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Abstract

We introduce Earth Observation NeRF (EO-NeRF), a

new method for digital surface modeling and novel view

synthesis from collections of multi-date remote sensing im-

ages. In contrast to previous variants of NeRF proposed in

the literature for satellite images, EO-NeRF outperforms

the altitude accuracy of advanced pipelines for 3D recon-

struction from multiple satellite images, including classic

and learned stereovision methods. This is largely due to

a rendering of building shadows that is strictly consistent

with the scene geometry and independent from other tran-

sient phenomena. In addition to that, a number of strate-

gies are also proposed with the aim to exploit raw satel-

lite images. We add model parameters to circumvent usual

pre-processing steps, such as the relative radiometric nor-

malization of the input images and the bundle adjustment

for refining the camera models. We evaluate our method on

different areas of interest using sets of 10-20 pre-processed

and raw pansharpened WorldView-3 images.

1. Introduction

Today, hundreds of satellite Earth observation missions

are in operation and the number continues to grow [54].

Many Earth observation satellites acquire optical images

periodically over the same areas, contributing to large multi-

date collections of satellite images. These collections offer

the opportunity to observe the evolution of a site over time

and to identify permanent and transient structures. How-

ever, when it comes to digital surface modeling from remote

sensing, multi-date imagery is usually disregarded in favor

of a few stereo or tri-stereo image products. The latter are

more expensive, as images are acquired almost simultane-

ously to facilitate the use of classic photogrammetry.

The state of the art in digital surface modeling from

satellite images relies on the availability of stereo image

products. The reason of this is that the Multi-View Stereo

(MVS) logic is predominantly adopted to address the task

as a multi-pair problem instead of a real multi-view prob-

lem [18]. This is the case of the NASA Ames stereo

pipeline [1], MicMac [40] by the the French National Ge-

Pansharpened image EO-NeRF altitude Sat-NeRF altitude

Figure 1. EO-NeRF can be used for novel view synthesis and

3D reconstruction from an input set of multi-date satellite images.

Elevation models obtained with EO-NeRF reveal scene geometry

with an unprecedented level of detail that surpasses previous NeRF

variants [32] and is comparable to that of intrusive aerial acquisi-

tions. This includes narrow and irregular structures such as the

arches and roller coasters observed in the pansharpened image.

ographic Institute (IGN), CARS [34] by the French Space

Agency (CNES), S2P [11] by the Centre Borelli research

center, or the CATENA [23] multi-stereo chain by the Ger-

man Aerospace Center (DLR). In MVS, each stereo prod-

uct is used to obtain an independent digital surface model

(DSM). When several pairs are available, the resulting

DSMs are merged into a single model of higher accuracy.

Parallel to this scenario, MVS approaches for 3D recon-

struction have lost hegemony for common close-range im-

agery. Since the release of NeRF [35] in 2020, neural ren-

dering methods have become extremely popular for conven-

tional image collections, as they represent a highly accurate,

unsupervised, and truly multi-view solution to the 3D mod-

eling problem. Satellite imagery is a niche where neural

rendering still has a long way to go, but some pioneering

work has already started to bridge the gap between the two

worlds. In particular, S-NeRF [13] and Sat-NeRF [32] ex-

plored NeRF for multi-date satellite images, but their per-

formance remained inferior to state-of-the-art MVS using a

set of manually selected pairs.

We introduce EO-NeRF, the Earth Observation NeRF,

for digital surface modeling and novel view synthesis us-

ing sets of multi-date remote sensing images. The altitude

accuracy of EO-NeRF outperforms state-of-the-art stereo-
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Figure 2. Stereovision methods used in modern production chains for 3D reconstruction from multiple satellite images require control of a

multitude of stages, each of which can induce fatal errors. EO-NeRF replaces the entire chain with a single, more practical stage.

vision methods and previous NeRF approaches. Figure 1

shows the level of detail that EO-NeRF achieves in narrow

and irregular structures that are normally lost using concur-

rent methods. This is made possible thanks to the following

contributions:

- A NeRF approach for multi-date satellite images that

does not predict shadows, but renders them according

to the geometry and the position of the sun. The geo-

metrically consistent shadows provide hints that permit

to refine the geometry, which in turn refines the shad-

ows. This approach also ensures that the model gener-

alizes for novel view synthesis using solar directions

completely different from those of the input images.

- A variety of strategies to use unprocessed satellite im-

ages. These include the use of UTM coordinates to

handle georeferenced data in a more appropriate way

and the addition of network parameters to address in-

accuracies in the camera models and color biases in the

images during the optimization process.

We test EO-NeRF on 7 areas of interest covering

256 × 256 m each, using ∼10-20 crops from multi-date

WorldView-3 images with a resolution of 30 cm/pixel. Dif-

ferently from previous NeRF variants, our evaluation is not

limited to pre-processed RGB images, as EO-NeRF can di-

rectly handle raw pansharpened products. The input data

and EO-NeRF results are released to contribute to the cre-

ation of a NeRF benchmark for multi-date satellite images.

2. Related work

Stereovision methods and NeRF can be used for multi-

view 3D reconstruction under the assumption that the scene

geometry and radiance are invariant or nearly invariant. On

the one hand, the strengths of NeRF are its simplicity (no

need to select or merge pairs and no geometry supervision),

its impressive level of detail and the ability to solve the col-

orization problem simultaneously with 3D estimation. On

the other hand, the weaknesses of NeRF are the need for

larger sets of input images and a long optimization time

(usually hours), whereas stereo methods can quickly pro-

duce coarse geometry estimates with as few as two images.

In this section we review the fundamentals of NeRF,

stereovision satellite 3D reconstruction, and NeRF variants

for multi-date images that are most relevant to our work.

2.1. NeRF in a nutshell

A NeRF, or Neural Radiance Field [35], is a continuous

function F that represents the geometry and appearance of

a 3D scene. F is encoded using a fully-connected neural

network or multi layer perceptron (MLP) that is specific to

each scene and does not generalize to others. In its simplest

form, a NeRF MLP takes as input some 3D coordinates x

and, optionally, a viewing direction d, which are used to

predict the observed RGB color c and a non-negative scalar

volume density σ at the input point.

F : (x,d) 7→ (σ, c). (1)

Using a collection of input views and their camera poses,

the MLP encoding (1) is optimized by casting individual

rays that project onto the known pixels. Each ray r is de-

fined by a point of origin o and a direction vector d. The

color c(r) of a ray r(t) = o+ td is computed as

c(r) =

N
∑

i=1

Tiαici. (2)

The rendered color c(r) results from integrating the colors

ci predicted at different points of the ray r. Each ray r is

therefore discretized into N 3D points xi between the near

and far bounds of the scene, tn and tf . Each point xi in

r is obtained as xi = o + tid, where ti ∈ [tn, tf ]. The

contribution of each point xi in r to the rendered color (2)

depends on the opacity αi and the transmittance Ti:

αi = 1− exp(−σiδi) and Ti =

i−1
∏

j=1

(1− αj) . (3)

Both factors take values in the interval [0, 1] and depend

only on the volume density σ that defines the geometry.

The opacity increases with σ and is the probability that xi

belongs to a non-transparent surface. The transmittance is

the probability that light reaches xi without hitting previous

opaque points in the ray r and is used to handle occlusions.
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Using (3), the depth d(r) observed by casting a ray r can

be determined in a similar manner to the color (2) as

d(r) =

N
∑

i=1

Tiαiti. (4)

The MLP is optimized by minimizing the mean squared

error (MSE) between the rendered color c(r) and the real

color cGT(r) of the image pixel intersected by each ray r:
∑

r∈R

∥c(r)− cGT(r)∥
2

2
, (5)

where R is a batch of arbitrarily selected rays.

2.2. Classic and learned stereovision methods

Stereovision 3D reconstruction pipelines usually share

some fundamental steps illustrated in Figure 2. The most

critical task is dense matching or disparity estimation.

Among the classic methods for disparity estimation,

Semi-Global Matching (SGM) [21] is the preferred choice

for satellite imagery due to its efficiency to exploit spatial

regularity along different cardinal directions. A good num-

ber of DSM production pipelines use SGM with the cen-

sus transform [51] as matching cost for its robustness to

illumination changes [10, 34, 43]. Other pipelines employ

SGM variants: MGM [15,16] increases the directions taken

into account for regularization without loss of efficiency,

tSGM [27, 39] adopts a coarse-to-fine strategy to limit the

disparity search range, Semi-Global Block Matching [25]

uses windows instead of individual pixels, etc.

Learned methods for disparity estimation use deep neu-

ral networks. These networks comprise different mod-

ules dedicated to feature extraction, cost volume construc-

tion, cost volume regularization and disparity regression

(based on minimum cost). Architectures such as PSM [5],

HSM [45] or GA-Net [52] have been tested on remote sens-

ing images with encouraging results [19, 31, 44]. Unlike

classic algorithms, deep neural networks are prone to fail

or lose accuracy in unseen scenarios (e.g., different shapes,

disparity range, viewing angles or rectification criteria). In

addition to this generalization issue, learned methods (in-

cluding multi-view ones, such as MVSNet [47]) are subject

to long training times (in the order of days or weeks) and

require large disparity benchmarks for supervision [44].

2.3. NeRF for multi­date image collections

NeRF [35] opened the door to a large number of variants

that address the limitations of the original method. This in-

cludes speeding up the optimization process [6, 17, 36, 42],

reducing the number of input views [14, 22, 37] or general-

izing to unseen scenes [7, 9, 49]. Certain variants have also

addressed the use of in-the-wild photo collections, such as

multi-date images, presenting changes in appearance and

geometry across the input views [13, 32, 33].

The trend in NeRF variants for unconstrained photo col-

lections is to add auxiliary networks or heads to the single

MLP architecture originally used in NeRF. The color ren-

dering operation (2) and/or the loss function (5) are modi-

fied to account for image-dependent reflectance models that

can accommodate the complex inconsistencies between the

input views while recovering the underlying shared geom-

etry [24, 53]. Image-dependent features are normally ex-

tracted using embedding modules learned during the NeRF

optimization [33] or independently pre-trained convolu-

tional neural networks [8].

NeRF in the Wild (or NeRF-W) [33] was created for col-

lections of hundreds or thousands of multi-date street view

images. It added auxiliary heads to predict transient colors

and densities in parallel to the original multi-view consis-

tent outputs (1). Shadow NeRF (or S-NeRF) [13] worked

with tens of satellite images modeled locally as pinhole

cameras. An auxiliary head was used to render building

shadows in the input images as a function of the direction

of solar rays. Satellite NeRF (or Sat-NeRF) [32] improved

the results of S-NeRF by directly employing the actual RPC

(Rational Polynomial Coefficients) camera models associ-

ated with the satellite images and by adding an auxiliary

head to handle transient objects similarly to NeRF-W.

3. Method

EO-NeRF is optimized using the ray casting strategy

proposed in NeRF [35] (Section 2.1). The original NeRF

function (1) is transformed into:

F : (x,dsun, tj) 7→ (σ, ca,a, β, τ,Aj ,bj). (6)

The inputs of (6) are the same as in Sat-NeRF [32]: the

3D point coordinates x, the solar direction vector dsun and

an image-dependent embedding vector tj (where j is the

image index). The outputs of (6) are the following:

- σ: Volume density scalar at location x.

- ca: Albedo RGB, related only to the geometry, i.e. the

spatial coordinates x.

- a: Ambient RGB color that defines a global hue ac-

cording to the solar direction dsun.

- β: Uncertainty scalar related to the probability that the

color of x corresponds to a transient object.

- τ : Transient scalar, learned as a function of x and tj .

- Aj , bj : RGB vectors encoding a color affine transfor-

mation between the albedo and the current image j.

EO-NeRF uses the outputs of (6) to render the color c(r)
of each ray r as follows:

c(r) = Aj

(

ℓ(r) ·

N
∑

i=1

Tiαica

)

+ bj (7)

where

ℓ(r) = s(r) + (1− s(r))a with s(r) defined in (9). (8)
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Figure 3. Left to right: (a) Input image, (b) albedo, (c) geometric shadows, (d) transient scalar, (e) uncertainty scalar, (f) altitude, (g) albedo

with geometric shadows irradiance, (h) albedo with geometric shadows irradiance after the affine transformation defined by [Aj ,bj ],
(i) albedo with geometric shadows and transient objects irradiance after the affine transformation, i.e., the rendered color c(r) from (7).

Figure 3 illustrates the different outputs of EO-NeRF.

According to (7), the output color c(r) results from the

product of the albedo and an irradiance model ℓ(r), sub-

ject to an image-specific affine transformation defined by

Aj and bj . Affine correction models are a common prac-

tice in the literature for relative radiometric normalization

of multi-date satellite imagery [20, 50]. The key element

in the irradiance model (8) is s(r), a scalar in the interval

[0, 1]. Low values of s(r) correspond to points in the shade

or involving transient objects, where the ambient color a is

allowed to be stronger. High values of s(r) correspond to

points of the scene that can be fully explained by the albedo

color. S-NeRF and Sat-NeRF used irradiance models simi-

lar to (8), but the way s(r) is defined in EO-NeRF is criti-

cally different as explained in Section 3.1.

3.1. Geometrically consistent shadow model

Both S-NeRF and Sat-NeRF predict shadows as a color

property depending on the solar direction [13, 32]. This

leads the model to overfit the input views, taking advantage

of that freedom to render other complex changes such as

vegetation color or transient objects. As a result, it does not

generalize well to solar directions different from those in the

input images (Figure 4). S-NeRF and Sat-NeRF attempted

to minimize this misbehavior by adding a solar correction

term to the loss that seeks to bring shadow renderings closer

to binary masks strictly related to object shadows. At the

same time, this choice forces the network to explain differ-

ently the other transient phenomena, which may have side

effects, so it is necessary to set an appropriate weight for the

auxiliary solar correction term.

In EO-NeRF, we propose a model that does not predict

shadows but instead renders them based on the geometry

at each optimization step. We denote the rendering of ge-

ometrically consistent shadows as sgeo. The value of sgeo

is obtained by casting rays from each surface point to the

source of light, similarly to [2, 41, 46]. For each camera

ray r, we find the point on the surface using (4), i.e., xS in

Figure 5. This point is taken as the origin to cast a solar

ray, rsun, towards the position of the sun. The transmittance

T (3) of the last point in rsun is equal to the amount of geo-

metric shadow, sgeo = T (rsun(tN )), which reveals whether

xS is visible in the direction of the sun or not.

The value of sgeo renders shadows based on the geometry

of the scene and ignores the other transient phenomena in

each image. To represent the latter, we use the transient

scalar τ predicted by the transient head of EO-NeRF (MLP

3 in Figure 6). τ is an arbitrary scalar between 0 and 1 that is

not bound by geometry. The product of sgeo with τ defines

the s(r) of the irradiance model (8):

s(r) = sgeo(r)τ(r) = T (rsun(tN ))

N
∑

i=1

Tiαiτ(xi), (9)

where the dependency of τ on tj is omitted for simplicity

and xi ∈ r. The use of a product in (9) guarantees that s(r)
always contains geometrically consistent shadows in addi-

tion to the rest of transient phenomena. τ(r) = 1 can be set

at test time for transient object removal, as in Figure 3(h).

Compared to previous work, the strength of (9) is that it

decouples shadows from other transient phenomena. Note

that casting solar rays is also necessary to compute the solar

correction term used in S-NeRF and Sat-NeRF [13,32]. We

use solar rays in a more direct way, which does not require

modifying the loss function or tuning any hyperparameters

to balance the optimization process.
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Predicted shadows Geometrically consistent shadows

Figure 4. Left to right (in each set): output RGB, albedo and irradi-

ance ℓ(r) (8). Predicted shadows, as in Sat-NeRF or S-NeRF, can

correctly interpolate within the range of solar directions observed

in the input images. However, they produce unrealistic results out-

side this range. Top row: Solar direction taken from the input data.

Bottom row: Solar direction perpendicular to the sun path, which

could never be observed in a real satellite image of the area. The

geometrically consistent shadow model used in EO-NeRF can re-

alistically render arbitrary solar directions as that of the bottom

row and simultaneously improve the geometry estimation.

non-occluded point

occluded point

1

0

1

0

α T

rsun

r

xS

Figure 5. EO-NeRF shadow model. The transmittance T of the

last point in a ray rsun in the direction of the sun indicates the

amount of shadow at the surface point xS . The pinhole model is

adopted to represent the camera geometry for simplicity.

3.2. Network architecture and loss function

The EO-NeRF network architecture is shown in Fig-

ure 6. The main MLP 1 takes as input the 3D point coor-

dinates x and predicts the volume density σ, as in the orig-

inal NeRF [35]. The features extracted by MLP 1 are then

plugged into the auxiliary heads MLP 2 and MLP 3. MLP 2

uses them to predict the albedo, while MLP 3 merges them

with tj to predict the transient-related magnitudes, i.e., β

and τ . MLP 4 is disconnected from the rest as it predicts the

ambient color a, which is constant for all points x and only

depends on the solar direction dsun. All image-dependent

vectors tj , Aj , bj are learned using embedding modules

that take as input the image index j. We use positional en-

coding [35] for inputs x and dsun, as well as ReLU non-

linearity between MLP layers.

EO-NeRF uses a loss function similar to NeRF-W [33]

MLP 3

MLP 2

MLP 1

MLP 4

x σ

dsun a

ca

τ

βtj

Aj bj

affine transf. embedding

transient
embedding

ambient
color

solar
direction

3D point
volume
density

albedo

transient
scalar

uncertainty

Figure 6. EO-NeRF network architecture, with the parameters to

be optimized delimited by boxes. Multi layer perceptron compo-

nents are shown in blue and embedding vectors are shown in red.

and Sat-NeRF [32], where the uncertainty scalar β reduces

the contribution of camera rays emitted from pixels with a

high probability of representing transient phenomena:

∑

r∈R

∥c(r)− cGT(r)∥
2

2

2β′(r)2
+

(

log β′(r)+η

2

)

, (10)

where β′(r) = β(r) + βmin. As in [32], βmin = 0.05 and

η = 3 are used in (10) to avoid negative values in the loga-

rithm. The logarithm prevents β from converging to infinity

to minimize (10) and encourages the network to correctly

use β to identify which points are worthy of being regarded

as transient or not depending on each image.

3.3. UTM­based point coordinates

S-NeRF [13] approximated the RPC camera models of

the input images as pinhole camera models. Sat-NeRF [32]

demonstrated the benefits in accuracy of directly using the

RPC models to sample points in the 3D space. For that

purpose, Sat-NeRF uses Earth-centered Earth-fixed (ECEF)

coordinates to represent points in the 3D space. We follow

the RPC-based sampling but using UTM coordinates and

altitude to represent 3D points, which locally preserves the

properties of a Cartesian system and offers the advantage

that the altitude of the scene is aligned with the z-axis. As

shown in Figure 7, this ensures a better use of the space

occupied by the scene with respect to the 3D volume that

contains it.

3.4. Internal bundle adjustment

Sat-NeRF stressed the importance of bundle adjustment

to ensure consistency between the input RPC camera mod-

els associated with the satellite images. However, it pro-

posed to perform the bundle adjustment correction before

the MLP optimization, using an independent software [29].

Recent work with NeRF shows that it is possible to refine

the camera models simultaneously during the MLP opti-

mization [28,48]. Especially if a good initialization is avail-

able, as in the case of satellite RPC camera models [30].
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(a) ECEF (b) UTM

Figure 7. ECEF vs. UTM-based representation of geographic 3D

point coordinates. The scene has an altitude range of [hmin, hmax].
Using the same RPC camera, the rays in blue originate at different

pixels, localized at hmax, and end at the same pixel, localized at

hmin. All coordinates are normalized in the interval [−1, 1].

We propose a simple way to integrate the refinement of

RPC camera models into the EO-NeRF optimization, based

on the assumption that RPC cameras can be locally approx-

imated as affine projection models [11]. Under such as-

sumption it is common to refine each RPC by composition

of the projection function with an offset correction (i.e., a

translation on the image plane) [30, 38]. In our UTM-based

coordinate system the ray origin related to each pixel lies on

the upper plane of the 3D volume (see Figure 7(b)), which

is coincident with the maximum altitude of the scene [32].

Thus, the offset correction can be approximated as a dis-

placement in the x and y axis. If r is a ray intersecting the

j-th camera, with origin o and direction d, the bundle ad-

justed version of r can be approximated as

r(t) = (o+qj)+ td such that qj = (q1, q2, 0)j . (11)

Expression (11) replaces the usual r(t) = o+ td and is

constrained to points inside the boundaries of the cube con-

taining the scene to prevent large displacements. The offset

coefficients q1 and q2 of each camera are learned using a

two-dimensional embedding module in the same fashion as

tj , Aj and bj . In Section 4, the results show that using (11)

significantly narrows the gap compared to correcting the

camera models separately before optimizing the MLP.

4. Experiments

We evaluate EO-NeRF on 7 areas of interest (AOI) cov-

ering 256 × 256 m each, using ∼10-20 crops from multi-

date WorldView-3 images with a resolution of 30 cm/pixel.

The images are taken from the public data of the 2019

IEEE GRSS Data Fusion Contest (DFC2019) [3, 26] and

2016 IARPA Multi-View Stereo 3D Mapping Challenge

(IARPA2016) [4]. The specific number of images and other

details of each AOI are shown in Table 1. In both cases, we

used the panchromatic and multispectral products to create

raw pansharpened images without any color correction. The

DFC2019 data additionally provides true color RGB images

over the AOIs with reduced dynamic range in 8-bit unsigned

DFC2019 data — Location: Jacksonville (United States)

Area index 004 068 214 260

Input images 9 17 21 15

Alt. bounds [m] [-24, 1] [-27, 30] [-29, 73] [-30, 13]

Latitude 30.357 30.348 30.316 30.311

Longitude -81.706 -81.663 -81.663 -81.663

IARPA2016 data — Location: Buenos Aires area (Argentina)

Area index 001 002 003

Input images 25 21 21

Alt. bounds [m] [12, 59] [12, 80] [12, 80]

Latitude -34.490 -34.447 -34.417

Longitude -58.584 -58.575 -58.575

Table 1. Number of input images used for each area, altitude

bounds of the scene and approximate latitude and longitude.

integer format. We assess the EO-NeRF elevation models

using lidar DSMs with a resolution of 30-50 cm/pixel. The

PSNR of the image renderings and the altitude mean abso-

lute error (MAE) with respect to the lidar data are used as

evaluation metrics. Geometrically corrected RPC camera

models obtained with the bundle adjustment package [29]

were used in all experiments unless raw RPCs is mentioned.

4.1. Implementation details

We use a batch size of 1024 rays, Adam optimizer and

an initial learning rate of 5e−4. The first optimization steps

are performed using the standard MSE loss (5). The com-

plexity of the optimization problem is gradually increased:

first by plugging β and adopting the full loss (10) and

then by adding the internal bundle adjustment offsets (11).

Both camera rays r and solar rays rsun are discretized into

N = 128 evenly distributed samples to encourage detailed

shadows. For novel view synthesis from unseen viewpoints,

we use affine projection camera models to locally approx-

imate unknown RPC functions [30]. Convergence takes

about 250-300k steps (∼10-20 h, similarly to Sat-NeRF, de-

pending on the number of images using a 12 GB GPU).

4.2. DFC2019 areas ­ Results and discussion

Figure 8 shows the DSMs of the DFC2019 areas ob-

tained with EO-NeRF and concurrent methods. We propose

three categories of experiments, corresponding to the rows

of Table 2 discussed below. EO-NeRF achieves the low-

est MAE on average, as indicated in bold in Table 2. Due

to the difficulty of computing PSNR for unseen views (e.g.

change of ambient color or transients), it is computed using

the input views and thus might not improve over Sat-NeRF.

The latter has more freedom to overfit the input views since

shadows are not forced to be consistent with geometry.

Category 1. We test the state-of-the-art Sat-NeRF model

using N = 64 points per ray (row 1), as in [32]. Using

UTM-based point coordinates (Section 3.3) we obtain sim-

ilar or better altitude MAE with respect to the results origi-

nally reported in [32], while using half of units in the MLP
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Lidar DSM EO-NeRF Sat-NeRF MVS (PSM)

Figure 8. DFC2019 areas. Top to bottom: 004, 068, 214, 260.

DSM resolution: 50 cm/pixel. For each method, the DSM that

achieved the best altitude MAE is chosen between true color RGB

and raw pansharpened inputs.

layers (h = 256 instead of h = 512). Increasing the num-

ber of points per ray to N = 128 (row 2) does not necessar-

ily improve the performance. We note that Sat-NeRF does

not adapt to non-radiometrically normalized inputs, as the

MAE increases significantly using raw pansharpened data.

Visual inspection of the DSMs in Figure 8 shows that Sat-

NeRF is more prone to surface irregularities than EO-NeRF.

In fact, Sat-NeRF explored an auxiliary depth supervision

term to prevent geometry irregularities [12]. The geomet-

rically consistent shadow model of EO-NeRF is a natural

solution to prevent undesired holes or blobs in the geome-

try that would result in unrealistic shadows.

Category 2. We test EO-NeRF (row 3) using the same

externally bundle adjusted RPC cameras as in the Sat-NeRF

experiments. The altitude MAE improves dramatically by

an average of more than half a meter. The improvement

is especially noticeable for raw pansharpened images. Us-

ing the unrefined camera models from the image metadata

significantly reduces performance in both PSNR and MAE

(row 4), unless the EO-NeRF internal bundle adjustment is

active (row 5). Externally corrected RPCs provide the most

consistent geometry by a small margin, which we attribute

to the fact that the proposed offset correction is highly de-

pendent on the affine approximation of the RPC functions.

Category 3. We run the open-source stereo pipeline

S2P [11] to reconstruct 10 manually selected image pairs.

The pairs are selected following the heuristic criterion that

Lidar DSM EO-NeRF MVS (MGM) MVS (PSM)

(a) (b) (c)

Figure 9. IARPA2016 areas. Top to bottom: 003, 002, 001. DSM

resolution: 30 cm/pixel. Close-up views at the bottom: (a) full

EO-NeRF prediction, (b) EO-NeRF prediction at points observed

by more than 3/4 of all input cameras, (c) PSM prediction. Simi-

larly to the left-right consistency check in stereo methods such as

PSM, (b) rejects frequently occluded points near object borders.

The altitude MAE is computed using the surface points in (b).

won the 2016 IARPA multi-view stereo challenge using

S2P [16]. All pairs are reconstructed using bundle ad-

justed RPCs and they are merged into a single surface

model by taking the median altitude along the z-axis. For

disparity estimation, we use the classic MGM algorithm

(row 6) [15] and the Pyramid Stereo Matching (PSM) net-

work (row 7) [5]. Pre-trained PSM weights were taken from

a public benchmark for aerial imagery [44]. MGM is clearly

outperformed by EO-NeRF in terms of altitude MAE, by

an average difference of several dozen centimeters. PSM

provides better MAE in certain areas using pansharpened

inputs, but visual inspection reveals missing structures in

the DSMs that only EO-NeRF manages to capture. For in-

stance, certain tall buildings as highlighted in Figure 9 (bot-

tom row, cyan circle) are lost because they fall outside the

maximum disparity range used to train the PSM network.

It should be noted that the MVS surface models in Fig-

ures 8 and 9 present incomplete regions (in black) beyond

the water zones (also in black), which we ignore to com-

pute the altitude MAE. As explained in Figure 9, for a fair

comparison, we remove surface points non-observed by the

majority of cameras before computing the altitude error.
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True color RGB (uint8) Raw pansharpened (float32)

PSNR ↑ / Alt. MAE [m] ↓ PSNR ↑ / Alt. MAE [m] ↓ Mean

Area index 004 068 214 260 004 068 214 260

1. Sat-NeRF

(N=64, h=256, UTM)
29.94 / 1.34 27.72 / 0.94 26.86 / 1.90 26.91 / 1.70 38.67 / 3.02 33.74 / 1.24 31.84 / 2.53 35.97 / 2.43 31.46 / 1.89

2. Sat-NeRF

(N=128, h=256, UTM)
28.89 / 1.48 27.18 / 0.98 26.08 / 2.29 27.75 / 1.76 38.59 / 2.64 32.80 / 1.39 30.89 / 2.38 34.66 / 2.37 30.86 / 1.91

3. Ours

(N=128, h=256, UTM)
28.56 / 1.25 27.25 / 0.91 26.59 / 1.52 26.09 / 1.43 38.13 / 1.33 33.33 / 0.89 31.48 / 1.41 34.77 / 1.34 30.78 / 1.26

4. Ours, raw RPCs 27.78 / 1.39 26.11 / 1.42 25.62 / 1.74 25.07 / 1.95 37.55 / 1.72 31.54 / 1.08 30.21 / 1.58 32.08 / 1.53 29.49 / 1.55

5. Ours, raw RPCs+BA 27.93 / 1.30 27.27 / 0.90 26.36 / 1.38 25.75 / 1.48 37.56 / 1.68 32.88 / 0.95 31.43 / 1.44 33.89 / 1.36 30.38 / 1.31

6. Classic MVS (MGM) — / 1.97 — / 1.71 — / 2.49 — / 2.16 — / 1.37 — / 1.17 — / 1.81 — / 1.64 — / 1.79

7. Learned MVS (PSM) — / 2.28 — / 0.88 — / 1.77 — / 1.67 — / 1.16 — / 0.83 — / 1.48 — / 1.20 — / 1.41

Table 2. Numerical results, DFC2019 areas. Sat-NeRF fails to handle the raw pansharpened images, while MVS methods struggle with

the less textured true color RGB images. EO-NeRF achieves the best overall MAE with no major differences between the two input types.

Raw pansharpened (float32)

PSNR ↑ / Alt. MAE [m] ↓ Mean

Area index 001 002 003

1. Sat-NeRF

(N=128, h=256, UTM)
30.55 / 2.12 31.78 / 2.27 32.79 / 2.75 31.71 / 2.38

2. Ours

(N=128, h=256, UTM)
31.70 / 1.23 31.71 / 1.43 33.07 / 1.19 32.16 / 1.28

3. Ours, raw RPCs 29.68 / 2.07 29.78 / 2.39 30.97 / 1.99 30.14 / 2.15

4. Ours, raw RPCs+BA 31.76 / 1.37 31.72 / 1.55 33.28 / 1.30 32.25 / 1.41

5. Classic MVS (MGM) — / 1.40 — / 2.48 — / 1.34 — / 1.74

6. Learned MVS (PSM) — / 1.15 — / 1.44 — / 1.27 — / 1.29

Table 3. Numerical results, IARPA2016 areas.

4.3. IARPA2016 areas ­ Results and discussion

Figure 9 shows the DSMs of some IARPA2016 chal-

lenge areas obtained with EO-NeRF. We repeat the same

categories of experiments of Section 4.2. Only raw pan-

sharpened images are available in this case. The numerical

results in the different rows of Table 3 are discussed below.

Category 1. We test Sat-NeRF using UTM-based point

coordinates and N = 128 points per ray (row 1). Consis-

tent with the DFC2019 results, the model does not fit non-

radiometrically normalized inputs and the altitude MAE is

above 2 m in all areas. A detailed view of the altitude pro-

vided by Sat-NeRF in area 003 is shown in Figure 1.

Category 2. We test EO-NeRF using externally bundle

adjusted and internally bundle adjusted RPC camera mod-

els (row 2 and 4 respectively). When the input RPCs are

consistent, because of the external or the internal bundle

adjustment, EO-NeRF outperforms Sat-NeRF by about one

meter of altitude in average. This advantage is lost if the

unrefined camera models are used instead (row 3).

Category 3. As in Section 4.2 (Category 3), we run the

stereo pipeline S2P using 10 manually selected image pairs

and MGM and PSM for dense matching. Again, EO-NeRF

achieves better overall altitude MAE with respect to MGM

and PSM. The DSMs in Figure 9 show the superior level of

detail in the shapes reconstructed by EO-NeRF. Note that

the geometry of narrow and irregular structures, such as the

arches or roller coasters in the area 003 (top row) is only

visible in the lidar and EO-NeRF DSMs.

5. Conclusion

We presented EO-NeRF, a variant of NeRF for Earth

observation adapted to multi-date satellite images. Our

method achieves state-of-the-art novel view synthesis and

digital surface modeling from this kind of data. Using input

views with a resolution of 30 cm/pixel, EO-NeRF elevation

models reveal scene geometry with a level of detail compa-

rable to intrusive aerial acquisitions.

EO-NeRF improves on previous concurrent NeRF vari-

ants mainly thanks to a geometrically consistent rendering

of shadows that does not modify the loss function and the

addition of network parameters to handle raw satellite im-

ages. The fine-scale details recovered by EO-NeRF are lost

in modern multi-view stereo pipelines for satellite 3D re-

construction, which are not adapted for multi-date inputs.

Classic matching algorithms are usually subject to strong

regularization, whereas deep neural networks may have

generalization problems. While there is much room for im-

provement, EO-NeRF demonstrates that neural rendering

has the potential to take Earth observation to another level.
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A new satellite imagery stereo pipeline designed for scal-

ability, robustness and performance. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, 5-2-2020:171–178, 2020. 1, 3

[35] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing scenes as neural radiance fields for view syn-

thesis. In Computer Vision – ECCV 2020, pages 405–421,

2020. 1, 2, 3, 5

[36] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM Trans. Graph., 41(4), 2022. 3

[37] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,

Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-

NeRF: Regularizing neural radiance fields for view synthesis

from sparse inputs. In 2022 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5470–

5480, 2022. 3

[38] Ozge C Ozcanli, Yi Dong, Joseph L Mundy, Helen Webb,

Riad Hammoud, and Tom Victor. Automatic geo-location

correction of satellite imagery. In 2014 IEEE Conference

on Computer Vision and Pattern Recognition Workshops

(CVPRW), pages 307–314, 2014. 6

[39] Mathias Rothermel, Konrad Wenzel, Dieter Fritsch, and Nor-

bert Haala. SURE: Photogrammetric surface reconstruction

from imagery. In Proceedings LC3D Workshop, Berlin, vol-

ume 8, 2012. 3

[40] Ewelina Rupnik, Mehdi Daakir, and Marc Pierrot-

Deseilligny. MicMac–a free, open-source solution for pho-

togrammetry. Open Geospatial Data, Software and Stan-

dards, 2(14), 2017. 1

[41] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang,

Matthew Tancik, Ben Mildenhall, and Jonathan T Barron.

Nerv: Neural reflectance and visibility fields for relighting

and view synthesis. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

7495–7504, 2021. 4

[42] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel

grid optimization: Super-fast convergence for radiance fields

reconstruction. In 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5449–5459,

2022. 3

[43] Jurgen Wohlfeil, Heiko Hirschmuller, Björn Piltz, Anko

Börner, and Michael Suppa. Fully automated generation

of accurate digital surface models with sub-meter resolution

from satellite imagery. ISPRS International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, 39-B3:75–80, 2012. 3

[44] Teng Wu, Bruno Vallet, Marc Pierrot-Deseilligny, and

Ewelina Rupnik. A new stereo dense matching benchmark

dataset for deep learning. ISPRS International Archives of

the Photogrammetry, Remote Sensing and Spatial Informa-

tion Sciences, 43-B2-2021:405–412, 2021. 3, 7

[45] Gengshan Yang, Joshua Manela, Michael Happold, and

Deva Ramanan. Hierarchical deep stereo matching on high-

resolution images. In 2019 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5510–

5519, 2019. 3

[46] Wenqi Yang, Guanying Chen, Chaofeng Chen, Zhenfang

Chen, and Kwan-Yee K Wong. S3-NeRF: Neural reflectance

field from shading and shadow under a single viewpoint.

arXiv preprint arXiv:2210.08936, 2022. 4

[47] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long

Quan. MVSNet: Depth inference for unstructured multi-

view stereo. In Computer Vision – ECCV 2018, pages 785–

801, 2018. 3

[48] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto

Rodriguez, Phillip Isola, and Tsung-Yi Lin. iNeRF: Inverting

neural radiance fields for pose estimation. In 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 1323–1330, 2021. 5

2044



[49] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelNeRF: Neural radiance fields from one or few images.

In 2021 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 4576–4585, 2021. 3

[50] Ding Yuan and Christopher D Elvidge. Comparison of rela-

tive radiometric normalization techniques. ISPRS Journal of

Photogrammetry and Remote Sensing, 51(3):117–126, 1996.

4

[51] Ramin Zabih and John Woodfill. Non-parametric local trans-

forms for computing visual correspondence. In Computer

Vision — ECCV ’94, pages 151–158, 1994. 3

[52] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and

Philip H.S. Torr. GA-Net: Guided aggregation net for end-

to-end stereo matching. In 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages

185–194, 2019. 3

[53] Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva

Ramanan. NeRS: Neural reflectance surfaces for sparse-view

3D reconstruction in the wild. Advances in Neural Informa-

tion Processing Systems, 34:29835–29847, 2021. 3

[54] Qiang Zhao, Le Yu, Zhenrong Du, Dailiang Peng, Pengyu

Hao, Yongguang Zhang, and Peng Gong. An overview of

the applications of Earth observation satellite data: impacts

and future trends. Remote Sensing, 14(8):1863, 2022. 1

2045


