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Abstract

Transformer architectures have become state-of-the-art
models in computer vision and natural language process-
ing. To a significant degree, their success can be attributed
to self-supervised pre-training on large scale unlabeled
datasets. This work investigates the use of self-supervised
masked image reconstruction to advance transformer mod-
els for hyperspectral remote sensing imagery. To facili-
tate self-supervised pre-training, we build a large dataset
of unlabeled hyperspectral observations from the EnMAP
satellite and systematically investigate modifications of the
vision transformer architecture to optimally leverage the
characteristics of hyperspectral data. We find significant
improvements in accuracy on different land cover classifi-
cation tasks over both standard vision and sequence trans-
formers using (i) blockwise patch embeddings, (ii) spatial-
spectral self-attention, (iii) spectral positional embeddings
and (iv) masked self-supervised pre-training1. The result-
ing model outperforms standard transformer architectures
by +5% accuracy on a labeled subset of our EnMAP data
and by +15% on Houston2018 hyperspectral dataset, mak-
ing it competitive with a strong 3D convolutional neural
network baseline. In an ablation study on label-efficiency
based on the Houston2018 dataset, self-supervised pre-
training significantly improves transformer accuracy when
little labeled training data is available. The self-supervised
model outperforms randomly initialized transformers and
the 3D convolutional neural network by +7-8% when only
0.1-10% of the training labels are available.

1. Introduction

Hyperspectral remote sensing provides measurements of
the Earth’s surface with high spectral resolution. This en-
ables applications like the detection of specific material cat-
egories or agricultural parameters which often depend on
fine-grained spectral reflectance patterns [15, 21]. In recent
years, the availability of hyperspectral remote sensing data

1Code available at github.com/HSG-AIML/MaskedSST
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Figure 1. A: We propose the use of masked image modeling to pre-
train spatial-spectral transformer networks on a large dataset of
unlabeled hyperspectral EnMAP data. B: The pre-trained model
can then be fine-tuned on small labeled datasets for supervised
downstream tasks like land cover classification.

has strongly improved and the launch of the German hy-
perspectral Environmental Mapping and Analysis Program
(EnMAP) mission in April 2022 made global hyperspec-
tral data of high spectral and temporal resolution publicly
available on a large scale [16]. In contrast to this trend,
deep learning approaches for the analysis of hyperspectral
remote sensing data are overwhelmingly developed on well-
established benchmark datasets that are very small in com-
parison to commonly used datasets in other computer vi-
sion domains [10, 30]. To a large extent, this is due to the
high acquisition cost of hyperspectral data itself and the cor-
responding labels for individual spectral sequences. This
strongly limits the size of available labeled datasets and
the development of deep learning approaches in the hyper-
spectral domain. In this work we aim to improve vision
transformer architectures for the specific characteristics of
hyperspectral data and to leverage the growing amount of
freely available unlabeled hyperspectral remote sensing im-
agery for self-supervised pre-training of these models. We
illustrate how to increase the performance while decreasing
the amount of required labeled data for hyperspectral clas-
sification tasks.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Overview of our proposed transformer model for hyperspectral data with spatial-spectral factorization within the masked self-
supervised pre-training framework. A: The hyperspectral data cube is first divided into spatial-spectral patches p ∈ Rph×pw×pc . The
patches are randomly masked, embedded and processed by the transformer, which sequentially applies self-attention spatially and spectrally
between all embeddings. A linear layer maps representations of the masked patches back to pixel space to compute the reconstruction error.
B: Our spectral-spatial transformer consists of a patch embedding layer and transformer blocks that apply self-attention among tokens with
the same spectral or spatial index. The colors indicate token locations in the hyperspectral cube.

The contributions of this work can be summarized as fol-
lows:

• We collect a large scale unlabeled dataset of EnMAP
observations over Europe and create a labeled dataset
of Mexico City by matching EnMAP observations
with land cover labels. Based on these datasets, our
work provides a large scale evaluation of transformer
models for hyperspectral data.

• We investigate different positional and spectral encod-
ing schemes and show that block-wise embedding sig-
nificantly improves the performance of transformers
on hyperspectral data.

• To facilitate spatial-spectral learning with transform-
ers, we utilize a spatial-spectral factorization scheme
which greatly reduces the computational burden of
the self-attention operation on high-dimensional hy-
perspectral data.

• We show that a self-supervised masked image mod-
eling task for hyperspectral data improves model per-
formance on downstream tasks, and can significantly
improve label efficiency for transformer models.

2. Related Work

2.1. Hyperspectral Deep Learning

The high dimensionality and spectral correlation of hy-
perspectral data present unique challenges for machine
learning methods. Accordingly, many machine learning
techniques have been developed for common hyperspec-
tral tasks such as dimensionality reduction [55], data fu-
sion [51], unmixing [54] or classification [2]. In particu-
lar, deep learning approaches like fully connected [14], con-
volutional [26] (CNN), and recurrent neural networks [28]
have been successfully applied on hyperspectral imag-
ing data (see [2] for an overview). Hybrid transformer-
CNN methods combine convolutional feature extractors
with transformer networks (e.g., [20,38,43]) to leverage the
spatial inductive bias of CNNs in a transformer framework.
Following the general trend in the deep learning field, pure
transformer networks have also recently been developed for
hyperspectral remote sensing imagery [22, 31].

2.2. Vision Transformers

Transformer models are state-of-the art in natural lan-
guage processing [11] (NLP) where their attention mecha-
nism [42] models pairwise interactions between tokens, and
allows them to capture long-range interactions. The trans-
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Figure 3. A: Standard patch-embedding approach for vision trans-
formers. Patches are flattened and embedded using the same linear
transform w. B: Blockwise spectral embedding for spatial-spectral
patches. Each spectral interval is embedded with a specific linear
transform wb to account for the characteristics of the correspond-
ing wavelength interval.

former approach has since also been successfully adapted
for computer vision applications, where pre-trained trans-
formers are now among the strongest general purpose back-
bones [12]. The standard vision transformer [12] (ViT)
method first divides input images x ∈ Rh×w×c into patches
p ∈ Rn×(ph×pw×c) of patch size ph · pw. This set of
n = ( h

ph ) · ( w
pw ) non-overlapping patches is linearly em-

bedded to the transformer dimension d and summed with
positional encodings for every patch. The resulting embed-
dings z are processed by the transformer encoder consist-
ing of l layers of alternating multi-head self-attention [42]
(MSA) and feed-forward (FF) blocks, both with layer nor-
malization [3] (LN):

yl = MSA(LN(zl)) + zl

zl+1 = FF(LN(yl)) + yl (1)

The major bottleneck in the application of (vision) trans-
formers on high dimensional data is the quadratic complex-
ity of the attention operation in the number of input tokens.
A number of works try to improve the efficiency of trans-
formers for large numbers of tokens by reducing the com-
plexity of self-attention [7, 8], or by applying self-attention
selectively rather than pairwise between all tokens [5, 23].
Most relevant for this work are transformer architectures for
video data where different approaches to divide the self-
attention operation along the temporal and spatial dimen-
sions have been proposed [1, 5].

2.3. Self-supervised Learning

The goal of self-supervised learning (SSL) is to learn
rich representations from unlabeled data. To that end, an
artificial supervision signal is constructed from information
that is inherent to the data sample. Models can then be
trained to solve such a ‘pretext-task‘ before the learned rep-
resentations are transferred to different downstream tasks
of interest. Common pretext-tasks include the prediction of
relative rotation [13], solving of jigsaw puzzles [29] or im-
age colorization [53]. More recently, contrastive learning
has emerged as a powerful pre-training strategy [6,45]. This
approach aims to solve an instance-wise classification prob-
lem between data samples with noise contrastive estima-
tion [17]. The objective is to distinguish positive and neg-
ative pairs of data points, where the pairwise relationships
are derived from inherent characteristics of the data samples
rather than classical labels. The network thus learns to map
positive pairs close to each other and far apart from nega-
tive samples in the representation space. Contrast can be
defined on the image [6], patch [46], or pixel [47] level to
control the granularity of resulting representations.

Masked Image Modeling Self-supervised learning
through the prediction of masked data components is
widely used in NLP and a central contributor to the success
of transformer networks in this domain. The central idea
is to replace a fraction of input tokens with a special mask
token that has to be predicted by the transformer [11].
Following the success of such approaches with natural
language, masked modeling approaches are now also used
in the vision domain. These approaches closely follow the
NLP approach by predicting masked tokens from adjacent
visible tokens [4, 56], which requires a suitable tokenizer.
Recent work has shown that in the vision domain token
prediction can be substituted by directly regressing the
values of masked pixel. This pre-training approach results
in strong visual representations when combined with
autoencoder networks [19] or by estimating pixel values
from latent representations with a simple linear layer [48].

SSL in Remote Sensing Remote sensing offers large
amounts of unlabeled data, which has been leveraged in a
number of self-supervised learning strategies (see [44] for
a review). Early approaches utilize hand-crafted pretext-
tasks like inpainting and location prediction [40]. A num-
ber of methods have tailored the contrastive learning princi-
ple to the characteristics of remote sensing data by utilizing
temporal information from consecutive overpasses [27,52],
multi-modal data from different sensors [33–35], or multi-
spectral observations [37, 39] to define positive sample
pairs. Masked image modeling approaches for remote
sensing data utilize masked autoencoding [19] with multi-
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Figure 4. Top: Tiles from EnMAP L2 scenes over Mexico City. Center: Corresponding DFC2020 land cover labels. Bottom: Predicted
land cover classes from the masked spatial-spectral transformer model.

spectral and multi-temporal data [9], or extend it to imagery
of varying ground sampling distance [32]. In the hyperspec-
tral domain, masked sequence modeling has been used to
model the spectral signal [18], and within the masked au-
toencoding framework [24].

3. Method
This section introduces the proposed transformer model

for hyperspectral data (3.1), the spatial-spectral patch em-
bedding strategy (3.1.1) and how hyperspectral data is effi-
ciently processed by factorizing self-attention spatially and
spectrally (3.1.2). Finally, we present the masked pre-
training scheme (3.2).

3.1. Transformer Architecture

This work adapts the vision transformer [12] architec-
ture to hyperspectral imagery. Starting from a baseline
transformer model, we successively add model components
and adjust design choices to improve efficiency and perfor-
mance on hyperspectral data. Our baseline spectral model
processes the spectral sequence of individual pixel with an
transformer encoder. Each pixel is divided into patches
along the spectral dimension, resulting in n = c

pc blocks
of size pc, and then embedded with a shared linear trans-
form. Learnable positional embeddings are added to the
embedding sequence. As a spatial transformer baseline, we
apply the original ViT [12] architecture on the RGB bands
of hyperspectral data (ViT-RGB).

3.1.1 Spatial-Spectral Patch Embeddings

Spatial-Spectral Patches To incorporate the spatial con-
text for the spectral sequence of each pixel, our spatial-
spectral model divides the input image x ∈ Rh×w×c into
n = ( h

ph ) · ( w
pw ) · ( c

pc ) patches of size ph · pw · pc. This
approach mirrors the spatial patching of the original ViT,
but does not aggregate all spectral bands per location, thus
retaining the hyperspectral 3D cube. This makes it possible
to model both spectral and spatial relationships within the
image using attention. Spatial-spectral patching increases
the number of tokens by a factor of c

pc compared to spa-
tial ViT patching and by h

ph · w
pw compared to the spec-

tral transformer approach. Since the computational cost of
self-attention is quadratic in the number of tokens, model-
ing all spatial-spectral relationships is practically infeasible
for anything but very large spatial and spectral patch sizes
p{h,w,c}. We address this limitation in Section 3.1.2.

Blockwise Spectral Embedding Vision transformers
create embeddings from patches through a learned linear
transform that is shared between all patches (see Fig. 3
A). Unlike the spatial patches of ViT, which always repre-
sent the RGB intervals of the electromagnetic spectrum, our
spatial-spectral patches represent multiple different spectral
wavelength intervals for every spatial patch. To account for
this diversity in the spectral signal, we propose a block-
wise spectral embedding scheme that utilizes a separate
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linear transform for each of the c
pc spectral blocks in the

patched hyperspectral data (see Fig. 3 B). This approach is
most similar to group embeddings which have been used
for multi-temporal and multi-spectral remote sensing im-
agery [9].

Spectral Positional Embedding We investigate the util-
ity of two different positional encoding techniques for the
spatial-spectral embeddings: Learnable positional em-
beddings for every spatial-spectral patch that are optimized
along with the transformer during model training. Alterna-
tively, spectral positional embeddings explicitly encode
spatial and spectral positional information of the hyper-
spectral data separately with fixed sine and cosine func-
tions [9, 42] and the transformer dimensionality d.

PEpos,2i = sin(pos/100002i/d)
PEpos,2i+1 = cos(pos/100002i/d)

(2)

We allot one third of the embedding vector to the spectral
positional embedding (i.e., the encoding of the patch’s index
in the spectral sequence), and the remainder for the spatial
embedding of horizontal and vertical position.

3.1.2 Spatial-Spectral Factorization

The spatial-spectral patch embedding strategy yields a large
number of tokens for high dimensional hyperspectral data.
This is a bottleneck for the attention operation, which has
quadratic runtime in the number of tokens. To make train-
ing feasible, we resolve this limitation by factorizing the
transformer model to sequentially process spatial and spec-
tral relationships within the data (see Fig. 2 B). This ap-
proach is similar to separable convolutions in CNNs, where
2D and 1D convolutions are sequentially applied over and
across feature maps [36]. This strategy reduces the compu-
tational load of self-attention from the squared product of

Figure 5. Top: RGB representation of the Houston2018 hyper-
spectral training set (bands 48, 32, 16). Bottom: Training labels
for Houston2018 (20 classes, unlabeled pixels shown in white).
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Figure 6. Top: Original RGB representation and reconstruction
with 70% masking and mask patch size 4 after 200 training epochs.
The heatmap indicates how many of the RGB bands were masked
for each image patch. Bottom: Reconstruction along the spectral
axis for the two pixels highlighted in red in the top-left image.
Gray sections correspond to masked patches.

the number of spatial and spectral patches to their squared
sum, i.e., O(( h

ph · w
pw · c

pc )
2 · d) to O(( h

ph · w
pw + c

pc )
2 · d).

In practice the number of required operations on our hyper-
spectral data changes by a factor of ∼ 1

75 .

3.2. Masked Self-supervised Learning

The transformer models investigated in this work consist
of a transformer encoder. During masked pre-training, we
add an additional linear layer to map latent token represen-
tations from the transformer to pixel values, following the
SimMIM method [48]. After patch embedding, a fraction
of the embeddings is selected and replaced with a learnable
mask token. The pre-training objective is to reconstruct
the pixel values corresponding to the masked tokens (see
Fig. 2). The reconstruction quality is measured by L1 loss,
which is only evaluated for masked pixel tokens (see Fig. 6).
Unlike similar approaches that utilize encoder-decoder ar-
chitectures for masked pre-training [19], the small linear
reconstruction head in this approach forces the encoder to
focus its capacity on modeling the masked tokens, rather
than leaving this task to the decoder. Masked sentence mod-
els [11] commonly mask 15% of tokens, while image [48]
and video [41] models mask around 50% and 90%, respec-
tively. We employ a blockwise-masking strategy (i.e., by
masking 4 × 4 windows of tokens instead of individual to-
kens) to prevent trivial solutions which are possible due to
the high correlation of spectrally adjacent tokens.

4. Data
This work applies transformer models on hyperspectral

remote sensing data. To that end, we utilize hyperspec-
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Model Components Finetuned Frozen

Model Name Spectral Spatial BPE SPE SSL Acc. (%) MAcc. (%) Acc. (%) MAcc. (%)

3D-CNN [25] ✓ ✓ 83± 0.3 57± 1.0 81± 0.4 54± 1.1
ViT-RGB [12] ✓ 69± 0.5 20± 1.0 68± 0.3 16± 0.3
Transformer [42] ✓ 77± 0.2 32± 0.4 72± 0.1 23± 0.2

Spectral T. ✓ ✓ 80± 0.1 38± 0.5 71± 1.0 27± 1.3
Masked Transformer ✓ ✓ 76± 0.2 29± 0.4 65± 0.0 14± 0.0
Masked Spectral T. ✓ ✓ ✓ 81± 0.3 40± 0.7 78± 0.1 31± 0.1

SST ✓ ✓ 79± 0.1 38± 0.4 74± 0.4 32± 0.5
SST ✓ ✓ ✓ 81± 0.1 40± 0.8 75± 1.0 27± 1.3
SST ✓ ✓ ✓ 78± 0.2 33± 0.6 73± 0.6 24± 0.6
SST ✓ ✓ ✓ ✓ 82± 0.1 44± 0.3 76± 1.0 35± 1.0

Masked SST ✓ ✓ ✓ 77± 0.5 31± 0.1 65± 0.0 14± 0.0
Masked SST ✓ ✓ ✓ ✓ 82± 0.1 42± 0.2 77± 0.1 29± 0.2
Masked SST ✓ ✓ ✓ ✓ 78± 0.4 32± 0.3 65± 0.0 14± 0.0
Masked SST ✓ ✓ ✓ ✓ ✓ 82± 0.2 45± 0.6 79± 0.1 40± 0.1

MSST-Center ✓ ✓ ✓ ✓ ✓ 82± 0.2 55± 0.5 82± 0.2 55± 0.2

Table 1. Hyperspectral classification performance of baselines and different transformer configurations on the EnMAP-DFC dataset.
Columns ‘Spectral’ and ‘Spatial’ indicate whether the model utilizes spectral/spatial context. Please refer to Section 3.1.1 for details
about blockwise patch embedding (BPE) and spectral positional encoding (SPE). SSL indicates that the model has been pre-trained on
EnMAP data with the masked reconstruction task. SST refers to the spatial-spectral transformer model. 3D-CNN and MSST-Center
provide predictions for the center pixel of a patch, the other methods for all pixels in the patch simultaneously. Finetuned results indicate
performance after training all model parameters on labeled data, frozen indicates that only the classification head is trained on labeled data.

tral datasets from the Environmental Mapping and Analysis
Program [16] and the IEEE GRSS Data Fusion Challenge
(DFC) 2018 [49].

EnMAP The EnMAP satellite carries an imaging spec-
trometer that scans the Earth’s surface with 224 spectral
bands in the very-near infrared (420 − 1000nm) and short-
wave infrared (900 − 2450nm) intervals [16]. The sen-
sor has a spatial resolution of 30×30m and a 27-day re-
visit time. We collect a dataset consisting of 90 cloud-free
EnMAP L2 scenes (orthorectified and atmospherically cor-
rected) over Europe in Q4 2022. The EnMAP scenes are
divided into non-overlapping 64×64 pixel tiles, and invalid
atmospheric bands are removed (resulting in a total of 200
spectral bands). Our dataset consists of 19 792 tiles, for a
total of more than 81M hyperspectral pixels.

EnMAP-DFC We create a labeled EnMAP dataset
by matching two atmospherically corrected EnMAP L2
scenes over Mexico City with land cover data for the
same region that was published for the IEEE GRSS
DFC 2020 [50] (see Fig. 4). This dataset consists of
357 64 × 64 pixel tiles with pixel-wise labels for the
classes Forest, Shrubland, Grassland, Wetland,
Cropland,Urban/Built-up, Barren and Water.
For our experiments, the data is randomly split into 286
training/validation tiles and 71 tiles for final testing. We

note that some label noise is introduced due to the differ-
ence in labeling date (2020) and time of the EnMAP over-
flight in 2022 (see Fig. 4 top and center rows).

Houston2018 As a second labeled hyperspectral dataset,
we use the Houston data from the IEEE GRSS DFC in
2018 [49]. This dataset consists of aerial imagery of the
city of Houston (see Fig. 5), obtained with a hyperspec-
tral instrument in the 380− 1050nm spectral range with 48
bands and 1m spatial resolution. The scene has 1202×4172
hyperspectral pixels, 590 149 of which are labeled into 20
fine-grained classes. We use the official train/test split of
the dataset in our experiments (504 712 pixels for training
and validation, 85 437 for testing).

Metrics We evaluate model performance for land cover
classification on EnMAP-DFC and Houston2018 with ac-
curacy and macro accuracy metrics. The standard accuracy
measures the fraction of correctly classified samples over
the entire dataset (see Eqn. 3). Macro accuracy provides the
average of class-wise accuracies, which can deviate from
accuracy on unbalanced datasets (see Eqn. 4). We report the
average and standard deviation of each metric, computed
over 5 training runs with different random seeds.

Acc. =
TP+ TN

TP+ TN+ FP + FN
(3)

where TP,TN,FP and FN correspond to true positive,
true negative, false positive, and false negative, respectively.
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MacroAcc. =

∑
c∈C Acc.({xi|yi = c}i)

|C|
(4)

where xi is a data sample, yi the corresponding class label,
and C the set of all classes in the dataset.

5. Experiments & Results
5.1. Baselines

We use three different baseline models in this work. The
ViT-RGB model directly applies the ViT [12] approach
with dimensionality d = 96, 4 blocks, and 8 heads in
the multi-head self-attention to the RGB bands of hyper-
spectral data. Accordingly, the data only consists of three
spectral bands, which are aggregated during patch embed-
ding. This model yields an accuracy of 69 ± 0.5% on the
EnMAP-DFC dataset (see Table 1) and 19±1.4% on Hous-
ton2018 (see Table 2). Our spectral model is a sequen-
tial transformer of the same size as the ViT-RGB. Hyper-
spectral pixel are processed individually, and self-attention
acts between spectral tokens of width pc = 10. Unlike
the ViT-RGB, this approach can fully leverage the spec-
tral information of the hyperspectral dataset, and improves
the accuracy significantly to 77 ± 0.2% on EnMAP-DFC.
On the Houston2018 dataset, the spectral model reaches an
accuracy of 47 ± 3.2%. As a convolutional baseline, we
use an established 3D-CNN model [25] with strong per-
formance on hyperspectral datasets [2]. Using 3D convo-
lutions, this model can incorporate both spectral and spa-
tial information, yielding a performance of 83 ± 0.3% for
EnMAP and 45 ± 1.8% on Houston2018. Unlike the pre-
sented transformer approaches (see Table 1), the 3D-CNN
model only makes predictions for the center-pixel of every
input patch. This improves performance but necessitates a
sliding-window inference strategy to create pixelwise land
cover maps, which strongly increases computational cost.
We re-train our best performing model using this approach
on the EnMAP data and adopt the same strategy on the
Houston2018 dataset for comparability.

5.2. Spatial-Spectral Embedding

We extend the spectral transformer to deal with spatial-
spectral signals by embedding the data along both spatial
and spectral axes (see Fig. 3). This increases the number of
embeddings by a factor of h

ph · w
pw compared to the spectral

model. The spatial-spectral factorization strategy detailed
in Section 3.1.2 allows our spatial-spectral model (SST)
to efficiently process the increased number of tokens. The
model consists of two stacked transformers (with d = 96,
4 transformer blocks and 8 heads) that sequentially process
the tokens with ph,w =1 and pc =10 along the spatial and
spectral dimension, respectively. This approach yields an
accuracy of 79 ± 0.1% on EnMAP-DFC and serves as the

Model Acc (%) MAcc (%)

3D-CNN [25] 45± 1.8 45± 1.0
Transformer [42] 33± 1.1 26± 1.0
ViT-RGB 19± 1.4 21± 1.4
Spectral T. 47± 3.2 43± 1.6
SST 43± 2.4 40± 1.7
Masked SST 48± 2.8 42± 1.2

Table 2. Land cover classification results for the Houston2018
dataset. SST corresponds to spatial-spectral transformer with
BPE. The masked SST is pre-trained and fine-tuned on Hous-
ton2018 training data. All models besides the standard transformer
are trained for center pixel prediction.

basic backbone for the other presented transformer modi-
fications. Adding the blockwise patch embedding (BPE)
scheme allows the model to embed patches conditionally
on their position along the spectral axis (see Fig. 3) and im-
proves accuracy to 81 ± 0.2%. We find that spectral posi-
tional embeddings (SPE) slightly harm the performance of
the SST model (78± 0.2%), while the combination of BPE
and SPE yields an improvement to 82 ± 0.1% on the En-
MAP data. This model reaches an accuracy of 43 ± 2.4 on
Houston2018.

5.3. Masked Pre-training

Self-supervised masked modeling increases the data ef-
ficiency of transformer models for natural language [11] or
image [48] applications. We pre-train our transformer con-
figurations for hyperspectral data on the unlabeled EnMAP
dataset with a masked pixel reconstruction strategy. The
model is trained for 200 epochs to reconstruct the 70% of
patches which were masked in a 4×4 blockwise fashion.
This pre-training yields small improvements over training
from scratch on the larger EnMAP-DFC dataset (e.g., +1%
accuracy for the masked SST with BPE). On the Hous-
ton2018 data, masked pre-training improves the SST model
by +5% to 48±2.8% accuracy. The combination of masked
pre-training and BPE results in strong representations, as re-

Dataset Fraction

Model 0.1% 1% 10% 100%

3D-CNN [25] 28± 1.8 38± 1.3 42± 1.0 45± 1.8
Transf. [42] 10± 0.1 10± 0.2 17± 1.8 33± 1.2
ViT-RGB 14± 1.7 14± 1.2 17± 0.9 19± 1.4
Spectral T. 17± 1.7 34± 2.0 44± 2.9 47± 3.2
SST 27± 3.2 38± 1.7 43± 2.8 43± 2.4
Masked SST 35± 2.0 46± 3.1 47± 1.9 48± 2.8

Table 3. Land cover classification accuracy on Houston2018 for
different training set sizes (100%: 504 712 labeled pixels). When
labeled training data is scarce, the pre-trained transformer signifi-
cantly outperforms the other models.
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Figure 7. Performance of 3D-CNN baseline [25] and spatial-
spectral transformer models trained on varying fractions of the
Houston2018 dataset.

vealed by linear probing on the frozen transformer weights
(see columns ’Frozen’ in Table 1). The masked SST im-
proves by +3% accuracy to 79 ± 0.1% and +5% in macro
accuracy over the SST without pre-training on the EnMAP-
DFC dataset.

Data Efficiency To investigate model performance on
downstream applications with little labeled data, we train
pre-trained and randomly initialized SST models with BPE
and SPE on successively smaller portions of the Hous-
ton2018 dataset (see Table 3). Using as little as 0.1% of the
Houston2018 training data (∼504 pixels) results in an accu-
racy of 27 ± 3.2% for the randomly initialized SST model
and 28 ± 1.8% for the baseline 3D-CNN [25]. The pre-
trained SST model reaches an accuracy of 35±2.0%, which
corresponds to an +8% increase that can be attributed to
self-supervised pre-training (see Fig. 7). We observe a sim-
ilar performance advantage for the self-supervised model
when training on 1% and 10% of the Houston2018 training
set (see Table 3). We note that the masked SST model out-
performs the SST model without pre-training and the 3D-
CNN with as little as 1% of the labeled training data.

6. Discussion

This work investigates the utility of masked hyperspec-
tral image reconstruction for self-supervised learning of
transformers. We pre-train different transformer model con-
figurations on unlabeled data and evaluate them on the la-
beled EnMAP-DFC and Houston2018 datasets. A compari-
son of the baseline vanilla transformer and ViT-RGB meth-
ods reveals the high importance of spectral information for
the EnMAP-DFC land cover classification task: ViT-RGB,
which has access to larger spatial context but disregards

spectral information beyond the RGB-bands, performs sig-
nificantly worse than the standard transformer trained on
the entire spectral sequence (−8% accuracy). Interestingly,
both baseline transformer approaches lag significantly be-
hind the convolutional 3D-CNN baseline [25]. We find that
blockwise patch embedding is an important enhancement
for spectral transformers and provides an implicit encod-
ing of each token position in the spectral sequence. De-
spite EnMAP’s high spectral resolution, the use of spatial
context provides improvements in model performance. In-
corporating spectral positional embeddings into the spatial-
spectral transformer further boosts classification accuracy
in our experiments when combined with blockwise patch
embedding.

In order to leverage large unlabeled hyperspectral
datasets and to boost the label efficiency of transformer
models, we utilize masked data reconstruction as self-
supervised pre-training task. Linear probing from the self-
supervised representations indicates that masked hyper-
spectral image reconstruction yields meaningful representa-
tions that can achieve strong classification performance on
EnMAP-DFC. We further conduct an ablation study on the
label efficiency of our masked spatial-spectral transformer
on the Houston2018 dataset. The pre-trained model can be
fine-tuned with 1% of the labeled data to surpass the per-
formance of the baseline models trained on 100% of the
labeled data.

7. Conclusion

Our systematic evaluation of vision transformer models
for hyperspectral remote sensing data reveals the benefits of
different positional encoding schemes and the importance
of modeling spatial-spectral interactions with self-attention.
Factorizing self-attention between the spatial and spectral
dimensions enables self-attention for high-dimensional hy-
perspectral data. We further showcase the potential of
masked transformer pre-training and evaluate the resulting
models with different amounts of labeled training data. The
results of this study indicate that masked pre-training is
highly effective to improve label efficiency of transformer
models, and can also boost performance when a large num-
ber of labels is available. We believe that these results
will be highly relevant for the hyperspectral remote sensing
community as transformer networks continue to excel for
vision tasks and more large unlabeled hyperspectral datasets
start to become publicly available.
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Stéphane Mallat. Ph. D. Thesis. Ecole Polytechnique, 2,
2014. 5

[37] Vladan Stojnic and Vladimir Risojevic. Self-supervised
Learning of Remote Sensing Scene Representations us-
ing Contrastive Multiview Coding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1182–1191, 2021. 3

[38] Le Sun, Guangrui Zhao, Yuhui Zheng, and Zebin Wu.
Spectral–Spatial Feature Tokenization Transformer for Hy-
perspectral Image Classification. IEEE Transactions on Geo-
science and Remote Sensing, 60:1–14, 2022. 2

[39] Aidan M Swope, Xander H Rudelis, and Kyle T Story. Rep-
resentation Learning for Remote Sensing: An Unsupervised
Sensor Fusion Approach. arXiv preprint arXiv:2108.05094,
2021. 3

[40] Chao Tao, Ji Qi, Weipeng Lu, Hao Wang, and Haifeng
Li. Remote Sensing Image Scene Classification with Self-
supervised Paradigm under Limited Labeled Samples. IEEE
Geoscience and Remote Sensing Letters, 2020. 3

[41] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
VideoMAE: Masked Autoencoders are Data-Efficient Learn-
ers for Self-Supervised Video Pre-Training. In Advances in
Neural Information Processing Systems. 5

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017. 2, 3, 5, 6, 7

[43] Wenxuan Wang, Leiming Liu, Tianxiang Zhang, Jiachen
Shen, Jing Wang, and Jiangyun Li. Hyper-ES2T: Ef-
ficient Spatial–Spectral Transformer for the Classification
of Hyperspectral Remote Sensing Images. International
Journal of Applied Earth Observation and Geoinformation,
113:103005, 2022. 2

[44] Yi Wang, Conrad M Albrecht, Nassim Ait Ali Braham,
LiChao Mou, and Xiao Xiang Zhu. Self-supervised Learn-
ing in Remote Sensing: A Review. IEEE Geoscience and
Remote Sensing Magazine (GRSM), 2022. 3

[45] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised Feature Learning via Non-parametric Instance
Discrimination. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3733–
3742, 2018. 3

[46] Tete Xiao, Colorado J Reed, Xiaolong Wang, Kurt Keutzer,
and Trevor Darrell. Region similarity representation learn-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 10539–10548, 2021. 3

[47] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen
Lin, and Han Hu. Propagate Yourself: Exploring Pixel-level
Consistency for Unsupervised Visual Representation Learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 16684–16693,
2021. 3

[48] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. SimMIM: A Simple
Framework for Masked Image Modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9653–9663, 2022. 3, 5, 7

[49] Yonghao Xu, Bo Du, Liangpei Zhang, Daniele Cerra, Miguel
Pato, Emiliano Carmona, Saurabh Prasad, Naoto Yokoya,
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