] investigate the use of weak supervision techniques
for tree species classification using remote sensing images,
by exploring different methods such as CAM or GradCAM.

Our approach differs from previous work in that it lever-
ages the representation learned by the vision Transformer
directly, with minimal reliance on post-processing tech-
niques.

2.2. Model Sparsification

The process of sparsification involves removing useless
connections or elements within a neural network in order to
decrease its size. Through pruning, not only can the number
of parameters in trained networks be significantly reduced,
but in certain cases, the overall accuracy can also be im-
proved.

There are two categories of pruning methods: unstruc-
tured and structured. Unstructured pruning involves remov-
ing unimportant weights in the network by setting them to
0, based on predefined criteria like their magnitude [9, 10].
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Figure 2. Our weakly-supervised semantic segmentation approach consists of a pipeline with three stages. In the first stage, we train a
Transformer model for multi-label classification. During the training process, we enforce attention sparsity by adding learnable gating
units to each head of the Multi-Head Self-Attention (MHSA). In the second stage, we generate pseudomasks by extracting attention maps
from the last block of the Transformer, reshaping them and clustering them. Each cluster is assigned a label that will be used to create
the corresponding pseudomask. In the final step, we refine the generated pseudomask through multiple stages of supervised training of a
segmentation model, utilizing the pseudomasks generated in the previous iteration as supervision.

This is equivalent to turning off some of the connections in
the network. On the other hand, structured pruning involves
removing larger structures such as neurons, channels [13],
filters, or attention heads [17].

Traditionally, pruning methods involve two steps. First,
a dense network is trained, followed by pruning and fine-
tuning. To avoid this process, several sparse training meth-
ods have been proposed. In these methods, network prun-
ing takes place during training, and the model learns to op-
timize both the model weights and sparse connectivity si-
multaneously from scratch. Sparse training methods pri-
marily focus on convolutional networks; the majority of
these methods use unstructured sparsity, while only a hand-
ful discuss training convolutional networks with structured
sparsity. Mocanu et al. [18] propose a prune and growth
procedure called Sparse Evolutionary Training (SET), im-
proving training with fixed sparse connectivity. Mostafa
and Wang [19] extend this work and propose a dynamic
parametrization method that adaptively reallocates free pa-
rameters across the network based on a simple heuristic
during training. Cheng et al. [4] explore integrating spar-
sity in vision Transformers and propose a sparse and struc-
tured prune-and-grow self-attention mechanism. On a re-
lated note, Bazi et al. [3] propose a simple compression
technique that gradually prunes the encoder’s layers of a
Transformer, for classifying remote sensing images.

In contrast to prior research, our approach involves fol-
lowing on Transformer pruning techniques that have been

designed for natural language processing (NLP) [29] in or-
der to sparsify the model during training, rather than gradu-
ally pruning and fine-tuning.

3. Dataset

Previous research has proven that combining multimodal
remote sensing data can significantly improve the accuracy
of land cover mapping by providing complementary spec-
tral and structural information [8, 22].

Therefore, in this work, we use the DFC2020 dataset
[23], which was constructed for the IEEE GRSS Data Fu-
sion Contest 2020. This dataset contains synthetic aperture
radar (SAR) observations from Sentinel 1 [26] and multi-
spectral observations from Sentinel 2 [7], both of which are
Earth observing satellites and part of the Copernicus pro-
gram. The dataset consists of two sets of 986 and 5, 128
paired Sentinel 1 and Sentinel 2 observations, for training
and testing respectively. Each image in the dataset has spa-
tial dimensions of 256 × 256. 20% of the training set is
reserved for validation.

In addition to the satellite imagery, the DFC2020 also
provides dense (i.e., pixel-level) land cover annotations
for the classes Forest, Shrubland, Grassland,
Wetland, Cropland, Urban, Barren and Water,
which are significantly unbalanced. These maps are used in
two ways: (i) for generating image-level labels (only con-
sidering classes that cover ≥10% of the image) for the train-
ing of our model and (ii) for assessing the accuracy of the
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generated pseudomasks.

4. Methods
Figure 2 illustrates our overall approach, which we detail

in the following.

4.1. Transformer Architecture

In this work, we use a vision Transformer (ViT) [6].
Each input image X ∈ RH×W×C (where H represents the
height, W the width, and C the number of channels) must
first be transformed into a sequence of flattened 2D patches
xp ∈ RN×P 2×C . Here, N corresponds to the total num-
ber of patches, and P 2 = (P × P ) is the resolution of each
patch. These patch-wise sequences are then linearly embed-
ded and augmented with position embeddings before being
encoded by a standard Transformer encoder. In classifica-
tion tasks, a commonly adopted approach is to introduce a
learnable ”classification token” [CLS] to the sequence of
embedded patches.

To take advantage of our multimodal input, we use Early
Summation [31]. Essentially, this involves adding the to-
ken embeddings from both modalities at each token posi-
tion, prior to processing by the Transformer layers. Overall,
Early Summation is a straightforward yet powerful way to
enable multimodal interaction.

Each block contains two sub-layers: a multi-head
self-attention (MHSA) layer and a multi-layer perceptron
(MLP) [28]. To ensure efficient backpropagation of the gra-
dient, both the MHSA and MLP layers employ residual con-
nections. The MHSA mechanism uses scaled dot-product
attention to operate on three inputs: query Q, key K, and
value V . A Transformer with h heads produces one rep-
resentation for (Q, K, V ) per head, with each representa-
tion undergoing scaled dot-product attention. The resulting
outputs are concatenated and then passed through a feed-
forward layer. This can be expressed as:

MultiHead(Q,K, V ) = concati(headi)W
O (1)

With:

headi = softmax

(
(QWQ

i )(KWK
i )T√

dk
VWV

i

)
(2)

where WQ
i ,WK

i ,WV
i ,WO

i are parameter matrices.

4.2. Sparse Training

A common observation across several works is that most
of these heads are unnecessary and can be removed with-
out any impact on performance. Our proposed solution is
to introduce sparsity during training, which will encourage
the heads to become more discriminative and less redun-
dant. This should result in them carrying more meaningful
information.

Building upon previous research in the field of NLP [29],
we modify the vision Transformer architecture by incor-
porating gating units into each head. In this modification,
scalar gates denoted as gi are introduced and multiplied by
the output of each head i. It is worth noting that these gates
are specific to each head, resulting in unique values for each
gi. Equation 1 becomes then:

MultiHead(Q,K, V ) = concati(gi · headi)W
O (3)

The goal is not only to reduce the impact of less sig-
nificant heads, but rather to disable them completely. To
achieve this, L0 regularization is preferred, but since it is
non-differentiable it and cannot be used as a regularization
term in the objective function. To overcome this, a stochas-
tic relaxation method is employed, using Hard Concrete dis-
tributions [15, 16]. These distributions are mixed, both dis-
crete and continuous, and have a non-zero probability at 0
and 1. The sum of the probabilities of heads being non-zero
can be used as a relaxation of the L0 norm.
The training objective is thus:

L = Lbce + λLreg

= Lbce + λ
∑
i

(1− P (gi = 0|ϕi)) (4)

where ϕi are the Hard Concrete distribution parameter
and Lbce the binary cross-entropy loss for the multi-label
classifier. By adjusting the coefficient λ in the training ob-
jective, we can generate models that preserve varying num-
bers of heads.

4.3. Mask Generation

As outlined in Section 4.1 the attention weights of a
Transformer block are computed between the key (K) and
the query (Q). The weights quantify how important the key
is to the query. In a vision Transformer, the key and the
query come from the same image, hence the weights deter-
mine which part of the image is important.

Our idea is thus to look at the self-attention of the [CLS]
token on the heads of the last layer. By including the class
token [CLS] in the input sequence, the self-attention mech-
anism is encouraged to distribute information among all the
tokens in the sequence, and then combine their informa-
tion into a representation that theoretically distinguishes be-
tween the various classes.

Clustering. The proposed pipeline is as follows: For
each image X ∈ RH×W×C we extract the representations
from the [CLS] token (Z ∈ R1×H×W

P2 ) and reshape the at-
tention scores to square image-like dimensions (RH

P ×W
P ).
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Table 1. Comparison of pseudomasks generated with our method with fully-supervised and weakly-supervised baselines, using two types
of input: Sentinel-2 only (S2) and fusion of Sentinel-1 and Sentinel-2 (S1+S2). The first set of baselines are fully-supervised models
trained on segmentation labels from the training set, utilizing UNets and ViT with segmentation head. The second set of baselines are
weakly-supervised models, trained on image-level labels and generating pseudomasks with Grad-CAM. Our method has two setups: one
without attention head pruning, and one with pruning. To estimate an upper-bound on the performance of our method, we report our results
using kref (see Section 5.2). For all weakly-supervised scenarios, metrics are computed between the generated pseudomasks (without
refinement) and the groundtruth. Per-class accuracies and mean Intersection over Union (bottom row only) are reported with their standard
deviations from 5 runs. Per-class pixel-wise distribution in our training set is mentioned next to each class.

Baselines Our Method
Fully Supervised Weakly Supervised Weakly Supervised

Class UNet ViT ViT + Grad-CAM w/o pruning w/ pruning w/ kref
S2 S1+S2 S2 S1+S2 S2 S1+S2 S2 S1+S2 S2 S1+S2 S1+S2

Forest (9%) 76± 1 76± 2 72± 3 68± 1 34± 1 47± 3 51± 1 55± 3 59± 2 65± 1 79± 2
Shrubland (5%) 18± 1 11± 3 18± 3 8± 1 34± 3 33± 1 19± 2 21± 1 11± 1 18± 3 31± 2
Grassland (12%) 13± 3 25± 1 19± 3 20± 2 14± 1 11± 4 11± 3 15± 2 8± 1 19± 2 15± 1
Wetland (18%) 4± 1 7± 2 5± 2 5± 2 7± 1 8± 1 7± 1 10± 2 11± 1 6± 1 12± 2
Cropland (13%) 62± 3 52± 4 33± 1 39± 2 31± 4 38± 2 46± 5 44± 4 46± 4 48± 4 55± 3
Urban (5%) 38± 2 48± 2 46± 2 42± 2 52± 3 57± 2 59± 1 65± 3 71± 2 70± 4 70± 3
Barren (3%) 33± 2 30± 2 20± 1 21± 3 10± 1 18± 1 34± 1 40± 1 47± 2 43± 3 51± 2
Water (35%) 92± 1 95± 2 91± 1 93± 1 90± 1 92± 2 93± 2 94± 3 96± 3 97± 2 96± 2
Overall 57± 2 55± 1 47± 2 46± 2 43± 3 48± 1 51± 3 53± 2 57± 3 57± 2 62± 2

Average 42± 3 44± 1 38± 2 37± 2 34± 3 38± 1 40± 2 43± 1 44± 2 46± 2 51± 1

mIoU 34± 2 37± 1 28± 2 30± 3 28± 1 31± 1 32± 2 33± 1 34± 1 36± 1 40± 2

We refer to these as attention maps. The number of atten-
tion maps corresponds to the number of heads remaining
(not pruned) after training and they ideally highlight differ-
ent semantic information in the data. Nonetheless, there is a
possibility that multiple heads emphasize similar informa-
tion; as a result, these heads need to be clustered into C
groups, where C corresponds to the number of labels pre-
dicted by the classification model. For this, we use a simple
k-means algorithm with k = C, resulting in a single cluster
per predicted class.

Cluster Assignment. A major problem is that the clus-
ters give no information on their labels. To solve this issue,
we propose to binarize the average image in each cluster
and use it to mask the inputs to identify the corresponding
class. Essentially, for each input image, we retain only pix-
els that correspond to positive values in each thresholded
mask, and then run it through the trained classifier (forward
pass) to determine the most likely label associated with it.
We repeat this process for the C masks (for each cluster),
until each cluster has been assigned to a different class.

Pseudomask Generation. After assigning each cluster
to a specific class, we generate the multi-channel pseudo-
mask by merging all of the class-level masks produced in
the previous step.

Table 2. Results of the refinement process, after iteratively train-
ing a segmentation model (UNet), starting with the pseudomask
generated with our method (compare to Table 1). We report the
fully-supervised UNet for comparison. Results are shown after 1,
2 and 3 iterations of training, in terms of mean IoU and average
pixel accuracy. Each iteration is trained for 10 epochs.

UNet Ours 1 it. 2 it. 3 it.

Accuracy 44.3 46.1 46.5 46.6 47.1
mIoU 37.2 36.4 38.3 38.1 39.2

4.4. Segmentation Training

After generating the pseudomasks, the last step in the
process is training a segmentation model that will refine
these masks. To do this, we use a standard UNet [21] that
takes as input an early concatenation of the two modalities
(Sentinel 1 and Sentinel 2), and uses as target the pseudo-
masks. This training is fully-supervised and is repeated it-
eratively.

5. Experiments

We perform a series of experiments to evaluate the
performance of our weakly-supervised approach on the
DFC2020 dataset. We train our models on approximately
800 multimodal samples as specified in Section 3 and eval-
uate them on around 5, 000 multimodal samples. To em-
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Figure 3. Qualitative comparison of results for 3 different regions, using weak supervision. Results from left to right: Sentinel-2 true color
(RGB), pseudomask generated from Grad-CAM, pseudomask generated using our method, pseudomask generated using our method with
pruning, and finally the groundtruth.

phasize the advantage of multimodality, we also train our
models with only the Sentinel-2 modality and compare the
performances.

5.1. Implementation Details

Our method outlined in Section 4 and Figure 2 is im-
plemented using the Pytorch framework [20]. The model
is trained on the training set, and a grid search is used to
determine the hyper-parameters based on a validation set.
The AdamW optimizer [14] was used during training, us-
ing β1 = 0.9 and β2 = 0.95. The learning rate was set to
10−4. We used a cosine learning rate schedule with a linear
warmup. We trained our model for 300 epochs with a batch
size of 32 using 1 Nvidia Tesla V100 GPU.

Regarding the ViT’s hyperparameters, we use patch sizes
of 14 × 14, and a depth (nb. of blocks) of 12. Throughout
this work, we use 16 heads and a λ of 0.01 (Equation 4).

5.2. Baselines

We compare our approach with traditional fully-
supervised segmentation methods as well as other weakly-
supervised methods.

Fully Supervised For comparison, we use a UNet [21]
and a ViT encoder-based approach, to which we append a
segmentation head as a replacement for the classification

head. The segmentation head consists of convolution and
interpolation layers to obtain the desired spatial and channel
dimensions: H × W × C, where H and W are the height
and width of the input image respectively, and C the total
number of classes.

Weakly Supervised As our baseline, we use Grad-CAM
(Gradient-weighted Class Activation Mapping) [24]. Since
the model is trained exclusively on image-level labels, it
can only provide information about the presence or absence
of a particular object, not its location. Grad-CAM addresses
this limitation by generating a heatmap that highlights the
regions of the image that the model used to make its pre-
diction. Each activation class is linked to a specific output
class, thus allowing to determine the importance of each
pixel in the final decision of the model. This importance is
reflected by the intensity of the pixels which is increased
or decreased according to the contribution of each pixel
to the class concerned. The distinct maps are first bina-
rized and then combined together to create the pseudomask.

We compare our approach to the two fully-supervised
baselines and the weakly-supervised one. Evaluation
metrics (pixel-accuracies and mean Intersection over Union
(mIoU)) are shown in Table 1. Our weakly-supervised
approach with pruning demonstrates the best average per-
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Figure 4. Qualitative comparison of the iterative refinement process of pseudomasks. The initial pseudomask (iteration 0) undergoes 1
and 2 iterations of refinement, which consists in training a segmentation model in a supervised way by using as supervision the masks
generated by the previous iteration.

formance for multimodal input in terms of pixel-accuracy,
with an increase of 2 and 9 percentage points compared to
the fully-supervised UNet and ViT baselines, respectively.
Although our approach performs almost similarly to the
UNet with regards to mIoU, it does not rely on any dense
label as supervision. Additionally, our method outperforms
the weakly-supervised baseline that uses Grad-CAM, with
an improvement of 8 and 5 percentage points in pixel
accuracy and mIoU, respectively.

In Table 1, we take a further step in evaluating our ap-
proach by utilizing the actual number of clusters (denoted as
kref , in reference to the k of the k-means) in our pipeline,
which is equivalent to the number of ’true’ labels per image.
This is in contrast to using the number of labels predicted by
the Transformer as the value of k. By comparing the results
using kref , we can estimate an upper-bound of our method,
assuming the initial classifier was close to perfect. The re-
sults demonstrate that by using kref , we could achieve an
improvement of approximately 5 percentage points in terms
of mIoU and accuracy.

5.3. Effect of Sparsity

We examine the impact of enforcing sparsity during
training, in two stages. Firstly, we evaluate the Trans-
former’s performance on the multi-label classification task.
We vary the λ parameter in the objective function (shown

Table 3. Effects of λ (Equation 4) on sparsity rate (percentage of
pruned heads) and multi-label accuracy, for different numbers of
heads h: 8, 16 and 32.

λ = 0 λ = 0.001 λ = 0.01 λ = 0.1

h
=

8 Sparsity rate 0 44 71 78
Accuracy 72.8 69.1 64.2 65.7

h
=

16 Sparsity rate 0 54 72 88
Accuracy 79.4 79.6 78.9 74.8

h
=

32 Sparsity rate 0 62 72 89
Accuracy 79.9 78.8 76.1 75.7

in Equation 4). The resulting models have different num-
bers of heads retained, as presented in Table 3. The larger
λ, the sparser the network becomes. We note that for the
setup with 16 heads, removing 72% of attention heads (us-
ing λ = 0.01) results in an accuracy drop of the multi-label
classifier of less than 1% compared to the model with the
full number of heads. Secondly, we validate the use of spar-
sity during the mask generation process. Table 1 shows that
our weakly-supervised approach with sparsity enforcement
produces similar mIoU values as the UNet baseline trained
using fully-supervised learning. Additionally, our method
achieves the best pixel accuracy compared to all other meth-
ods.

2151



5.4. Qualitative Comparison

We conduct a visual inspection of the results to supple-
ment our numerical evaluation of the approach. Figure 3
compares our results to the baseline. The pseudomasks gen-
erated by Grad-CAM are presented first, followed by the
ones generated using our approach without any pruning en-
forcement, and finally those generated with pruning. We
observe that our method with pruning produces the most
accurate pseudomasks in terms of shapes and classes.

5.5. Iterative Pseudomask Refinement

The refinement process starts with the initial pseudo-
mask and involves multiple stages of training a segmenta-
tion model in a supervised manner, utilizing the masks gen-
erated in the previous iteration as supervision. We present
the evaluation metrics for each stage in Table 2. Our results
show that the values improve gradually after each iteration.
Additionally, we conduct a visual inspection of the refine-
ment process in Figure 4. We begin by generating a pseu-
domask using our approach with pruning, which we denote
as Iteration 0. Subsequently, the pseudomask undergoes 2
iterations of refinement. We observe that after each iteration
the details are refined, evolving from coarse at Iteration 0 to
fine-grained at the end, and the shapes become increasingly
similar to those found in the ground truth.

6. Discussion
Our work highlights the benefits of enforcing sparsity in

vision Transformer training for weakly-supervised semantic
segmentation. By following our approach, we achieve com-
parable performance to standard fully-supervised training,
without the requirement of fine-grained labels.

First, on the data side, it is interesting to note that there
is a significant advantage in using both modalities (Sentinel
1 and Sentinel 2) together instead of the Sentinel 2 modal-
ity alone (see Table 1). This is because they offer comple-
mentary information, which enhances the initial classifica-
tion task. Second, on the model side, we find that almost
75% of the heads in the MHSA can be pruned without any
significant impact on the Transformer’s classification per-
formance, as presented in Table 3. This means that not all
heads are necessary for the Transformer to learn effectively.
Interestingly, we observe that training a Transformer with a
reduced number of heads (h = 8) does not lead to equal
results. Thus, it is more beneficial to start with a larger
number of heads and prune them while training. Further-
more, pruning the Transformer has a significant impact on
the process of generating pseudomasks. Our approach heav-
ily relies on the learned representations, and thus, removing
unnecessary and redundant units leads to more accurate and
less noisy pseudomasks. This improvement is observed in
Table 1, where our pruning-based approach outperforms the

un-pruned one by 3 percentage points in pixel accuracy and
mIoU. The advantages of pruning can also be observed in a
visual comparison, as shown in Figure 3. By qualitatively
evaluating the pseudomasks generated by our approach with
and without pruning, we can observe that pruning improves
the level of details of the different elements in the pseu-
domasks, thereby increasing the similarity to those details
present in the ground truth, compared to any other method.
It should be noted that our approach has inherent uncertain-
ties associated with the cluster label assignment, which is
a common problem in unsupervised learning. This can be
observed in Figures 3 and 4, where the shapes in the pseu-
domasks are accurate, but the assigned labels are incorrect.

Regarding the iterative process of pseudomask refine-
ment, it is worth noting that after each iteration, the eval-
uation metrics improve, as illustrated in Table 2. This is
also visually observable in Figure 4, where each iteration re-
fines the details further, and sometimes corrects errors from
previous ones. However, it is crucial to avoid training the
refinement model (UNet) excessively during each iteration,
as doing so may result in overfitting of the pseudomasks.
Instead, our goal is to utilize the model to learn a certain
level of consistency.

On a final note, our method can reduce the need for
fine-grained labeled data by generating high-quality pseu-
domasks that, when refined iteratively, yield results akin to
those obtained via human-annotated ground truth. Our ap-
proach is particularly effective even on small-scale datasets.
However, it is worth noting that, while our approach out-
performs both qualitatively and quantitatively the stan-
dard weakly-supervised one using Grad-CAM, it requires
slightly more time to generate the pseudomasks.

7. Conclusion
This work demonstrates the potential to create pseudo-

masks for segmentation using weak supervision by leverag-
ing representations learned by Transformers. The pipeline
consists of three stages. In the first stage, the Transformer is
trained on multi-label classification. To achieve a compact
and informative representation, we add learnable gating
units to each head of the MHSA during training, which en-
forces sparsity and retains only the most meaningful heads.
In the second stage, we generate the pseudomask by look-
ing at the [CLS] token on the un-pruned heads of the final
Transformer layer. In the third stage, we refine the pseudo-
mask through multiple supervised training iterations using
the pseudomask from the previous iteration as supervision.
Our experiments demonstrate that a significant number of
heads in a vision Transformer can be pruned without affect-
ing its performance. By combining our weakly-supervised
approach with sparse attention, we achieve comparable or
even slightly superior results to fully-supervised baselines,
without requiring fine-grained labeled data.
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Olivier Colin, Veronica Fernandez, Ferran Gascon, Bianca
Hoersch, Claudia Isola, Paolo Laberinti, Philippe Martimort,
et al. Sentinel-2: Esa’s optical high-resolution mission for
gmes operational services. Remote sensing of Environment,
120:25–36, 2012. 3
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