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Abstract

Identifying high-quality (i.e., relatively clear) measure-
ments of surface conditions is a near-universal first step in
working with optical satellite imagery. Many cloud masking
algorithms have been developed to characterize the like-
lihood that reflectance measurements for individual pixels
were influenced by clouds, cloud shadows, and other at-
mospheric effects. However, due to the continuous den-
sity of the atmospheric volume, we argue that quantifica-
tion of occlusion and corruption effects is better treated as
a regression problem rather than a discretized classifica-
tion problem as done in prior work. We propose a space-
time context network trained using a bootstrapping proce-
dure that leverages millions of automatically-mined video
sequences informed by a weakly supervised measure of at-
mospheric similarity. We find that our approach outper-
forms existing machine learning and physical basis cloud
and cloud shadow detection algorithms, producing state-of-
the-art results for Sentinel-2 imagery on two different out-
of-distribution reference datasets. The resulting product of-
fers a flexible quality assessment (QA) solution that enables
both standard cloud and cloud shadow masking via thresh-
olding and more complex image grading for compositing or
downstream models. By way of generality, minimal super-
vision, and scale of our training data, our approach has the
potential to significantly improve the utility and usability of
optical remote sensing imagery.

1. Introduction

With the increasing prevalence of cloud-based storage
and analysis of Earth observation imagery [1, 16, 33, 36],
reliable pre-processing algorithms are more critical than
ever [56, 58]. Sensor-specific approaches for masking and
correcting atmospheric effects in optical remote sensing im-
agery have been integrated into processing pipelines for ma-
jor image providers such as the USGS and Copernicus/ESA
[12, 13, 28, 37]. However, accurate and globally consistent

cross-sensor image quality assessment remains an ongoing
challenge [34, 45, 46, 64].

Most operational cloud masking efforts, including the
Landsat TM/ETM+ Automatic Cloud Cover Assessment
(ACCA) [21], Function of Mask (Fmask) algorithm [64,65],
Sentinel-2 QA60 bitmask [7], and Sen2Cor Scene Classi-
fication Layer (SCL) [27, 30] rely on a series of spectral
tests and other heuristics to identify clouds and cloud shad-
ows. Such approaches are defensible but rigid. Given vari-
ability in both atmospheric effects and global land surface
types, it is exceedingly difficult to develop a universal set of
rules that work for all cases. This makes so-called physical
basis approaches prone to failure on corner cases such as
mountainous regions [39, 51]; high-return surfaces includ-
ing snow/ice, buildings, beaches, and salt flats that have
similar spectral signatures to clouds [14, 22, 23, 66]; dark
targets like wetlands and small water bodies that have sim-
ilar reflectance properties as cloud shadows [18]; and high
thin cirrus clouds that only partially occlude surface prop-
erties [41]. Furthermore, assumptions about physical rela-
tionships that would be expected from multi-spectral mea-
surements are inherently linked to available spectral bands
and band passes and must be adapted to new sensors, which
has proven especially challenging for sensors lacking ther-
mal and/or short-wave infrared bands [44, 62, 64].

Although physical basis approaches may be advanta-
geous in their interpretability, we argue that a more gen-
eral solution requires reframing atmospheric artifact detec-
tion as a learning problem. Given successes in other do-
mains, deep learning approaches are increasingly being ap-
plied to Earth observation imagery for a variety of tasks, in-
cluding generating better cloud masks [5, 24, 29, 63]. Most
efforts to develop deep learning models for cloud masking
rely on discrete classification via fully convolutional net-
work (FCN) architectures [9, 10, 25, 59]. Unlike traditional
physically-motivated expert systems, FCNs assign per-pixel
labels based on implicit, often complex relationships across
space and spectra [26]. However, moving away from phys-
ical basis approaches means the quality of results becomes
inextricably tied to the quality and diversity of reference
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annotations in the training set, and collecting densely an-
notated image examples at scale is a massive undertak-
ing [2, 3]. Furthermore, human perception of discretized
atmospheric condition is highly subjective [34], and given
the continuous nature of atmospheric artifacts, what con-
stitutes useful data for one use case may be unacceptable
in another. Without memorization of the underlying land-
scape, there is also inherent ambiguity in identifying cloud
shadows using pure spatial context as is the case in FCNs:
simple examples include a cloud shadow extending from
a swath boundary that cannot be disambiguated from a to-
pographic shadow, and large cirrus shadows that uniformly
darken the observed area. Thus, while modern machine-
learning-based cloud masking solutions have been opera-
tionalized [20, 50, 67], these approaches trade heuristics for
an extensive active learning feedback loop to collect a suf-
ficiently large training dataset.

In this paper, we approach the challenge of operational
machine-learning-based optical image quality assessment
(QA) via weakly supervised learning. Rather than work
with individual images or time series of observations for a
single-pixel location, we assemble sequences of Sentinel-2
imagery into short video clips to leverage spatial and tem-
poral context for identifying atmospheric and other image
artifacts. Our contributions can be summarized as follows:

• Propose a bootstrapping method using a weakly su-
pervised atmospheric similarity metric to generate a
globally-distributed training dataset

• Introduce a space-time context-based QA model
trained on millions of video clips produced using
the aforementioned bootstrapping method and capable
of performing single-image reference-free QA assess-
ments

• Demonstrate state-of-the-art performance of the
resulting QA product, Cloud Score+ (CS+), on two
independently collected cloud and cloud shadow
reference datasets

2. Related work
Multi-temporal cloud masking. Previous work has
shown that multi-temporal observations can be used to
improve cloud and cloud shadow detection and clas-
sification [6, 31, 38, 54]. The key assumption of these
approaches is that a clear reference image, image com-
posite, or fitted trajectory can serve as statistical ”ground
truth” for anomaly detection where unlikely deviations
from the baseline are ascribed to atmospheric artifacts,
e.g., [17, 66]. Though intuitive, it is often the case that
the true counterfactual, i.e., the image uncontaminated by
the atmosphere, is unknowable due to unseen changes in

ground condition or noise introduced by the satellite image
acquisition process. While theoretically promising, cloud
and shadow detection based on statistical comparisons has
proven challenging in practice.

Multi-sensor fusion and image in-painting. Combining
imagery from optical sensors with cloud-penetrating
microwave observations from Synthetic Aperture Radar
(SAR) instruments to generate cloud-free images has
become an increasingly active area of research [43, 57].
The goal of SAR-to-optical translation is to use SAR mea-
surements to reconstruct or in-paint cloud-contaminated
portions of a target optical image. This is a fundamentally
different task than identifying clouds and cloud shadows,
and in many cases, these approaches are dependent on
cloud masks as an input [15, 32, 61].

Continuous quality assessment metrics. The conclu-
sions of the first Cloud Masking Inter-comparison eXercise
(CMIX-I), an international effort to compare the results of
state-of-the-art cloud masking approaches for moderate res-
olution optical satellite imagery, suggested that vague def-
initions of clouds (including semi-transparent clouds and
cloud boundaries) are generally problematic for most algo-
rithms trained to identify discrete classes [46]. The work-
shop findings also noted that cloud shadow and terrain
shadow are important to consider (including in validation
datasets) and systematic errors (such as those over bright
targets) should be identified. The s2cloudless algorithm
[67] is a supervised single-date cloud detection approach
that addresses issues with discrete cloud masks by predict-
ing a per-pixel cloud probability score. There has also been
work on post-processing techniques to reduce systematic er-
rors, i.e., [14]. However, there is still no single product or
metric that captures the full spectrum of atmospheric effects
in a continuous manner and generalizes across geographies
and sensors.

3. Methods
Our approach to building a space-time context-based QA

model takes place over four distinct stages of model de-
velopment, where at each stage the task becomes less ab-
stracted from the ultimate goal: grading the quality, i.e.,
clarity, of a given observation relative to a theoretical clear
reference image (Sec. 3.1). We first define a notion of ”at-
mospheric similarity” (Sec. 3.2) and train a feature extrac-
tor to determine if two images are of the same location as
a pre-training task (Sec. 3.4.1). We then fine-tune this fea-
ture extractor on a very small set of sparse annotations and
synthetic images with known corruption values to establish
relative values of QA scores (Sec. 3.4.2). We use the fine-
tuned atmospheric similarity model (ASIM) to identify im-
age sequences including a mix of relatively clear and cloudy
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frames through space and time (Sec. 3.5). Finally, we train a
space-time context model that produces per-pixel reference-
free QA scores for target images (Sec. 3.6). Although our
models were developed and assessed using Sentinel-2 im-
agery (Sec. 3.3), the framework can be applied to other
optical sensors with minimal-to-no modification to training
and/or post-processing.

3.1. Quality Assessment (QA)

We define QA scores on [0, 1] and model each pixel
as the linear combination of its true reflectance and some
atmospheric corruption. This model assumes that at each
pixel, (1) there exists a perfectly diffuse surface that may be
shadowed and obscured by clouds and the atmosphere (cor-
rupted), and (2) that the pixel imaged by the sensor (pm)
is a linear combination of this corrupted surface (c) and the
”true” reflectance (pt) at that location. Since there is some
minimum optical thickness present in any imaging through
Earth’s atmosphere due to the presence of constituents like
water vapor [19, 52], we consider ”true” reflectance to be
that measured from top-of-atmosphere in minimal optical
depth conditions. The QA score (q) for a pixel (p) is then
the coefficient on the true reflectance term under this simple
model:

QA(pm) = q, pm = ptq + c(1− q) (1)

An exploitable side effect is that taking a linear combination
of pixels with known QA scores produces a pixel with a
QA score that is a linear combination of the individual QA
scores of the combined pixels (see Sec. 3.4.2).

3.2. Atmospheric similarity

We hypothesize that it is a far simpler problem of per-
ception to estimate ”atmospheric similarity” (the pairwise
maximum corruption between two images) than QA (the in-
stantaneous corruption given a single image) directly. This
is somewhat intuitive in that it can be difficult to discern
clouds and cloud shadows in a single image. However,
when observing a time series of acquisitions or a clear im-
age at the same location, humans can easily perceive clouds
and cloud shadows even without large spatial contexts.

We assume that cloud and cloud shadow conditions for a
given location will almost always ”look different” between
acquisitions. It then follows that close-in-time satellite ac-
quisitions of the same location will ”look similar” given
clear atmospheric conditions. We use this assumption to de-
fine a notion of atmospheric similarity between two images
ASIM(x, y) where for a given pixel i:

ASIMi(xi, yi) := min
p∈{xi,yi}

QA(p) (2)

Thus, ASIM provides a direct relationship between visual
similarity and atmospheric quality: when ASIM(x, y) = 1,

the QA scores for all pixels in both images x and y must =
1. It follows that for a corruption-free image r, QA(r) = 1
and therefore ASIM(x, r) = QA(x). This has two implica-
tions: first, ASIM(x, y) is a sufficient primitive to identify
clear (corruption-free) image pairs that we will call refer-
ences. Second, given a reference r, ASIM(x, r) can directly
yield the QA scores for an image x. We therefore proceed
to build our QA product by first modeling the two-image
ASIM score, then use ASIM as a base primitive for training
a QA model for which no reference is known. We believe
this level of indirection is justified, as we will demonstrate,
by our success in modeling ASIM in a low-shot learning
regime.

3.3. Input imagery

We train both the ASIM and QA models on images
from the Copernicus program’s Sentinel-2 series of satel-
lites [11]. Sentinel-2 imagery has thirteen spectral bands
with resolutions ranging from 10m to 60m. Though nu-
merous Sentinel-2 cloud detection algorithms exist [46],
Sentinel-2 remains a high-value data stream to pursue for
improving artifact detection. We focus entirely on Sentinel-
2 L1C (top-of-atmosphere reflectance) products, though
note that Sentinel-2 L2A (surface reflectance) products have
identical registration and therefore our QA product applies
to both. We log transform all model inputs using the fol-
lowing formula:

x′ =
log (x+ 1)

10
(3)

This effectively compresses the long tail of reflectance val-
ues from high return surfaces (e.g., [18]) and normalizes
inputs to [0, ∼1.1].

3.4. ASIM model

We produce a model that estimates ASIM from a pair of
images taken at the same location in an order-independent
way. For this we use an encoder/decoder FCN with two
identical stems that are combined via element-wise sorting
of the channels.

3.4.1 Pre-training

The ASIM pre-training task is to identify, from two pairs
of images composited via a random mask, which pairs of
pixels come from the same location at different times. This
task requires robustness to snow, phenology, synthetic mis-
registration, and other non-atmospheric changes in value.
We pre-train our ASIM model on an unlabeled set of ∼6M
image pairs. These pairs were selected using the same gen-
eral data mining protocol as described in Sec. 3.5 but with a
Structural Similarity Index Measure (SSIM) [55], a widely
used known-reference image similarity metric, rather than
ASIM-based similarity measure.
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3.4.2 Fine-tuning

ASIM model pre-training was followed by fine-tuning of
probes on the decoder stages to make a probabilistic esti-
mate of the actual ASIM score between pairs of images.
This fine-tuning utilized a set of sparse annotations, syn-
thetic artifacts, and linear mixup. Annotations were a
combination of 388 hand-selected image pairs for which
ASIM(x, y) = 1 uniformly (but no direct markup was
provided), and 512 hand-selected image pairs with sparse
markup across four grades [0, 1/3, 2/3, 1]. Synthetic
clouds and shadows were generated to simulate a wide va-
riety of cloud types, shadows, haze, elevations, and solar
geometry with known ASIM scores, and both synthetic ar-
tifacts and annotations were combined using mixup [60],
which preserves our definition of QA under a linear corrup-
tion model (Eq. (1)).

We produce a maximum likelihood estimation
(µ, log σ2) = ASIM(x, y, θ) (with model parameters
θ) of the ground-truth QA score (µ′) by minimizing a
regularized log-likelihood:

z = log σ2|[a,b] (4)

r = (z − log σ2)2 (5)

l =

(
log 2π + z +

(µ′ − µ)2

ez

)
1

2
+ r (6)

Here r is introduced to prevent gradient plateau given that
the domain of z is constrained to [a, b] to improve numerical
stability. We set a = −16, b = 5.

3.5. Video sequence sampling

To train a globally applicable QA model, we require a
globally distributed sample that ideally balances both cli-
matic variability and visually confusing scenarios: those
that historically foil cloud and shadow detection methods.
We accomplish this by balancing sampled data across the
RESOLVE Ecoregions terrestrial biomes [8], and a set of
pre-computed land conditions to facilitate sampling of con-
fusing examples such as salt flats and snow, topographic
shadows, cities and other high-return surfaces, oceans, and
glacial lakes.

Our sampling initially targeted a set of twelve UTM
zones selected to contain a high overall area of confusing
categories (Fig. 1). Each UTM zone is gridded into 1.8 km
cells in its planar projection, and then samples are drawn
across yearly octants (1/8 of a year) with octant 0 centered
on January 1. Octants are enlarged to encompass propor-
tionally 1/5 of a year to draw additional support images
when necessary. Across each octant, we select all unique
Sentinel-2 L1C datatakes at the latest processing baseline.
We then use an ASIM model (see Sec. 3.4) to grade each
video sequence to establish QA scores and determine suit-
ability for inclusion in the training output.

Figure 1. Twelve UTM zones sampled for training data, selected
based on area of difficult surface types, specifically bright tar-
gets (yellow), topographic shadows (purple), urban/built-up areas
(red), large bodies of water (dark blue), small bodies of water
(bright blue), and ”other” (black).

We choose to observe image sequences sorted by mean
spectral value with a sliding window in which every image
is ASIM-scored to its two previous and following neigh-
bors. Pairs for which the minimum ASIM score (µ, log σ2)
achieves µ − σ > 0.75 are nominally considered to be
”clear” references. Via inspection, the cutoff of 0.75 gen-
erally yielded clear references without conservative rejec-
tion of clear, yet uncertain pairs. If at least one pair of
references exist in a sequence, all images are compared to
the temporally closest reference to yield a score for each
image under the previous assumption that for reference r,
ASIM(x, r) = QA(x). In cases where no reference pair
is found, the entire sequence is rejected even if it contains
potentially viable clear images. Sequences may also be re-
jected for failing to meet minimum image criteria necessary
to support all training tasks or for being ”too cloudy” or
”too clear” as these examples are less valuable for training.
In general, liberal rejection is admissible given the scale of
our data collection.

For each remaining sequence, additional data for model
multi-tasking is computed, including a terrain illumination
image derived from the ALOS World 3D 30m (AW3D30)
global digital surface model [47]. See Fig. 2 for an exam-
ple of a mined video sequence. After balancing our UTM-
targeted sample to equalize across biomes and land con-
ditions, the process of bootstrapping the ASIM primitive
produced a training dataset of 2.2M video sequences with
ASIM-based per-pixel QA grading for the years 2018 to
2021.

3.6. QA model

We use the large dataset of video sequences produced
during sampling to train our reference-free QA model. This
model takes a ”target” image to grade, and a ”query” set
of images from the same location for support. Both the
target and query set are first processed by an image fea-
ture extractor using the same FCN architecture as the ASIM
model. Over the course of training, the length of the query
is increased on a linear schedule from one to eight images,
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Figure 2. Example of a diagnostic filmstrip produced during sampling. Each image is 180x180 pixels at 10m resolution. Images outlined
in red were selected as nominally clear reference images, images outlined in blue are used for training percentile outputs and images with
no outlines are out-of-octant non-target images used only for prediction support. ASIM mean (top subplot, bright is higher QA and dark
is lower QA) and standard deviation (bottom subplot) are shown to the right of each contrast-enhanced Sentinel-2 RGB, and additional
properties and an illumination condition image are shown in the lower-right.

and swath boundaries, misregistration artifacts, and detector
failure artifacts are simulated in both the target image and
query images. Following feature extraction, a modification
to a standard self-attention layer [4] with three heads uses
the target features as the key to produce a single time-axial
attended output from the query. This simplification is in part
because our QA model is designed to run in a stateless sys-
tem, one for which no previous model results are available
and there is little benefit to saving cross-attended results for
each query image. Finally, the attended query features and
target features are combined in a per-pixel MLP for each
task. Our model multi-tasks to a maximum likelihood es-
timate of terrain illumination at the target image following
Eq. (6), a maximum likelihood estimate of QA (µ, log σ2)
also following Eq. (6), and an estimate of the QA µ per-
centile p(x, θ). The latter is achieved by minimizing:(

p(x, θ)−
{

1 if QAµ(x) ≥ QAµ(y)
0 o/w

})2

(7)

As both images x and y are drawn from the same dis-
tribution of targets at a given location, the expectation
E
[
QAµ(x) ≥ QAµ(y)

]
is the cumulative distribution func-

tion (CDF) of QA for x. We also include a self-consistency
penalty where model outputs for a random crop of the tar-
get image do not match those for the same region in the un-
cropped image. Of the aforementioned task head outputs,
the estimated QA distribution is what is surfaced as our QA
product, hereafter referred to as Cloud Score+ (CS+).

3.7. Inference

Generating CS+ QA products for new and historic
Sentinel-2 L1C imagery is accomplished first by standard

overtiling of the target image. For each sub-tile, a query
set is established by searching for complete (not masked)
Sentinel-2 datatakes overlapping the sub-tile area. The
search concludes when a query limit is reached; in practice
we use 16. The search is optimized to select acquisitions
that are proximal to the target time of year, not necessar-
ily in the target year. Once inference is complete for all
sub-tiles, it is possible that adjacent sub-tiles exhibit seams
related to the query search when unique sets of acquisitions
are selected. We therefore perform a global optimization
to compute a gain and bias (γ, β) for four control points at
the sub-tile corners that define a per-tile bi-linear parameter
interpolation to minimize the seam artifacts. QA µ is ad-
justed to µ′ = γµ+ β and σ is adjusted to σ′ = γσ. Along
each overlapping seam for adjacent tiles P and Q with QA
score means µp and µq , given an interpolated γTi and βTi

and position i, we minimize the following linear system for
(γ, β):

min
γ,β

λ

(∑
T

(γT − 1)
2
+ β2

T

)
+∑

i

(
γQi

Qi + βQi
− γPi

Pi − βPi

)2 (8)

We use λ = 1. We found this modulation had no sig-
nificant effect on our validation, but greatly reduced visual
artifacts.

4. Evaluation
We assessed QA model results using two independently

collected reference datasets [35, 48]. To compare our con-
tinuous CS+ QA products with reference labels and results
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from other state-of-the-art cloud masking algorithms, we re-
classify all reference labels and processor output values to
binary clear and not clear labels. We extracted mask val-
ues for each labeled point location in the reference datasets
and computed a variety of standard classification metrics
including F1 score, overall accuracy, omission error, com-
mission error, precision, and recall. For continuous prod-
ucts, we apply a threshold (t) to create a binary mask. We
tested thresholds between 0 and 1 at 0.01 intervals and we
present results for threshold values that achieved the most
balanced omission and commission error rates. In addition
to accuracy metrics, we visually compared source imagery
and mask results and the distributions of our CS+ QA scores
for clear and not clear labels.

4.1. Tarrio reference dataset

The Tarrio reference dataset [48] includes 2,681 inter-
preted points and cloud masks for 28 products (images)
from six S2 tiles in the Eastern Hemisphere. Interpreted
points were labeled as cloud, cloud shadow, and clear, and
we combined the cloud and cloud shadow labels into our
not clear category. A total of 50 points were removed
from the original set due to irreconcilable mismatches be-
tween the CLASS label and CLASS ID value. Though the
points were selected using a stratified sample over algo-
rithm agreement, we do not account for strata weights in
our assessments given differences in objectives and label-
ing schemes.

The original Tarrio et. al study [49] compared five dif-
ferent cloud-masking algorithms: Sen2Cor [42], MAJA
[17], LaSRC [53], Fmask 1.0 [65], Fmask 2.0, and Fmask
4.0 [40], and Tmask [66]. Of these algorithms, Sen2Cor,
LaSRC and Fmask are single-date, while MAJA and Tmask
use temporal context. Masks were provided with a stan-
dardized legend with classes for cloud and cloud shad-
ows, which we relabeled not clear, and clear land, clear
water, and snow/ice, which we relabeled clear. In ad-
dition to the seven masks included in the Tarrio set, we
also include the Sentinel-2 QA60 bitmask and s2cloudless
in our comparisons. The QA60 bitmask is a standard
Sentinel-2 ”quality assurance” band included with all L1C
images [2, 7, 11] and represents a current operational base-
line, while s2cloudless represents an existing state-of-the-
art machine-learning-based image QA solution [46,67]. Be-
cause s2cloudless does not include a cloud shadow class,
we produce a variation on our reclassifications that labels
shadow points as clear.

Our QA approach (CS+) had the highest F1 score
(0.8466) and overall accuracy (0.8096) on the Tarrio refer-
ence dataset with a recommended threshold of 0.64 (Tab. 1).
We improve on both errors of omission and commission rel-
ative to the next-best processor, Fmask v2, with a large mar-
gin of improvement in F1 score and overall accuracy rela-

tive to other top processors, while widely available products
exhibit among the worst performance.

Considering the distribution of CS+ QA scores for clear
and not clear label aggregations, we find that the 0.64
threshold adequately distinguished clear observations while
there was greater ambiguity for the not clear class (Fig. 3a).
Visually inspecting results, we see continuous metrics pro-
vide more nuanced information on per-pixel usability, cap-
turing a range of atmospheric interference and occlusion
with greater precision than categorical masks, e.g., Fig. 4.
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(a) Tarrio reference dataset.
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(b) CMIX-I reference dataset.

Figure 3. Violin plots of QA scores for clear and not clear labels.
Dotted lines show recommended thresholds for each dataset.

4.2. CMIX-I reference dataset

The Sentinel-2 PixBox dataset was used as a valida-
tion reference for CMIX-I assessments and comparisons
[46]. The dataset consists of 17,351 interpreted pixels
for 29 Sentinel-2 Level 1C products [35]. Trained ex-
perts manually classified each point in the PixBox dataset
using a very detailed set of categories describing sur-
face conditions, cloud characteristics, shadows, aerosols,
sun glint, water bodies, and types of ice such that each
point is assigned a classification within each category.
For the CMIX-I reference dataset, we used a combination
of CLOUD CHARACTERISTICS ID, SHADOW ID, and
AEROSOL TYPE ID to determine the final binary label.

CS+ consistently outperformed s2cloudless across all
labeling schemes and mask thresholds considered for the
CMIX-I dataset (Tab. 2). The greatest difference in per-
formance was observed when using the full set of refer-
ence points (all points), with CS+ achieving an F1 score of
0.8816 and overall accuracy of 0.8768, while s2cloudless
had an F1 score of 0.8162 and overall accuracy of 0.8094,
which is unsurprising given that s2cloudless does not iden-
tify cloud shadows as ”bad QA”. When removing shadows
from the reference dataset (no shadows), CS+ performance
decreases slightly, but still exceeds that of s2cloudless by
at least 0.03 in terms of both F1 score and overall accu-
racy. We also find that treating shadows as clear (clear
shadows) in order to keep the number of points in the refer-
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Name Threshold F1 Overall Omission Commission Precision Recall

CS+ 0.64 0.8466 0.8096 0.1889 0.1933 0.8854 0.8111
Fmask v2 - 0.8133 0.7742 0.2411 0.1976 0.8761 0.7589
MAJA - 0.8002 0.7218 0.1402 0.5324 0.7483 0.8598
Tmask - 0.7861 0.7290 0.2317 0.3434 0.8047 0.7683
LaSRC - 0.7784 0.7210 0.2440 0.3434 0.8021 0.7560
s2cloudless 0.12 0.7589 0.7111 0.2985 0.2711 0.8265 0.7015
Fmask v4 - 0.7444 0.7233 0.3783 0.0896 0.9274 0.6217
s2cloudless* 0.15 0.6650 0.6994 0.2889 0.3091 0.6245 0.7111
Sen2Cor - 0.5190 0.5675 0.6399 0.0508 0.9289 0.3601
Fmask v1 - 0.5094 0.5817 0.6504 0.0379 0.9379 0.3496
QA60 - 0.4579 0.5401 0.7003 0.0173 0.9696 0.2997

Table 1. Accuracy metrics for interpreted points from the Tarrio reference dataset. Asterisks (*) indicate experiments where s2cloudless
was assessed with shadows considered clear. Thresholds are selected to balance omission and commission error.

Figure 4. Example results from different processors for a Sentinel-2 image (32TLT, 2016-09-12) from the Tarrio reference dataset. White
(0) indicates not clear and black (1) indicates clear.

ence dataset consistent or using the provider-recommended
threshold of 0.40 instead of the optimal value based on bal-
anced omission-commission error did not significantly af-
fect results, though we do find the lowest rates of commis-
sion for s2cloudless using a 0.40 threshold for the no shad-
ows dataset.

The optimal threshold for the CMIX-I reference dataset
was relatively consistent whether or not shadows were in-
cluded (0.50 versus 0.48) and was notably lower than the
threshold identified for the Tarrio dataset (0.64). The greater
separability of the clear and not clear groupings for the
CMIX-I dataset (Fig. 3b) is likely indicative of higher-
quality labels, especially since the CMIX-I image set repre-
sents more diverse geographic and atmospheric conditions.
Although tuned thresholds for individual reference datasets
serve as a recommendation for creating binary masks, users
may select thresholds that work best for their specific use
cases. Alternatively, continuous CS+ QA values can be
used directly for building ”clearest pixel” composites or as

weights on individual observations. Visualizing the CS+ re-
sults for select images from the CMIX-I dataset, we note
that CS+ is able to characterize a variety of cloud types, in-
cluding high cirrus and haze (Fig. 5). CS+ also performs
well on very challenging examples, including a scene-level
gradient in cloud cover over snow and ice, and a scene dom-
inated by ice-capped mountainous terrain with small, dense
clouds along ridges and valleys (bottom two rows of Fig. 5).

4.3. Limitations & future work

Our QA approach generally demonstrates strong per-
formance for historically challenging use cases, however,
known weaknesses include detection of cloud shadows over
water, mis-characterization of moving boats as bad QA,
and high uncertainty over active ice floes. Because the QA
model estimates both the mean and variance of the QA pre-
diction, the variance can be used to further constrain or filter
results. This both enhances interpretability and allows users
greater flexibility in navigating potential failure cases.
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Name Reference Threshold F1 Overall Omission Commission Precision Recall

CS+ all points 0.50 0.8816 0.8768 0.1213 0.1253 0.8846 0.8787
CS+ no shadows 0.48 0.8800 0.8841 0.1156 0.1162 0.8756 0.8844
s2cloudless no shadows 0.24 0.8419 0.8471 0.1523 0.1536 0.8362 0.8477
s2cloudless clear shadows 0.24 0.8376 0.8453 0.1535 0.1558 0.8289 0.8465
s2cloudless no shadows 0.40* 0.8263 0.8423 0.2189 0.1011 0.8772 0.7811
s2cloudless clear shadows 0.40* 0.8218 0.8413 0.2232 0.1013 0.8724 0.7768
s2cloudless all points 0.18 0.8162 0.8094 0.1899 0.1913 0.8223 0.8101

Table 2. Accuracy metrics for interpreted points from the CMIX-I PixBox reference dataset. Asterisks (*) indicate experiments using the
provider’s recommended threshold, otherwise thresholds are selected to balance omission and commission error.

Figure 5. Sentinel-2 L1C images and corresponding Cloud Score+
QA results for six images from the CMIX-I PixBox dataset.

In future work, we plan to further validate performance
on additional benchmarks, specifically the recently released
CloudSEN12 dataset [2]. Our approach is also designed to
generalize to other sensors even in the absence of dense im-
age time-series, i.e., we are able to make single-date predic-
tions for other sensors by using Sentinel-2 as support. Early
results for Landsat 8 and 9 top-of-atmosphere images with
the exact model and parameters used for Sentinel-2 have
been very promising (Figure Fig. 6) and formal evaluation
is currently underway.

Figure 6. Example of Cloud Score+ QA results for a Landsat 8
image (Path 191, Row 31, 2021-09-03).

5. Conclusions

In this paper, we introduce a weakly supervised video
analysis approach for characterizing the quality of obser-
vations acquired by optical satellite instruments, specifi-
cally Sentinel-2. Our continuous image QA results are de-
signed to circumvent limitations of categorical cloud masks
by instead scoring the usability of a given observation on
a continuous scale. We demonstrate state-of-the-art perfor-
mance on two independently collected reference datasets.
We expect to generate CS+ QA products for all historic and
newly acquired Sentinel-2 L1C images, providing a novel
and flexible solution for identifying the most useful pixels
for terrestrial monitoring.
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Conesa-Garcı́a, Demetrio Antonio Zema, and Jesús Pilar
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