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Abstract

Detecting objects in aerial images is challenging be-
cause they are typically composed of crowded small objects
distributed non-uniformly over high-resolution (in terms
of pixel size) images. Density cropping is a widely used
method to improve this small object detection where the
crowded small object regions are extracted and processed
in high image-resolution. However, this is typically accom-
plished by adding other learnable components, thus compli-
cating the training and inference over a standard detection
process. In this paper, we propose an efficient Cascaded
Zoom-in (CZ) detector that re-purposes the detector itself
for density-guided training and inference. During training,
density crops are located, labeled as a new class, and em-
ployed to augment the training dataset. During inference,
the density crops are first detected along with the base class
objects, and then input for a second stage of inference. This
approach is easily integrated into any detector, and creates
no significant change in the standard detection process, like
the uniform cropping approach popular in aerial image de-
tection. Experimental results on the aerial images of the
challenging VisDrone and DOTA datasets verify the benefits
of the proposed approach. The proposed CZ detector also
provides state-of-the-art results over uniform cropping and
other density cropping methods on the VisDrone dataset, in-
creasing the detection mAP of small objects by more than 3
percentage points. 1

1. Introduction

With the advent of deep learning, object detection meth-
ods achieved significant progress [2, 4, 21, 28, 29, 35]. This
has resulted in the fast growth of their adoption to many
downstream applications, including aerial images from
drones or satellites, for earth monitoring, surveillance, in-
spection, etc [6, 15, 17, 26, 37]. However, unlike natural im-
ages in the Pascal VOC [12] and MS-COCO [23] datasets,
aerial images are captured in high image-resolution, and are

1Our code is available at: https://github.com/akhilpm/DroneDetectron2

Figure 1. Overview of our proposed Cascaded Zoom-in detector.
During training (top), density crops are extracted, and labeled as
a new class (red boxes) on the original image. The training set is
augmented with the rescaled density crops and the corresponding
ground truth boxes within these crops. During the first stage of
inference (bottom), the base class objects and density crops (red
boxes) are detected on the whole image. In the second stage, the
density crops are rescaled to a common larger size, and a second
inference is performed. Finally, the detections on density crops are
combined with the detections on the whole image.

typically comprised of many small objects, that are sparsely
distributed in crowded object regions. As a comparison,
the average number of objects in Pascal VOC and MS-
COCO images are 3 and 7, respectively, whereas images
in the VisDrone [43] and DOTA [37] datasets – two pop-
ular benchmarks in the aerial detection community – have
an average number of 53 and 67 objects, respectively. The
average width of Pascal VOC and MS-COCO images are
500 and 640 pixels, respectively, while the same in Vis-
Drone and DOTA images are 1500 and 4000 pixels, re-
spectively. Therefore, improvements observed in object
detection methods applied to natural images do not easily
translate to object detection in high-resolution images from
drones and satellites.

The high-resolution imagery and tiny objects raise sev-
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(a) Baseline (b) Uniform crops (c) Density crops (d) Our approach

Figure 2. An illustration of different approaches for the detection of small objects in high-resolution aerial images. (a) The image is down-
scaled and processed at the detector’s input size. (b) The image is split into uniform, possibly overlapping crops, and each crop is processed
by the detector. (c) An external learnable module crops the image into dense object regions. Each crop is re-scaled and processed at the
detector’s input size. (d) Our proposed CZ detector is re-purposed to detect the density crops along with the base class objects, eliminating
the need for an external module. Each crop is re-scaled and processed at the detector’s input size in a second stage of inference. Blue
arrows show the path of the original image and red shows the path of density crops.

eral challenges for object detection in aerial images, in-
cluding the loss of information due to rescaling and feature
down-sampling, low tolerance to bounding box shifts, and
noisy feature representations [5, 8] among others. Since it
is difficult to input high-resolution aerial images directly to
a detector due to the computational cost and large memory
footprint, they are often resized to the standard input size
range of 300-512 pixels(see Fig. 2 (a)). This rescaling,
coupled with the feature down-sampling in ConvNets, of-
ten results in feature representations linked to small objects
diminished or corrupted by the noisy background activa-
tions [38]. Regarding the tolerance to bounding box shifts, a
small shift in the bounding box may cause a large decline in
the Intersection over Union (IoU), raising the false positive
detections [5].

To utilize the higher resolution, and also mitigate the
information loss, a popular approach consists in cropping
the input image into uniform patches, and then performing
object detection on these patches in high image-resolution
by upsampling (see Fig. 2 (b)). Although these uniform
patches help to improve the accuracy, this approach does
not respect the distribution of the objects in the image,
and hence the scale normalization achieved is not optimal
[18, 39]. As the objects in aerial images usually appear
crowded in sparsely distributed regions of the image, it is
desirable to perform density-based cropping, and then pro-
cess high-resolution versions of those crowded object re-

gions for better scale balance.
To extract these density crops, existing methods utilize

additional learnable modules (see Fig. 2 (c)) such as den-
sity maps [18], cluster proposal networks [39], global-local
detection pipeline [8] etc. This usually results in additional
learnable components in the pipeline, often with multiple
stages of training. Even with single-stage end-to-end meth-
ods, the crops obtained are noisy in the beginning and are
only useful for aiding small object detection in the later
stages of the training [39]. Moreover, as the learning is
evolving the crops also evolve, so the model is not receiv-
ing a consistent indication of what exactly is a ”density
crop”. Thus, practitioners still widely use uniform cropping
over the advanced density crop-based approaches due to the
practical simplicity it offers [33, 34].

In this paper, we tried to bridge this gap between re-
search and practice by proposing an efficient cascaded
zoom-in (CZ) detection method that can leverage density
crops within the training of a standard detector, offering the
simplicity of uniform cropping, yet providing the benefits
of density crops (see Fig. 2 (d)). We simply make use of
the existing detector itself to discover the density crops, by
adding the ”crop” as a new class to the detector. The crops
are labeled as a pre-processing step using a crop labeling al-
gorithm, and hence the detector receives a consistent signal
of what constitutes a crop. During inference, while other
methods require complex post-processing to filter the noisy
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crops, we can simply perform it based on the confidence of
the ”crop” class from the detector.

Fig. 1 illustrates the training and testing of our method.
First, the density crops are extracted from each training im-
age as a pre-processing step, using our crop labeling algo-
rithm. These density crops are added as a new class to be
detected in the corresponding image. Then we augment the
training set with the higher resolution version of the den-
sity crops, and the corresponding ground truth (GT) boxes
of objects inside the crop. Then, the detector is trained as
usual. This training process has an almost negligible over-
head over standard detector training, and it is similar to that
of uniform crop based training. Inference is performed in
two stages. In the first stage, the base class objects and den-
sity crops are detected from each input image. In the second
stage, high-quality density crops are selected based on their
confidence score, and another inference based is performed
on an up-sampled version of these crops. Finally, the de-
tections from stages one and two are fused to get the output
detection. Compared to standard object detector learning,
the extra work required at training time is the crop labeling
which can be performed as a pre-processing step. While
making predictions, the extra work required is one more in-
ference. As both of these processes don’t require any sig-
nificant modification on a normal object detection pipeline,
similar to uniform crops, our method can be easily incorpo-
rated for accelerating small object detection.

Our main contribution can be summarized as follows:
(1) An efficient cascaded zoom-in (CZ) object detector
based on density cropping is proposed for high-resolution
aerial images, where a given detector is re-purposed to ex-
tract density crops(thus not using additional modules) along
with base class objects. At train time, this approach relies
on a simple pre-processing step for density crop labeling,
and at test time, an additional inference step is needed to
process the predicted density crops.
(2) We empirically validate the benefits of our cascaded
zoom-in detection on aerial images from drones (VisDrone)
and satellites (DOTA), and obtain state-of-the-art perfor-
mance. A consistent improvement in the detection accu-
racy is observed on both datasets over the baseline detec-
tion. Particularly, the mAP of small object detection is im-
proved by more than 3 percentage points.

2. Related works
Object Detection. General purpose visual object detectors
are built primarily focusing on natural images. They can
be broadly classified into two-stage [21, 29] and one-stage
[24, 28] object detectors. Two-stage object detectors first
extract potential object regions (i.e., object proposals) in the
first stage. Then in the second stage, the proposal regions
are classified into object categories. Earlier approaches ex-
tract these RoIs using low-level image features [13, 14],

etc. Later, a learnable component called RPN (Region Pro-
posal Network) is proposed for object proposal extraction,
giving birth to end-to-end two-stage detectors [7, 21, 29].
One-stage object detectors in contrast avoid the RoI extrac-
tion stage and classify and regress directly from the anchor
boxes. They are generally fast and applicable to real-time
object detection [22, 24, 27, 28]. But generally speaking,
two-stage detectors are more accurate and hence used more
in aerial detection [8, 18]. Recently, one-stage detectors are
being explored in aerial images [38]. These days, anchor-
free detectors [10, 35] is getting popular, since they avoid
the need for hand-crafted anchor box dimensions and their
matching process, which is often specifically tuned depend-
ing on the size distribution of the objects. We performed our
empirical study mostly on the two-stage detector for a fair
comparison with existing approaches, but also report results
on the modern anchor-free one-stage detector to validate the
generality of our approach.
Detection of Small Objects. Small object detection is
studied extensively in the literature. Cheng et al. [5] pro-
vides a comprehensive survey of small object detection
techniques which is broadly classified into: scale aware
training [3,11, 20, 21, 25, 31, 32, 41], super-resolution meth-
ods [19], context modeling [1], and density guided detection
[9,18,39] among others. Due to the crowded distribution of
small objects at sparse locations in the high-resolution im-
ages, density cropping is a popular strategy in aerial image
object detection [8, 9, 18, 39]. But this is usually obtained
by additional learnable components and multi-stage train-
ing. Thus, such methods are more complex to use than uni-
form cropping. We also use the density cropping strategy
but re-purpose the detector itself for extracting the crops, so
no additional learnable components are needed. Hence, we
believe that our method has the practical simplicity of the
uniform cropping strategy, yet retains the benefit of density
guided detection.

3. Proposed Method
This section provides details on how to transform any

detector such that it can efficiently process high-resolution
images with many small target objects, leveraging density
crops. Our proposed cascaded zoom-in (CZ) object detec-
tor allows us to re-purpose the detector to extract density
crops along with base class objects. Let us consider the
original image, which is kept at its high image-resolution,
the down-sampled image, which is an image containing the
same view of the original, but down-scaled to the detector
input size, and the cropped images, which are the selected
regions of the image that are up-scaled to the detector in-
put size. The first component of our pipeline is the den-
sity crop labeling algorithm that labels the crowded object
regions as ”density crops” and augments the training data
by adding up-scaled versions of those regions. Then, the
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density crops are also added to the original image as a new
class to be detected. Thus, the augmented training set will
include high-resolution versions of the regions containing
crowded small objects, allowing the detector to see those
small objects in high image-resolution. Once the model is
trained, the inference consists of the detection of the base
classes and ”density crop” class on the original image, and
then a second detection on the predicted density crops after
up-scaling. Finally, the detection from the original image
and density crops are combined to produce the output de-
tection.

3.1. Training with Density Crops

In order to use a standard detector for our approach, we
need to add a new class that we call ”density crop” to the
training annotations. In this way, our approach is detector
agnostic (as we don’t change the internals of the detector,
we just add one additional class to the list of target classes)
and does not require any additional component than the de-
tector itself. The density crop class should label those parts
of the image that contains many small objects and include
them in a bounding box. This will allow training and in-
ference to focus on those parts by analyzing them in higher
image-resolution. Several different ways could be consid-
ered for defining the density crop. The quality constraints
we used to define density crops are: (i) they should enclose
groups of small target objects, (ii) they are easy to localize
at inference time, and (iii) they are optimal in number to
reduce the computational cost.

Algorithm 1 describes the procedure we used for discov-
ering and labeling density crops from the groundtruth (GT)
annotations. In summary, we perform an iterative merging
of the GT boxes to discover the density crops. In the first
step, all GT boxes B are scaled by expanding the min and
max coordinates of the boxes by σ pixels (scale(B, σ)).
Then we calculate the pairwise Intersection over Union
(IoU) between the scaled boxes (pairwise_IoU(D)) in
O as a |D| × |D| matrix. Connections are labeled in C by
assigning one to all overlap values above a threshold θ in
the pairwise IoU matrix O. Then we select in C the row m∗

with the maximum number of connections. An enclosing
box is computed (enclosing_box(Cm∗ )) by finding the
min and max coordinates of all crop members connected to
m∗. The newly obtained crop box is added to the list of
crops and the row Cm∗ is set to zeros. Subsequently, the
crops that are bigger than a maximum threshold π are re-
moved from the list D (filter_size(D, π)). This pro-
cedure of iterative merging is performed N times. The crop
size threshold π used here is the ratio of the area of the crop
to that of the image.

The quality of the crops is important for our method. It
is in fact the iterative merging that brings out the best qual-
ity crops. Naive scaling and merging to find the maximum

Algorithm 1: Density Crop Labeling Algorithm.
Input: B: GT boxes in an image
Output: D: Density crops
Parameters: N : no. of merging steps,

σ: expansion pixels,
θ: overlap threshold,
π: maximum crop size

1. D ← scale(B, σ);
2. for i← 1 to N do

a) O = pairwise IoU(D)
b) C = O > θ (connection matrix)
c) D ← ∅
while |C| > 0 do

i) m∗ = argmaxm (
∑

i Cm,i)
ii) d = enclosing box(Cm∗ )
iii) D ← D + d
iv) Cm∗ = 0

end
d) D ← filter size(D, π)

end

enclosing boxes based on pairwise IoU results in either bad
crops or too many small crops (with fewer objects in them)
depending on the value of the scaling factor. Iterative merg-
ing produces good-quality crops enclosing groups of small
objects respecting the quality constraints. In section 4, we
present the ablation studies validating the effectiveness of
our density crop labeling algorithm. We also show that
hyperparameters of the algorithm can be easily set. Note
that by labeling the density crops apriori, we are giving the
detector a consistent signal of what constitutes a ”density
crop” throughout the training period, unlike other methods
where density crops are also evolving while the training is
progressing [9, 18, 39]. This is consistent with the observa-
tions in [42] that simple heuristic methods that can give a
consistent groundtruth label during training are superior to
complex prediction-based groundtruth labels that are con-
tinuously evolving.

With the newly obtained crop labels, we can also aug-
ment the training set with additional image crops. The orig-
inal image and its annotations B are down-scaled using the
maximum training size W × H . Note that it is expected
the detector will not detect many small objects in the down-
scaled image. But the augmented up-scaled version of the
density crop d ∈ D of a given image will have those small
objects that fall inside the crop in a higher pixel size. This
will reduce the extreme scale variation at training time. We
used bilinear interpolation for up-scaling the density crops.
The crop labeling can be performed as a pre-processing
step. The up-scaled version augmentation of density crops
is simply a data augmentation process. Thus our method is
not introducing any change in the standard training pipeline
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of a detector, except the new class ”density crop” is added.
In this regard, it is practically easy to use like uniform crop-
ping.

3.2. Multi-stage Inference

As the detector is trained to recognize density crops, at
inference time, we can get the density crop from its pre-
diction itself. Figure 1 bottom explains our inference pro-
cess in detail. It consists of two stages. In stage one, it
predicts the base class objects and density crops on the in-
put image. Then we select the high-quality density crops
based on their confidence score. In stage two, the upscaled
density crops are passed through the same detector again,
producing small object detection on the density crops. Fi-
nally, we re-project the detections on the crops to the orig-
inal image and concatenate them with the detections on
the original image. Let c ∈ C be an up-scaled crop im-
age of size (IWc , IHc ) defined by its bounding box coordi-
nates (cx1, cy1, cx2, cy2) in the original image. Given the
scaling factors (SW

c , SH
c ) = ( cx2−cx1

IW
c

,
cy2−cy1

IH
c

), the re-
projection box pi scales down and shifts the detection boxes
(x1,i, y1,i, x2,i, y2,i) ∈ Bc in the crop c as:

pi =(SWx1,i, S
Hy1,i, S

Wx2,i, S
Hy2,i)

+ (cx1, cy1, cx1, cy1) (1)

The Non-Maximal Suppression(NMS) is then applied to re-
move duplicate detections.

While other methods need complex post-processing to
filter the noisy crops [39], we can simply use the confidence
score of the density crops to do the same. Stage one of the
inference is the standard inference procedure in any detec-
tor. The filtering of the noisy crops can be easily performed
with the confidence scores given by the detector. The sec-
ond stage of the inference is performed with the same detec-
tor, but a different input (the up-scaled density crops). So,
we are simply repeating the standard inference procedure
of a detector one more time. All of these operations can be
easily wrapped on top of the inference procedure of any de-
tector, thus keeping the simplicity of the uniform cropping
approach at inference time too.

4. Experiments
Datasets and evaluation measures. For evaluation of
methods, we employed two popular challenging benchmark
datasets for Aerial Image Detection, namely the VisDrone
[43] and DOTA [37] datasets. The measure used for assess-
ing and comparing the performance of methods is COCO
style average precision (AP) [23]. The AP of small, medium
and large objects are also reported, particularly to under-
stand the performance of our method for small object de-
tection. Finally, the number of frames per second (FPS) is
reported as a measure of time complexity.

VisDrone. This dataset contains 8,599 drone-captured im-
ages (6,471 for training, 548 for validation, and 1,580 for
testing) with a pixel size of about 2000 ×1500 pixels. The
objects are from ten categories with 540k instances anno-
tated in the training set, mostly containing different cate-
gories of vehicles and pedestrians observed from drones. It
has an extreme class imbalance and scale imbalance making
it an ideal benchmark for studying small object detection
problems. As the evaluation server is closed now, following
the existing works, we used the validation set for evaluating
the performance.
DOTA. This dataset is comprised of satellite images. The
images in this dataset have a pixel size ranging from
800×800 to 4000×4000. Around 280k annotated instances
are present in the dataset. The objects are from fifteen
different categories, with movable objects such as planes,
ships, large vehicles, small vehicles, and helicopters. The
remaining ten categories are roundabouts, harbors, swim-
ming pools, etc. Many density crop based detection pa-
pers reports results only on movable objects [39] with the
assumption that immovable objects usually won’t appear
crowded. But they are also small objects, so we kept all
classes to assess the improvement in small object detection.
The training and validation data contain 1411 images and
458 images, respectively.
Implementation details. The Detectron2 toolkit [36] was
used to implement our CZ detector. The backbone detec-
tor used in our study is primarily Faster RCNN [29], but
we also show results on the modern anchor-free one-stage
detector FCOS [35]. This validates our claim that our ap-
proach gives a consistent improvement in performance re-
gardless of the detector used. We used Feature Pyramid
Network (FPN) [21] backbone with ResNet50 [16] pre-
trained on ImageNet [30] dataset for our experimental vali-
dation. For data augmentation, we resized the shorter edge
to one randomly picked from (800, 900, 1000, 1100, 1200),
and applied horizontal flip with a 50% probability. The
model was trained on both datasets for 70k iterations. The
initial learning rate is set to 0.01 and decayed by 10 at 30k
and 50k iterations. For training, we used one NVIDIA A100
GPU with 40 GB of memory.

4.1. Comparison with Baselines

Table 1 presents a comparison between uniform crop-
ping and density cropping on the VisDrone dataset, with
and without the last feature map of the feature pyramid
(P2), which has a strong impact in memory and computa-
tion [38]. For the uniform cropping, we crop the original
image into 4 equal-sized crops by splitting at half height
and width. In order to have a fair comparison, we use our
method with a confidence threshold of 0.7 to obtain an av-
erage of 1-3 crops per image. The observations in the table
suggest that uniform cropping improves performance com-
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Settings AP AP50 AP75 APs APm APl FPS
Without P2
Baseline 29.48 51.68 29.55 22.33 38.66 39.30 26.31
Uniform crops 30.68 54.44 30.54 22.91 40.62 41.03 12.30
CZ Det. (ours) 33.02 57.87 33.09 25.74 42.93 41.44 11.64
With P2
Baseline 30.81 55.06 30.68 23.97 39.19 41.17 18.25
Uniform crops 31.73 56.31 31.57 25.13 40.41 41.06 9.85
CZ Det. (ours) 33.22 58.30 33.16 26.06 42.58 43.36 8.44

Table 1. Comparison of detection performance between a base-
line detector, uniform crops and density crops on VisDrone dataset
(1.5K pixels). The results are in %. The small, medium, and large
objects are grouped according to the coco evaluation protocol [23].

pared to vanilla training on the whole image, but it is still in-
ferior to our density-based cropping. When high-resolution
feature maps P2 are not used, density cropping gains more
than 3.5 percentage points in AP and the AP of small ob-
jects is improved by 3.4 percentage points. It is worth not-
ing that compared to uniform cropping, our approach in-
troduces additional parameters to recognize one extra class
and no changes in learning and inference dynamics. So this
can be easily used as a plug-and-play replacement for the
uniform crop-based training, popular among the commu-
nity. In terms of frame rate, our approach is slightly slower
than uniform crops. However, we observe that our method
without the expensive P2 features performs better than uni-
form crops with P2, while also being faster. In Figure 3,
a visual comparison of the highly confident detections be-
tween the baseline model and our density crop-based model
is shown. When the density crops are used, we can observe
an increase in the number of detections. It can be observed
that more objects are getting discovered in the crop regions
when the detection results from the second inference are
augmented. This explains the impact of our zoom-in detec-
tor for small object detection in high-resolution images.

To further verify the observations, we repeated the same
type of study in the satellite images of the DOTA dataset. In
this dataset images are at higher pixel size (4k pixels), thus
due to memory constraints, the baselines are already per-
forming uniform cropping. Table 2 shows the results of a
uniform cropping baseline and our CZ detector for two dif-
ferent configurations. Similar to VisDrone, significant im-
provement is seen in the case of not using high-resolution
features P2, with a gain of 2.9 percentage points. APs of
small and medium objects are improved by 3.0 and 4.0 per-
centage points respectively from the baseline without using
high-resolution features. In terms of computation, we can
see that, as expected, our approach has a slightly slower
frame rate than the baseline. However, this is compensated
by the higher detection accuracy. We see for instance that
the best baseline with P2 features has an AP of 33.44%
with an FPS of 0.49, while our CZ detector without P2 fea-
tures has a higher AP (34.14%) while being also faster (0.62
FPS).

Settings AP AP50 AP75 APs APm APl FPS
Without P2
Baseline 31.29 51.57 33.10 12.69 34.04 42.83 0.93
CZ Det. (Ours) 34.14 56.69 35.69 15.66 38.16 44.20 0.62
With P2
Baseline 33.44 54.03 35.56 16.86 36.76 43.65 0.49
CZ Det. (Ours) 34.62 56.86 36.17 18.17 37.84 43.83 0.30

Table 2. Performance comparison of our method against baselines
on DOTA dataset (4k pixels). The results are in %.

Train Test AP AP50 AP75 APs APm APl

29.48 51.68 29.55 22.33 38.66 39.30
✓ 29.93 53.29 29.52 22.33 39.35 39.46

✓ 32.64 57.36 32.78 24.81 43.04 41.07
✓ ✓ 33.02 57.87 33.09 25.74 42.93 41.44

Table 3. Detection results with and without density crops at train
time and test time (results in %).

4.2. Ablation Studies

The effectiveness of our proposed CZ detector is char-
acterized by ablation experiments on the VisDrone dataset.
Additional studies showing the impact of hyperparameters
in the crop labeling algorithm, different backbone networks
for the detector, and an analysis of the detection errors are
presented in the supplementary material.
a) Density Crops effect at Training and Inference. We
used density crops at the training and test time to achieve the
best performance. In particular, while training, the rescaled
density crops are augmented with the training images; while
testing we do the two-stage inference where stage one per-
forms inference on the whole image and stage two performs
inference on the density crops. In this section, we study the
importance of this configuration. Table 3 shows the results.
When the density crops are not augmented with the training
set but only used in the two-stage inference, the improve-
ment is marginal over the baseline (most importantly, APs

has no change). This is because the scale imbalance in the
input image is not mitigated as the detector is not seeing
the small objects at a bigger scale. When density crops are
added to the training set, the detection accuracy improves
significantly. However, the inference is still happening on
the whole image so the detection accuracy of small objects
is affected. When inference is performed on the density
crops and fused with the detection on the whole image, we
get the best results.
b) Impact of the Quality of Crops. Figure 4 illustrates how
the confidence of crops impacts the detection accuracy and
the number of density crops extracted. The impact is stud-
ied for two settings, with and without the high-resolution
features P2. This is to verify how the density crops aid
small object detection with and without utilizing expensive
high-resolution feature maps. The crop confidence, which
is used as the proxy for crop quality, is varied from 0.1 to
0.9. In general, with lower confidence values, we are ob-
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(a) image & GT (b) baseline detection (c) detection with crops

Figure 3. Visualization of density crop-based detection. (a) the original image and its GT. (b) detection with the baseline detector. (c)
detection with density crops; the density crops are shown in red color. Our method detects more objects, especially inside the crop regions.

serving more crops but many of them are noisy and redun-
dant even after Non-Maximal Suppression. So when the
quality of the crops is low, the detection accuracy decreases
(Figure 4 left). When the quality is increased, the accuracy
increases until 0.7, and then it is gradually coming down as
we use very few crops in that case. The trend is the same
with and without P2.

From Tables 1 and 2, we observed that density crops ob-
tained better gain in detection accuracy over the baseline
without high-resolution features. Though this is expected,
we decided to understand how exactly this is happening. We
analyzed the number of density crops retained after filtering
out the low-quality crops at multiple confidence levels rang-
ing from 0.1 to 0.9. Figure 4 right shows the results with
and without high-resolution features P2. It can be observed
that for ”without P2”, we are getting more density crops
at all confidence levels. With higher crop confidence lev-
els, we get more high-quality crops for ”without P2” case,
hence we observe a better gain in detection accuracy over
the baseline. We used a confidence of 0.7 in all our experi-
ments to have the best trade-off between detection precision
and speed. While other methods use post-processing on the
crop detections [39] or density maps [18] to filter the noisy
crops during inference, we can filter them out based on their
confidence score simplifying the inference procedure.
c) Why Iterative Merging for Crop Discovery? Simply

Figure 4. Change in detection precision and the number of crops
according to crop confidence. The crop confidence is varied from
0.1 to 0.9. The crop confidence for best detection accuracy is 0.7.

scaling and doing a one-step merging operation to create
density crops results in sub-optimal crops. We empirically
verify this with multiple scaling strategies and argue that
the iterative merging strategy is superior to them. Authors
of [39] also used iterative crop merging on the output of
their crop detection module to reduce the redundant crops.
This has to be performed at training and test time to refine
the initial crop detections. To label the crops for training,
they used a single-step aggregation. Our iterative merging
for labeling crops can be performed as a pre-processing step
before training. We avoided redundant crops at inference,
by filtering them out based on the confidence score.

Table 4 top provides the comparative results of single-
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Scaling # crops AP AP50 AP75 APs APm APl

Baseline 0 29.48 51.68 29.55 22.33 38.66 39.30
factor = 2.0 74417 24.39 44.38 23.73 15.96 34.96 47.24

3.0 67906 30.64 53.71 30.68 23.23 40.64 39.35
6.0 43300 31.30 55.33 31.42 23.79 41.06 38.40
8.0 34663 30.95 55.18 30.31 23.38 40.93 39.24

pixels = 30 62677 31.26 54.55 31.50 23.83 40.78 50.07
60 46753 31.98 55.84 32.07 25.12 41.11 45.52
90 35442 31.47 55.62 30.96 24.03 41.27 44.08

120 25146 31.07 54.74 30.95 23.18 41.43 42.39
Ours 14018 33.02 57.87 33.09 25.74 42.93 41.44

Table 4. Comparison of iterative merging strategy with single-step
merging where GT boxes are scaled according to scaling factors,
and scaled uniformly by pixel values (results in %).

step merging with our iterative merging strategy where GT
boxes are scaled by a scaling factor. Using a low scaling fac-
tor creates too many crops, containing fewer objects. More
specifically, it is producing multiple small crops containing
fewer objects in crowded regions in the image. When the
scaling factor is increased, the number of crops decreases
and performance increases up to a point but declines later
as the crops become too big and the object density of the
image is less respected. This is because large scaling fac-
tors significantly blow up the big GT boxes and it alters the
density of the crops. The detection performance obtained is
also far below our iterative merging. Table 4 bottom shows
the same comparison when GT boxes are scaled by constant
pixel values. As this avoids the blowing of large bounding
boxes due to the constant scaling, the detection performance
is better than the former one. Iterative merging produces the
optimal number of crops with the best performance. The
scaling used in the iterative merging is small and only per-
formed at the first stage of merging. We used 20 pixels
as the scaling magnitude. Large values are not possible
here since the filter size operation while restricting
the crop size will reduce the number of crops. Thus it is easy
to set. In the supplementary material, we provide more ex-
periments studying the ease of tuning the hyperparameters
N, π, θ of the crop labeling algorithm, and the visualization
of the crops obtained by different merging strategies.

4.3. Results with Other Detectors

To validate the effectiveness of our approach with other
detection architectures, we conducted experiments on the
modern anchor-free one-stage detector FCOS [35]. Table
5 shows the performance comparison of the vanilla FCOS
detector with our density crop based FCOS detector. Simi-
lar to the results in Table 1, AP is improved by a significant
margin, and APs has gained almost 5 percentage points. We
can also see that density crop based FCOS has superior per-
formance than their Faster RCNN counterpart in terms of
most of the metrics. This is interesting because other den-
sity based approaches weren’t producing better results with
one-stage detectors than the two-stage ones.

Settings AP AP50 AP75 APs APm APl FPS
Base FCOS 29.51 50.40 29.92 21.25 40.51 37.29 26.01

CZ FCOS Det. 33.67 56.20 34.15 26.16 43.98 46.87 12.69

Table 5. Results with anchor free detector FCOS on the Visdrone
dataset (results in %). All results are without using P2.

Method AP AP50 AP75 APs APm APl

ClusterNet [39] 26.72 50.63 24.70 17.61 38.92 51.40
DensityMap [18] 28.21 47.62 28.90 19.90 39.61 55.81
CDMNet [9] 29.20 49.50 29.80 20.80 40.70 41.60
GLSAN [8] 30.70 55.40 30.00 - - -
QueryDet [38] 28.32 48.14 28.75 - - -
CascadeNet [40] 28.80 47.10 29.30 - - -
CascNet+MF [40] 30.12 58.02 27.53 - - -
CZ Det. (Ours) 33.22 58.30 33.16 26.06 42.58 43.36

Table 6. Performance of our proposed method compared against
state-of-art approaches with Faster RCNN detector on the Vis-
Drone validation set (results in %). ”MF” stands for model fusion.

4.4. Comparison with State-of-the-Art Methods

Table 6 compares our approach with the existing meth-
ods on the VisDrone dataset. Similarly to us, some methods
perform density cropping [8,9,18,39], while QueryNet [38]
and CascadeNet [40] use other approaches to improve the
detection performance on aerial images. We obtained the
best detection AP among the state-of-the-art methods. Only
for large objects, DensityMap performs better than our ap-
proach. This is probably because our method gets biased
to detect small objects, thanks to the additional crops on
training. In fact, for small object detection, we obtained
the best APs, significantly outperforming all existing ap-
proaches. APm also shows a good improvement of more
than 2 percentage points.

5. Conclusion
We proposed an efficient method for utilizing density

crops for aerial image detection. Our method is as simple
to use as the uniform cropping approach widely used by
practitioners. The training step simply adds an additional
class called ”density crop” to the detector whose labels are
obtained from a crop labeling algorithm. The inference is
performed in two steps, one on the original image and then
on the up-scaled version of the high-quality crops detected
from it. For both modifications, we re-purpose the origi-
nal detector, thus alleviating the need for additional compo-
nents, unlike existing approaches. Empirical results verify
the superiority of our approach in terms of detection accu-
racy and ease of use. At present, the density crops are up-
scaled to a fixed pixel resolution. In the future, we plan to
up-scale adaptively, respecting the density of the crops.
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