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Abstract

The field of spaceborne Earth observation offers, due to
constant monitoring of the Earth’s surface, a huge amount
of unlabeled data. At the same time, for many applica-
tions, there still exists a shortage of high-quality labelled
datasets. This is one of the major bottlenecks for progress
in developing globally applicable deep learning models for
analysing the dynamics of our planet from space. In re-
cent years self-supervised representation learning revealed
itself to state a very powerful way of incorporating un-
labeled data into the typical supervised machine learning
workflow. Still, many questions on how to adapt commonly
used approaches to domain-specific properties of Earth ob-
servation data remain. In this work, we introduce and study
approaches to incorporate multi-modal Earth observation
data into a contrastive self-supervised learning framework
by forcing inter- and intra-modality similarity in the loss
function. Further, we introduce a batch-sampling strategy
that leverages the geo-coding of the imagery in order to ob-
tain harder negative pairs for the contrastive learning prob-
lem. We show through extensive experiments that various
domain-specific downstream problems are benefitting from
the above-mentioned contributions.

1. Introduction

The number of spaceborne Earth observation (EO) mis-
sions with open-data politics has grown spectacularly in re-
cent years. The newfound availability of this data is a sig-
nificant driver for both industry stakeholders as well as re-
searchers within various disciplines. This data source en-
ables analytical studies on a large spatial scale at high tem-
poral revisit times. Hence, monitoring of large-scale agri-
cultural areas, changes in the vegetation cycle across multi-
ple ecosystems, or the mapping of the ever-growing urban
expansion all belong to the set of questions which drasti-
cally benefit from the availability of this data. Already to-
day machine learning is an indispensable part of analyzing
EO data. Advances in computer vision also translated to the

field of EO and therefore machine learning algorithms rep-
resent the state of the art in many applications [21]. How-
ever, one limiting factor for many potential applications is
the absence of high-quality ground truth (GT) labels to train
models - since in many cases - good GT data goes hand in
hand with elaborate human annotation or measuring cam-
paigns. Existing, already collected GT data also might suf-
fer from local bias and cannot be used to train globally ap-
plicable models since changes in the data distribution, due
to differences in regional characteristics, are not manifested
in the training process. On the other side, the field of satel-
lite data has the unique property that all data is drawn from
a finite (spatial) distribution, which can be fully accessed
even with multiple modalities.

Given the above-stated two actualities, incorporating the
huge amount of available unlabeled EO data into data an-
alytics workflows holds huge potential for the field of EO.
This is usually implemented by the class of self-supervised
learning algorithms. Here a so-called pretext task on the
unlabeled data is formulated - where the target variable of
the learning problem can be derived by simple and deter-
ministic manipulations of the input data. Networks that are
successfully trained on a well-chosen pretext task are shown
to also perform better, finetuned on the actual problem later
on.

The number of potential strategies to successfully pre-
train models and therefore learn descriptive model weights
on unlabeled data has risen in recent years. One very suc-
cessful approach to this is given by the class of contrastive
learning algorithms, which are representing the state of the
art for many classical computer vision problems. Already,
many researchers working in the field of EO exploited this
kind of pretraining strategy in order to enhance the perfor-
mance on single downstream tasks [11]. Still, many ap-
proaches currently existing are working on a single modal-
ity, hence they are possibly not capitalizing on the full typi-
cally available information. Even though some multi-modal
approaches exist (compare Sec. 2), they have not been fully
harmonized in order to drive the understanding of general
applicable representation learning strategies for EO data.
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Understanding the underlying mechanism behind all differ-
ent approaches and the role multi-modal data could play in
this context, would enable researchers to develop founda-
tion models and therefore potentially drive the quality of
derived products and applications. Even if fully founda-
tional models might be far in the future, both pre-training
for specific tasks as well as in a more general sense requires
a detailed understanding of all underlying mechanisms.

Our main contributions within this work can be stated as
follows:

* We define the similarity concept for the contrastive
learning problem on different levels to enforce intra-
and inter-modality similarity of the learned represen-
tations.

* We introduce a new batch-sampling method by choos-
ing spatially close patches for each batch in order to
obtain harder negative examples for the contrastive
learning problem.

e We perform an extensive comparison between all in-
troduced models and sampling strategies over four
different downstream problems that are representing
common tasks in the remote sensing domain.

2. Related Work

Early works defined the pretext task for the unsupervised
derivation of visual features from imagery through a series
of different approaches. These span from predicting the rel-
ative location of extracted image patches [3], solving jigsaw
puzzles [13] or predicting a random rotation artificially ap-
plied to an image [10]. In all those cases labels for pretext
tasks can be easily created by simple image manipulations
on the raw data, hence they are suitable for a self-supervised
learning framework. In all approaches, the basic thought is,
that in order to solve the task, a complete understanding of
the scene is necessary. Features learned while solving the
pretext task can therefore potentially also be descriptive for
other problems and therefore help downstream applications.
The design of those pretext tasks is critical. In the case
of solving the jigsaw puzzles [13], the authors showed that
if neighbouring extracted patches have a smooth transition
into each other, the features close to the edge are already
sufficient to solve the problem, hence no general features
and understanding of the underlying data will be learned.
Shortcomings in the design of the pretext tasks are repre-
senting one of the most critical problems and are referred
to as a so-called shortcut to the pretext task. Other ap-
proaches are given by the set of generative tasks where some
aspect of the data will be hidden from the model, whereas
the reconstruction of this information is forming the pretext
task. Prominent examples are colourizing of grey-scale im-
ages [24] or in-painting hidden parts of an image [ |4]. Since
the features learned during the self-supervised pretraining

are application agnostic and do not necessarily translate to
be descriptive for all downstream applications, further gen-
eralizability can be archived by combing pretext tasks in a
multitask setting [4], where the authors showed that com-
bining multiple self-supervised signals can help the gener-
alizability on downstream applications.

One newer approach to redefine the problem of self-
supervised representation learning for visual features was
set by the framework of SimCLR [1] and its successor Sim-
CLRv2 [2] which fall in the class of contrastive learn-
ing methods. Here a set of augmentations A (e.g. Crop-
ping, Rotation, Color-Augmentations) is applied to an im-
age patch twice in order to create two views of a given
image. The self-supervised signal is then defined by map-
ping those two views into the identical point in latent space
(forcing similar features) while preserving the distance to
all other images in the batch (negative examples). Impres-
sively the authors of [2] were able to outperform the fully
supervised ImageNet [ 17] baseline by only fine-tuning their
pre-trained network on 10% of the available labels.

Given the fact that the network is explicitly asked to be
invariant to the set of augmentations .4, those augmenta-
tions are representing the most critical part in the design of
a contrastive learning framework. While introducing Sim-
CLR [1] the authors stated that a significant strength of aug-
mentations is necessary to avoid the shortcut problems, ana-
logue to the previously described methods. Being invari-
ant to specific augmentations can - depending on the down-
stream tasks - also be counterproductive. In [23] the au-
thors reported that certain transformations are reducing the
accuracy for different kinds of downstream applications if
the invariance to the augmentation is suppressing the learn-
ing of features that are relevant to solve the corresponding
problem. Besides the potentially unwanted invariance to
augmentations, another pitfall of contrastive representation
learning frameworks can occur if the span of the representa-
tion vectors does not cover the full latent space as described
in [9]. We refer to that phenomenon as dimensional collapse
from here on.

Besides the artificial generation of two views, given an
input image, contrastive examples can also be introduced
by forcing the similarity of features over different modali-
ties, e.g. text and images. In [25] the authors stated that in
order to fully capitalize on the information included in all
modalities similarity on multiple levels must be preserved.
We will build on this idea while translating this concept to
the field of EO later on.

To this day, self-supervised pretraining has also received
attention from within the remote sensing domain. Early
works including the study of image in-painting and predict-
ing relative patch locations [20] to define a self-supervised
signal showed that pretraining will heavily support remote
sensing specific downstream tasks especially while working
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with limited labelled data. Further researchers made use of
the unique characteristics of remote sensing imagery for the
novel and domain-specific formulation of a contrastive loss
problem. Examples include introducing seasonal changes
[12], as an additional and alternative way to produce views
without applying artificial augmentations to the input data.
Further [8, 18] made use of the multi-modal nature of the
observations spectra. Here the views are, equal to [12],
produced without applying argumentations, by considering
images from the optical and synthetic-aperture-radar (SAR)
domain from the same location, as a positive pair for the
constative loss function.

3. Method
3.1. Architecture Design

Earth observation data differs in a few key aspects from
classical object-centred imagery. This fact can be explic-
itly exploited for the development of domain-specific self-
supervised learning algorithms. Two of the major differ-
ences are the inherent geo-referencing of the observations
and the fact that one usually has access to subsequent mea-
surements of sensors with the same or different modalities.
Previously [18] exploited this inherent data property to de-
velop a so-called augmentation-free contrastive learning al-
gorithm. Here, measurements of the Sentinel constellation
with identical locations captured by different sensor modali-
ties xg1 and x g5 served as the positive pair in the contrastive
loss function. This holds the advantage that the (sometimes
unwanted) property, described in the previous section, of
the augmentation-invariance, can be suppressed. However,
we argue that this leads to another intrinsic problem. Given
two views of the same scene acquired with different sen-
sor modalities, the encoders can only focus on information
which is present in both views, since both inputs are aimed
to be mapped into the identical location in the latent space.
From here on we refer to this as inter-modality information.
Further, the network has to learn to be invariant to all infor-
mation that only occurs in one of the two views, e.g. spec-
tral information in the x g2 case or SAR-specific features in
the xg1 case, since this information cant be used to align
the vectors in latent space. We refer to this kind of feature
as intra-modality information.

To visually support this hypothesis Fig. 1 shows an
example of the same scene captured by Sentinel-1 and
Sentinel-2, respectively, which was used in [18], and also
will represent the two modalities studied throughout this
work. Even when [18] is showing promising results while
focusing on inter-modality views only, an increasing per-
formance can be expected by solving the above-mentioned
shortcoming.

In order to approach this issue we propose Intra-
and Inter-modality SimCLR (lal-SimCLR) a multi-objective

Figure 1. An exemplary Sentinel-2 and Sentinel-1 measurement
over the identical location. Our hypothesis is that matching the
two modalities into the same point in latent space will suppress
intra-modality information e.g. the spectral information in S2.

setup where representations are forced to fulfil both, i.e.
an inter-modality similarity as well as an intra-modality
similarity, to ensure the information that is exclusively
present in one of the two images, is preserved. For that,
we are building on top of [18] where augmentation-free
views represented by different modalities xg; € R2*W*H
and xgg € RIOXWXH are processed by separate encoders
hg; = f9(xs1) and hge = f52(x52) and further projected
into a lower-dimensional latent space by two separate pro-
jection heads zs1 = g7k (hgy) and zgo = g2, (hsa).
We denote individual samples that form the positive pairs
(same location different modality) of the batches zg; and
Zs2 as z; and z;. From here the N7-Xent loss [1] can be
calculated along all positive pairs of a mini-batch, as:

exp (sim(z;, z;)) /7

(D
57T s exp sim 2 Zk>>>>

where [N denotes the batch size, sim defines the cosine sim-
ilarity, 7 the temperature parameter and z; negative sam-
ples from either modality. Here the operator 1,; evalu-
ates to 1 if k& # 4 and O otherwise. We extend this ap-
proach by two additional losses that are forcing the intra-
modality similarity with respect to applied transformations.
For that, we introduce two augmented versions (per modal-
ity) of the original view which will be further denoted by
X1, X4, and Xy, X%, respectively. In the following, we
denote all definitions that are analogues for the processing
of the two modalities with the subscript 12 which stands
for either modality. Introducing two additional projection
heads for the intra-modality similarity g512 , the represen-
tations can be calculated as zlg,, = g512, (F51%(x/,5)) and
zly = 9ol (f512(x%,,)), analogue to the inter-modality
case. With, z; and z; representing positive pairs from the
batches z,, and 2%, the intra-modality loss can be calcu-
lated with Eq. (1) and will be denoted as Ef}”"tm. Sim-
ilar to [1] the choice of applied augmentations and their
corresponding strength is one of the most critical hyper-
parameters when working with artificially generated views.

Eij}t” = —log (
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Type Probability  Applied to
Crop 100% S1+S2
Flip 50% S1+S2
Grey-scale 10% S2
Color Augmentation 80% None or S2
Gaussian Blur 30% S1+S2

Table 1. The augmentations that form the set A and their corre-
sponding event probabilities.

An overview of the used augmentations for each modality,
and their respective probabilities, can be seen in Tab. 1. One
of the key findings of [ 1] is the potential shortcut that occurs
when augmentations changing the colour distribution of the
imagery acoior € A are not present. Since the effect of this
augmentation on multi-spectral remote sensing imagery is
not trivial, we subdivide all evaluations of Ial-SimCLR into
ones with active and non-active colour augmentation, in or-
der to empirically study the impact of a0, as an element

of A.

All three losses are equally weighted throughout our
study, even though we expect potentially to further fine-tune
representations towards a specific task when weighing ap-
propriately. We, therefore, calculate the final loss as

Etotal _ Einte’r + ESl intra + ESQ intra (2)

This way it is ensured that f°'2 cannot suppress informa-
tion which is only present in one of the two modalities. A
graphical illustration of the proposed method and all cor-
responding combinations of the loss formulation we study
can be seen in Fig. 2.

3.2. Batch Sampling Strategies

As the core objective of any contrastive learning prob-
lem is to split apart positive - similar - from negative - dis-
similar - examples, the variation of the shown imagery has
a large effect on the complexity of the problem. Design
decisions that are introducing a shortcut possibility of self-
supervised pretraining will hence heavily affect the result-
ing performance on downstream tasks. Satellite imagery
has the unique property that the similarity of examples can
be easily enforced by choosing spatially close examples.
We study the effect of picking images randomly and via
local batch sampling (LBS), which stands in contrast to
(spatially) random batch sampling (RBS). A visual com-
parison between these two approaches can be seen in Fig. 3.
Throughout this work, we subdivide and compare all results
produced by lal-SimCLR and the corresponding baselines
into trained on RBS and LBS, respectively.

4. Implementation Details, Data and Evalua-
tion Protocol

4.1. Self-Supervised pretraining

We perform the training of the encoders f°* and f°% on
multi-modal imagery of the SENI2MS dataset [19], repre-
sented by measurements of the Sentinel-1 and the 10 m and
20 m GSD bands of Sentinel-2. Throughout this study, we
perform all operations on patches of the size W = H =
256 and use ResNetl8 [0] architecture for both encoders
512 as well as two linear layers with respective activa-
tion for the four projection heads hfnlfe,. and hf,}fm The
feature size for the latent space after the encoding step is
hgi2, hls;, W 5 € R312, before the loss will be calculated
on the reduced latent space zg12,Z15, 24,5, € R'?%. For
evaluation purposes, we mainly test the linear separabil-
ity of features on the concatenated latent space hg;+ g0 =
hg; @ hgo. We train the setup with all combinations of
losses to study the effect of forcing similarity of the gained
representations on multiple levels. All training has been
carried out with the Adam optimizer (initial learning rate
of 10~%), a batch size of 128 images over 100 epochs (no
significant benefit could be found for longer pretraining).

4.2. Evaluation Protocol

For the sake of creating meaningful representations that
can be applied in a wide range of remote sensing-specific
downstream applications, it is of highest importance to test
their respective quality on a wide range of tasks that repre-
sents common applications in the field of Earth observation.
In the following, we introduce the downstream tasks used
for evaluating our method:

Land-cover SEN12MS-DFC. We define a seven-class
classification problem based on the imagery of the
SENI2MS-DFC [15] dataset. We reduce the problem to
Forest, Shrubland, Grassland, Wetland, Cropland, Urban
and Barren. We decided to drop all patches with Water as
its main land cover class (> 60%) since the corresponding
accuracy was found to be > 90%, whereas the overall eval-
uation, therefore, gets less sensitive to changes in the other
classes. Overall, this results in 2808 training and 1204 vali-
dation samples, respectively.

Land-cover SEN12MS-TP-EWC. The second land cover
downstream task is based on the SENI2MS-TP [16] dataset.
Here we use the ESA-World Cover classification scheme
[22] resulting in an eleven-class classification problem. Af-
ter deriving the main class for a given image patch we re-
strict the number of samples to 12000 for training and 4000
for validation, respectively.

For both above mentioned land cover problems, we do
have matching observations of both Sentinel-1 and Sentinel-
2, respectively. The percentage of the main land cover class
is above 30% in both cases. Since both datasets are un-
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Figure 2. A graphical overview of the proposed experiment setup, comparing the three models Dual-SimCLR [18], Intra-SimCLR and
lal-SimCLR. Intra-SimCLR is the original SimCLR [1] approach, slightly adapted to the multi-modality setup.

Figure 3. Example images (S2 left half, S1 right half) drawn with
the two different batch sampling methods. The top two rows of
images were drawn via LBS, bottom two rows of images were
drawn by RBS (compare Sec. 3.2).

balanced in their class distribution, we oversampled classes
that are less common, during training.

Crop type mapping. Besides the land cover classification
problem, we also apply all models on the Canadian-Crop
dataset [7]. In contrast to the previous two downstream
tasks we only have access to the optical modality, and there-
fore only test the capability of f°2. Since this dataset is
heavily biased towards certain crop types we restrict the
classes to Pasture, Orchard, Potato, Soybean, Mixedwood,

Barley, Oat and Corn.

All three above-mentioned downstream tasks have been

solved by using Cross-Entropy Loss optimized with Adam
optimizer with an initial learning rate of 1073, a batch size
of 32 images, and trained for 200 epochs. We rank results
by the best validation accuracy (Acc), calculated every 5
epochs.
Biomass estimation. The last downstream test is given
by the estimation of the total biomass within a given im-
age patch. For that, we use again the above-mentioned
SENI2MS-TP dataset [16] and search for intersection
biomass information y s of the space-born LIDAR GEDI-
LA4A [5] mission. Formulated as a regression problem one
can solve the mapping of hgy 152 — ypas via linear re-
gression, which holds a significant performance advantage
and could also be done during the self-supervised training.
Assuming this downstream task does hold significant mean-
ing, this would allow for real-time inspection of the self-
supervised training process. It must be stated that follow-
ing this approach the temporal correlation between images
and labels is not necessarily given. Nevertheless, we argue
that, within some bounds, a general estimation of the total
biomass in a given scene is still reasonable. We rank the re-
sults for each pre-trained model by the mean absolute error
(MAE) on the validation set.

5. Results of Experiments

In this section, we showcase extensive experiments to
compare the above-described method lal-SimCLR with Du-
alSimCLR and Intra-SimCLR, while also varying the type
of applied augmentations. Further, we study the effect of
the two above-mentioned batch-sampling methods on the
performance of the linear evaluation pre-trained networks,
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with respect to the downstream problem. We compare the
performance across multiple benchmark downstream tasks
as well as the respective influence of each modality on the
final prediction.

5.1. Model Performance

First, we want to guide the reader through Fig. 4 where
we show the results of our empirical study, divided into the
model, batch sampling strategy and downstream task, all
as a function of the length of self-supervised pre-training.
Some general observations - first model-independent - can
be stated as follows:

Batch Sampling Strategy. We found that - independent of
the used method - the difficulty of the pretext task problem
is one of the key aspects while trying to learn descriptive
features across downstream applications. Models trained
on RBS tend to lose their descriptive quality with an in-
creasing number of epochs, while models trained via LBS
show a more stable behaviour (compare Fig. 4 left and the
right column). Most pronounced is the case for DualSim-
CLR where in the case of RBS we found the model drasti-
cally drops in performance after ~ 40 epochs along all four
downstream tasks. Here, changing the type of batch sam-
pling strategy enables the model to stay competitive with
all other approaches and - in the case of biomass predic-
tion - represents the best-performing strategy. Similar, but
less pronounced behaviour can be observed across almost
all five model settings. A possible explanation could be
given by the occurrence of the dimensional collapse, similar
as reported in [9]. Still, comparing the maximum achieved
metric score along each downstream task and ignoring the
trend of the performance, we did not find LBS to consis-
tently outperform RBS. We will come back to the conse-
quences of that observation later in this section.

The effect of the color augmentation. While working with
multi-spectral optical Earth observation data, a lot of the
information is encoded in the relative position of the band
values. The effects of changing those values, by introducing
Qeolor during the augmentation step, might have non-trivial
effects. Comparing the two models (Intra-SimCLR and lal-
SimCLR) in terms of whether color augmentation .o 1S
part of A, reveals that for the case of LBS, it is throughout
better to have it non-active. Further, on all runs trained via
the RBS approach, this is still the preferable setting, since it
outperforms models trained with active a0, in most cases.
A possible explanation is given by the fact that for LBS the
color distribution of image patches within a mini-batch are
already similar, due to the close spatial origin. The biggest
difference can be observed in the case of the Canadian-
Crops downstream tasks, which is in line with the spectral
preserving requirement needed for crop-type mapping since
the pure geometrical features do not necessarily differ for
different crop classes.

With those two model-overarching observations in mind,
we compare the different approaches to define the con-
trastive loss with respect to the modalities of Fig. 4.
Individual Model Performance. Comparing the perfor-
mance of the individual model across all downstream ap-
plications, we can not determine any approach which per-
forms best on all downstream tasks. Still, Fig. 4 reveals that
the best performing approach is in most cases either lal-
SimCLR or Intra-SimCLR, both without a.,;,, being active.

To enable the reader to put the absolute performance val-
ues for each downstream application into perspective, we
also report the fully supervised baseline (same architecture
all weights trainable) as well as a fine-tuning on a net-
work with random initialized weights (same architecture,
last layer trainable) in Tab. 2. Generally, the model perfor-
mance lies between the two baselines and in some cases
even exceeds the fully supervised benchmark. Still, the
objective of this study is to investigate the relative perfor-
mance of the approaches and hence absolute performance
is only given for the sake of completeness.

5.2. Modality Contribution

While having two separate encoders f°!, f52 one can
raise the question of how much the individual representa-
tions hgy and hgs do contribute to the final prediction. Es-
pecially in a time-critical scenario where - during the ap-
plication - only one of the two is present, a balanced in-
formation content between both latent spaces is desirable.
Let P(-) be the operator that gives the linear probing accu-
racy for a given representation hgi2. We compare the infor-
mation content by solving the classification problem of the
SENI2MS-TP-EWC dataset in Tab. 3 on models trained for
100 epochs. For all scenarios, we find the highest descrip-
tive properties for samples from the combined latent space
hgi+s2. The interesting behaviour reveals itself while look-
ing at the descriptive power of hg; and hgy as a function
of the sampling method. Tab. 3 reveals that for models
that make use of £52"t" RBS leads to the situation that
the descriptive level of P(hsi) > P(hs2). When chang-
ing the samples strategy to LBS this behaviour switches to
P(hg1) < P(hga), which indicated that LBS can be used to
suppress the potential color-related shortcut when not hav-
iNg acolor present.

5.3. Mixed Strategy Approach

While we earlier demonstrated that in the case of RBS
models tend to lose their discriminative property during
training, while in some cases still represent the best-
performing model for early checkpoints, a combination of
the two approaches seems promising. In order to test this
hypothesis we changed the batch-sampling method after 30
epochs of pretraining from RBS to LBS and continued for
additional 70 epochs. The performance as a function of the
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Figure 4. The performance of the models lal-SimCLR with DualSimCLR and Intra-SimCLR with active- and non-active (nCA) color
augmentation a0 over four different downstream tasks (rows) described in 4.2. We subdivided models further into trained with random
batch sampling (left column) and local batch sampling (right column). Models within one family that only differ in their respective colour
augmentation are indicated by the same color (red, blue) and only differ in shade (light/dark).

Task Random Features  Fully Supervised Best Linear Eval.
SENI12MS-DFC 0.68 Acc 0.86 Acc 0.89 Acc
SENI2MS-TP-EWC 0.51 Acc 0.62 Acc 0.71 Acc
Canadian Crops 0.58 Acc 0.76 Acc 0.66 Acc
Biomass 22.27 MAE 11.24 MAE 11.4 MAE

Table 2. Baseline for the four downstream applications with fully supervised training and linear probing on a frozen network initiated with
random weights. The best-obtained results from the linear evaluation across all models from Fig. 4 are given for comparison.

pre-training epoch can be seen in Fig. 5. Here we can ob- 6. Discussion
serve a near-monotone positive trend and a clear outperfor-
mance of lal-SimCLR for two of the four downstream tasks,
which underlines the significance of mixed strategies train-
ing approaches.

Adapting self-supervised methods developed for object-
centred imagery, to a new domain, always poses questions
about the handling of special domain characteristics i.e.
multi-spectral imagery or multiple modalities. This work
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Sampling  P(hg)

P(hsz) || P(hsits2)

Model
. RBS
Dual-SimCLR LBS
. RBS
Intra-SimCLR nCA LBS
. RBS
Ial-SimCLR nCA LBS

0.449 0.486 0.541
0.481 0.537 0.646
0.574 0.471 0.662
0.465 0.527 0.648
0.548 0.528 0.672
0.479 0.560 0.671

Table 3. The performance of the three models (without acoior) On the SENI2MS-TP-EWC classification problem as a function of the
sampling strategy evaluated on the individual representations hs1, hgs and hgi4s2.
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Figure 5. The mixed strategy approach (red) compared to RBS
(light green) and LBS (brown).

outlines strategic approaches on how to incorporate inter-
modality information while, at the same time, preserving
the intra-modality properties of the data. In the follow-
ing we want to discuss some additional observations of our
study:

* For the downstream task based on SEN/2MS-DFC the
best-achieved accuracy approaches 90%, therefore the
room for further improvement is intrinsically limited.
Here, the data uncertainty of the dataset could sup-
press all potential performance gains achieved by bet-
ter representations of the data. This thought is also
supported by the fact that on the second land cover

task, SENI12MS-TP-EWC, our pretraining leads to sig-
nificant outperformance of the fully supervised bench-
mark.

e Comparing the absolute performance on the
Canadian-Crops downstream task with the ran-
domly initialized baseline (compare Tab. 2 and Fig. 4),
we can observe that outperformance only happens
for Ial-SimCLR and Intra-SimCLR without a.ojor-
At this point, the reader should be reminded that
this downstream task is performed on data from xgo
exclusively, therefore a better performance can be
expected by changing the set of augmentations 4 or
enhancing the weight of £52%"% within the total
training loss.

* Regarding the mixed strategy approach described in
Sec. 5.3, we expect better results by slowly increasing
the amount of locally drawn batches during training,
in contrast to a discrete and sudden change of batch
sampling strategies.

7. Conclusion

We introduced lal-SimCLR and studied different ap-
proaches how to define the contrastive learning problem
within and across different modalities. We found a strong
dependency of the performance for different approaches on
how data for individual batches is sampled and showed
that common methods might be subject to a dimensional-
ity collapse when not appropriately designed. We compared
the performance over multiple downstream applications and
show that benchmarking the performance over the training
length of the self-supervised pre-training helps in order to
gain an understanding of the dynamics.
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