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Abstract

Recently, event cameras have shown large applicabil-
ity in several computer vision fields especially concerning
tasks that require high temporal resolution. In this work,
we investigate the usage of such kind of data for emotion
recognition by presenting NEFER, a dataset for Neuromor-
phic Event-based Facial Expression Recognition. NEFER
is composed of paired RGB and event videos representing
human faces labeled with the respective emotions and also
annotated with face bounding boxes and facial landmarks.
We detail the data acquisition process as well as providing
a baseline method for RGB and event data. The collected
data captures subtle micro-expressions, which are hard to
spot with RGB data, yet emerge in the event domain. We
report a double recognition accuracy for the event-based
approach, proving the effectiveness of a neuromorphic ap-
proach for analyzing fast and hardly detectable expressions
and the emotions they conceal.

1. Introduction

Facial expression recognition is important for a large va-
riety of applications [3, 20, 34]. Different kinds of sen-
sors have been used to analyze faces such as depth cam-
eras [9] or sensors with high framerate such as high-speed
structured light sensors [67] and extremely fast RGB cam-
eras [43]. In particular, the necessity for elevated framerates
stems from the fact that emotions are often conveyed by
micro-expressions, which can manifest in short timespans
up to 1/25 of a second [12]. Recently, an exploratory ap-
proach has studied the capability of neuromorphic sensors,
i.e. event cameras, to capture facial expressions [2]. It sug-
gested better recognition rates for event-based approaches
compared to RGB.

Event cameras are bio-inspired sensors that, instead
of generating streams of synchronous frames, produce
asynchronous events for single pixels where illumination
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Figure 1. NEFER is a dataset for Neuromorphic Event-based Fa-
cial Expression Recognition. We collect paired Event streams and
RGB videos, providing for both modalities face bounding boxes,
facial landmarks and emotion labels. Emotion labels are provided
in two versions: using an a-priori assignment based on the visual
stimulus shown to the user and based on actual user feelings.

changes occur. An advantage is the extremely high rate of
events, with temporal resolutions that reach the microsec-
ond. However, due to a lack of data, emotion recognition
through event-based videos is still a problem not widely ad-
dressed in the literature. In order to cope with the afore-
mentioned lack of data, several attempts have been made
to generate synthetic event-based datasets [23,28,46]. The
authors of [2] framed the recognition setting as a facial re-
action recognition system, aiming at understanding whether
an expression is positive or negative when using an in-
teractive recommendation system. The authors however,
collected a dataset using a VGA event camera, thus with
limited spatial resolution. We believe that this poses a
strong limit for facial-expression analysis applications since
micro-expressions can be very localized in space as much as
in time. Reactions are also labeled just as positive, neutral
and negative, without providing details about emotions. A
few additional works have addressed similar problems, yet
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focusing only on face detection and tracking alone, without
analyzing expressions or emotions [33,51].

In our work we present NEFER (Neuromorphic Event-
based Facial Expression Recognition) ! , the first release
of an RGB and event dataset for emotion recognition. The
dataset is fully labelled with bounding boxes from face de-
tection and facial landmark.

As traditional annotation methods are not ideal for event-
based data, we chose a hybrid approach. This involved us-
ing the ESIM [46] simulator to obtain aligned RGB images
and event streams, which we could then analyze using su-
pervision signals obtained directly from RGB vision meth-
ods for face detection and face landmark estimation. We
also provide a simple baseline to underline the difficulty of
the task and the capabilities of an event-based model with
reference to an RGB counterpart. To the best of our knowl-
edge, we are the first to publicly release an event camera
facial expression recognition dataset. To summarize, the
main contributions of this paper are:

* We propose a dataset for emotion recognition recorded
with an high resolution event camera. The dataset con-
sists of more than 600 RGB and events-based videos
from more than 30 individuals of different genders and
ages.

* We provide labels for face and landmark detection in
both RGB and event data.

* For each sample in the dataset we provide two differ-
ent kind of labels: a-priori labels (pre-defined emotion
assignment) and user labels (emotion felt by the user).

* We provide a baseline model to foster future research
in the field, underlying the potential of event-based
analysis compared to standard RGB approaches.

2. Related Works

The event camera is a neuromorphic sensor that is based
on a novel bio-inspired vision paradigm [!1,44]. In con-
trast to traditional vision systems, it does not produce a
synchronous sequence of frames, but instead generates an
asynchronous stream of events. Each event is characterized
by a local change in brightness and can occur at very short
time intervals (in the order of microseconds) with very low
latency [36]. Moreover, unlike traditional vision systems,
the event camera does not produce any output if there is
no change in brightness, thereby conserving resources. To
summarize, utilizing a neuromorphic sensor results in re-
duced motion blur, high temporal resolution, and high dy-
namic range (up to 140 dB). Additionally, it enables a re-
duction in bandwidth consumption [ 15, 16].

IThe dataset is available here:
miccunifi/NEFER

https : / /github . com/

Despite the fact that event cameras have not been on the
market for an extended period, and their large-scale use is
still somewhat limited, there are examples of their applica-
tion in fields such as robotics and computer vision that can
be found in the literature [11, 16]. In fact, in these con-
texts, the benefits offered by event cameras can be fully
leveraged. In [45] the authors propose an event-based de-
scriptor for event camera data and show its results in some
vision problems such as object classification, tracking, de-
tection and feature matching. Also [30, 35, 40] propose
event-based approaches for object detection and recogni-
tion. Event cameras are widely used in literature for track-
ing [48,53,70]. In [69] they propose a trasformer-based ar-
chitecture to fuse temporal and spatial information encoded
in the events for single object tracking. Neuromorphic
sensors are extensively utilized in surveillance [37, 49, 56]
due to their distinctive characteristics and low power con-
sumption. In fact, one of the most desirable properties of
these sensors in surveillance is their ability to transmit in-
formation solely when changes occur. [6] propose a neu-
romorphic vision-based system for autonomous vehicles.
Event cameras are also used in a wide range of scenar-
ios in robotics and computer vision such as video super-
resolution [22, 27], depth and optical flow prediction [17],
monocular and stereo depth estimation [19,59], SLAM [26]
and visual odometry [38, 62, 72], and human pose estima-
tion [7,52].

Of particular interest for this work, is the fact that neuro-
morphic sensors have a compelling application scenario in
face detection and emotion recognition. The distinct char-
acteristics and properties of event cameras enable them to
capture even the subtlest variations and microexpressions
in human emotions at remarkably high temporal resolution
and with minimal latency. Nevertheless, this aspect has not
received widespread attention in the literature. In general,
facial images possess crucial features that can serve sev-
eral biometric applications [39] and therefore face and land-
mark detection through deep learning algorithms is a prob-
lem widely addressed in the literature [57, 64, 65]. Train-
ing deep learning models to perform well in face and land-
mark detection tasks requires a large amount of data: [68]
proposes a dataset composed by 0.5M images from 10,575
individuals, [21] use more than 100k individuals to gener-
ate approximately 10M of images, and [29] includes 1M
images from more the 690k individuals. The usage of syn-
thetic face images has also been explored [ | 8], whereas [63]
instead proposed a dataset for masked face recognition, as
a response to safety mandates during the covid pandemic.
Several other datasets have also been published addressing
the study of faces [5,24,61].

As for the event-based domain, despite all this interest
in the topic, not many datasets can be found in the litera-
ture. In fact in [50], to make up for the lack of data, they
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Dataset ‘ Videos ‘ Users ‘ Resolution

‘ Bounding Boxes ‘ Landmarks ‘ Emotions

Savran et al. [51] 108 30 304 x 204

Lenz et al. [33] 48 10 640 x 480
Becattini et al. [2] 455 25 640 x 480
NEFER 609 29 1280 x 720

X X X
X X X
X X X
v v v

Table 1. Comparison of event-based face datasets. To the best of our knowledge, NEFER is the first dataset to provide bounding boxes,
facial landmarks and emotion labels, as well as an HD resolution. NEFER is also the larger face dataset up to date.

use a synthetic event-based dataset starting from [32]. Sev-
eral attempts have been made in the literature to generate
simulated data for event cameras. In [46] the authors pro-
pose ESIM, an event camera simulator with the ability to
accurately and efficiently simulate events, while also offer-
ing the flexibility to simulate any camera trajectory within
a 3D scene of any nature. [28] extends [46] with the goal to
reduce the gap between simulation and real sensors by di-
rectly mapping noise distributions from real pixels. [23] in-
stead, proposes a tool for generating synthetic event data
and demonstrates its effectiveness in two computer vision
object recognition and detection tasks. Also [71] and [42]
propose event camera simulators. On the one hand, [71] in-
troduces a multiple event simulator method suitable to be
used in real-time robotics applications. [42], on the other
hand, suggest an approach to emulate the behavior of an
attention-based camera sensor. In conclusion, to the best of
our knowledge, only three datasets containing facial images
captured using a real event camera are present in the litera-
ture [2,33,51]. In [51] the problem of face pose alignment
is analyzed. The authors provide a dataset consisting of 108
videos of extreme head rotations with varying motion in-
tensity, totaling just over 10 minutes of frames acquired.
In [33] on the other hand, the authors collected data with
an event camera for eye blink detection. The dataset con-
sists of 48 videos (total duration of about 13 minutes). The
authors of [2] instead collected a dataset of 455 videos of
facial reactions where the recorded users react to garment
images. Reactions are classified in three classes: positive,
neutral and negative. However, both [51], [33] and [2] use
low resolution event cameras with resolution of 304 x 240px
or 640 x 480px. We are of the opinion that this presents
a significant constraint for facial expression analysis appli-
cations as micro-expressions can be highly localized both
spatially and temporally.

In this paper, we introduce NEFER (Neuromorphic
Event-based Facial Expression Recognition), a dataset com-
posed of paired RGB and event data for emotion recogni-
tion. We collected the dataset with high-resolution RGB
and event cameras, providing also facial bounding box and
landmark annotations in addition to emotion labels follow-
ing the frequently used Ekman’s emotion classification [ 1 3].
As far as our knowledge extends we are the first to publicly
release an event camera-based facial expression recognition
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Figure 2. Confusion matrix of the two sets of labels from the NE-
FER dataset. The expected emotions are a-priori labels assigned
based on the content of the visual stimulus shown to the users. The
reported emotions instead are emotions declared by the users after
observing the videos.

dataset. A comparison with existing datasets is presented in
Tab. 1.

3. NEFER: Neuromorphic Event-based Facial
Expression Recognition

The purpose of NEFER is to capture genuine micro-
expressions associated to specific emotions with both an
event camera and a standard RGB camera. We considered
the 7 primary emotions defined by Ekman [ 3], namely Dis-
gust, Contempt, Happiness, Fear, Anger, Surprise and Sad-
ness, since these have been identified as independent from
culture, history and personality and are performed in a sim-
ilar way by everyone.

4111



Emotion |

Video Descriptions

Disgust Spyder in a man’s mouth Crushed Pimple on Cheek Man Eating a Larva
Contempt Cops Killing Protestant Dog Being Abandoned Dog Being Mugged
Happiness Dogs playing Laughing Child Old Man Dancing with Boys

Fear Suddenly Appearing Ghost Hidden Clown Attacking Camera Giant Snake Attacking Camera

Anger Man Attacking Companion Boy destroying Brother’s PC Professor Assaulted by Student’s Parents

Surprise | Baseball Coming Towards Camera Girl with Unexpected Makeup Presentation Concluding with a Cat

Sadness Death of Mufasa in the Lion King Death of Elly in Up Boy who has to Undergo an Operation

Table 2. Videos shown to participants and relative emotion label. Emotions follow the 7 basic emotions defined by Ekman [13].

Happiness Fear Surprise Disgust Anger Sadness Contempt None

Figure 3. Class distribution with user labels.

3.1. Setting and protocol

In order to obtain realistic and non-simulated expres-
sions, we asked a set of volunteers to maintain a neutral
facial expression while watching a selection of videos. A
reward has been offered to the participants to encourage a
proper behavior during the test (high-stakes situation). The
volunteers that took part in the creation of NEFER are both
males and females of age ranging between 24 and 52 years,
for a total of 29 users.

We showed to each user 21 different videos, 3 for each
of Ekman’s basic emotions. The videos have been selected
from online streaming platforms (e.g. YouTube). Each
video was trimmed to the same length of 7s to keep the
recording sessions as short as possible so not to induce un-
wanted expressions due to, for instance, boredom. This
choice also simplifies training schemes with deep learning
frameworks which process data in mini-batches of the same
size. Tab. 2 lists the videos that have been shown to the
users with the correspondent emotion label. The overall
procedure for the data acquisition and video selection was
inspired by previously collected dataset from the state of the
art [10,66].

For the recording we used two capturing devices: a GO-
PRO Hero+ action camera, recording videos at 60FPS and
1920 x 1080px resolution, and a Prophesee Evaluation Kit
HD, recording event videos at a resolution of 1280 x 720px.
The cameras have been mounted on a fixed recording rig in
a room lit with natural light. We specifically avoided any

presence of artificial light to avoid background noise that
could alter the event-based recordings. Users are also iso-
lated from other people which could generate distractions.

Users have been asked to sit in front of the screen at ap-
proximately 60cm from the cameras. The RGB and event
streams have been programmatically synchronized in order
to capture two videos of the same duration and content. Af-
ter viewing each video, we asked the volunteers to provide
a personal evaluation of the observed footage. In partic-
ular, we asked two questions: (i) select among the 7 ba-
sic emotions, plus a "None” option, the most suitable one
to describe the emotions stemmed from viewing the video;
(ii) the intensity, on a 1 to 5 scale, of such emotion. We
used the collected answers to create two alternative ver-
sions of the annotations, one considering the labeling of the
user and one following our a-priori video-emotion assign-
ment. In Fig. 2 a confusion matrix is presented showing the
differences between the two label versions. The two ver-
sions mostly differ in the fact that following user labelings
we have the additional neutral emotion and a slight unbal-
ance in the sample distribution as shown in Fig. 3. Over-
all, recording sessions lasted 18 minutes on average. Fig. 4
shows a few samples from the dataset.

4. Video
Events

Annotation Through Simulated

The wide range of off-the-shelf functionalities for RGB-
based computation is not available for event-based data.
This includes modules that nowadays are common building
blocks in computer vision pipelines such as face detectors
and landmark estimators. In addition, it is necessary to pre-
process the raw data of the neuromorphic sensor in order to
use it with frame-based computational tools. Bridging this
gap is not trivial, since due to the asynchronous nature of
the domain, the usual annotation process for many different
tasks becomes cumbersome and expensive. Even generat-
ing relatively simple annotations such as facial bounding
boxes, which are reliably obtainable with RGB data, would
require lots of manual annotation.

To provide additional annotations for event-based data
we exploit RGB data and an event camera simulator,

4112



Figure 4. Four samples from the NEFER dataset. First row: happiness; Second row: fear; third row: disgust; fourth row: surprise. Subtle
movements are almost invisible with RGB but are emphasized in event frames.

ESIM [46]. Through the use of the ESIM simulator we
convert the RGB videos into physically accurate simulated
event streams. We then run a face detector and facial land-
mark estimator on the RGB frames, which is easily done
with tools such as FaceAlignment [4]. We train a face de-
tector (Yolov2) [47] and a landmark estimator [4] on simu-
lated data and test it on real event streams. This approach
provides satisfactory results on most frames, decimating the
annotation time. The final annotations are manually refined
and validated using CVAT [60].

4.1. ESIM

ESIM [46] is an event-based camera simulator that can
generate a synthetic event-based stream from its RGB video
counterpart in a physically realistic way. The images are
rendered by the simulator at a high frame rate, interpolat-
ing pixel brightness along the camera trajectory using an
adaptive sampling technique, which is adapting the frame
rate based on a prediction of the previous signals. We feed
to the simulator all the RGB frames to generate a synthetic
event-based version of each stream. In this way, we are able
to associate the bounding boxes provided by face alignment

on RGB frames with event data. The simulator-generated
outputs are encoded using an exponential time surface [31].
Note the synthetic event-based videos obtained from the
RGB data are used only as a mean for training models
to quickly collect annotations. These are not pixel-wise
aligned with the real event streams and we do not treat them
as part of the final dataset, which only comprises real event
data.

4.2. Face Detection

Using the synthetic data from the simulator, we gener-
ated an annotated dataset in the event spectrum to train a
face detector. First, we generated face annotation for RGB
frames using FaceAlignment [4], an open-source tool for
face analysis’. We then bound the face labels with the corre-
sponding synthetic event frames obtained with ESIM. This
allowed us to train a YOLOV2 [47] on the synthetic version
of NEFER. We found the detector to have good general-
ization capabilities from synthetic to real event data, which
yielded high-quality annotations at a slight cost of manual
validation using CVAT [60].

Zhttps://github.com/ladrianb/face-alignment
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Figure 5. Examples of detected faces and estimated landmarks on real event videos of NEFER. Better viewed in color on a PC screen.

Bounding boxes are shown in green, landmarks are shown in yellow.

4.3. Landmark Detection

The facial landmark detection is performed by an Xcep-
tion [8] architecture trained on the synthetic data from
ESIM to regress the position of 68 landmarks of the face.
Similarly to face detection, we obtained the ground truth
labels from the RGB videos by using FaceAlignment [4].
The Xception architecture is composed of three stages, all
of them employing depthwise separable convolutions along
skip connections, resulting in a faster convergence train-
ing [8]. The final linear layer outputs the 136 normalized
numbers representing the coordinates of the standard 68 fa-
cial landmarks. The model is optimized using Adam with
a learning rate of 8 x 10~ for 10 epochs over 30K frame
samples with the use of standard augmentation techniques
(random changes in brightness, contrast, rotation, transla-
tion, and crop).

5. Baseline Method

We provide a simple baseline for the dataset. This base-
line architecture is based on a 3D convolutional network
C3D [58]. It has been chosen as it has been a long-standing,
simple, standard approach for video-based action and activ-
ity recognition tasks [1, 14,41, 58]. The C3D model is im-
plemented using 5 3D convolutional blocks, all with kernel
size 3 and padding 1, followed by a 3D max-pooling of size
2 and stride 2. This chain of sequential blocks reduces the
input stacked sequence of images down to a 72 channels
feature map, which is then flattened and fed to two fully
connected layers of size 512 and 64 before a final classifica-
tion layer. ReLU activations are present between all layers.
The model architecture is depicted in Fig. 6.

We train the same model separately with RGB-frame-
based data and with event data obtained by converting
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Figure 6. Illustration of our C3D model. The stacked frames form the input to the first of 5 Conv3D + ReLU + 3DMaxPooling blocks.
Finally the 3D feature maps are flattened and fed to the final two fully connected layers
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Figure 7. Visual diagram illustrating the TBR encoding aggregat-
ing multiple events in a frame.

events into frame-wise representations using Temporal Bi-
nary Representation (TBR) [25] (see Sec. 5.1). We detect
the face using our pre-trained detector (see Sec. 4.2), and
resize the bounding box to a 200 x 200px patch before feed-
ing it as input to the model.

5.1. Temporal Binary Representation

Temporal Binary Representation [25] (TBR) is an ag-
gregation strategy to map the asynchronous events into a
stream of synchronous frames that can be then processed
by a standard computer vision pipeline. Given a fixed
At we can build the binary representation b’ of a pixel
at (z,y) by checking for an event in such a time interval,
by = L(z,9).

We can then collect N consecutive representations and
stack them together as B € R¥*WXN forming for each
pixel a binary string [69 b} . ..., bY . as shown in Fig.7.
This approach manages to create a frame processable by tra-
ditional Computer Vision algorithms with a minimal mem-
ory footprint and by retaining temporal information within
the value of each pixel.

For our experiments, we used this representation setting

0.5

0.4

0.0
Happiness Fear Surprise Disgust Anger Sadness Contempt  Neutral

Figure 8. Distribution of predicted labels on frames of the NEFER
validation set using Deep Face [54]. Almost 50% of the frames
are predicted as neutral, whereas Surprise, Disgust and Contempt
are predicted for less than 0.1% of the frames.

At = 15 milliseconds and N = 8.

6. Experimental Results

We implemented our C3D model using PyTorch and
trained it using the Adam optimizer initialized at the de-
fault learning rate value of 1 x 10~ which is then reduced
following the scheduling technique presented in [55] with
the annealing strategy. As loss, we adopt the Binary Cross-
Entropy Loss, regularized with weight decay.

We compare the performances of our model by training
it separately first on the RGB videos and then on the event
streams, using both the self-reported user annotations and
the a-priori expected one as labels for the target emotion.
We define a validation split by selecting 20% of the users at
random (thus keeping each user either in the training set or
in the validation set to avoid unwanted biases), for a total of
126 videos.

We found that the RGB model results in poor accuracy,
obtaining an average of 14.37% using the user labels and
14.60% using the expected ones. The event-based model
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Data ‘ A-Priori Labels % ‘ Reported Labels %
RGB 14.60 - 14.37 -
TBR Event 22.95 +57.2% 30.95 +115.4%

Table 3. Absolute accuracy and relative performances of our base-
line model over the different data domains and using both labelling
versions of NEFER.

instead showed much better performances, reaching an ac-
curacy of 22.95% with the user labels and of 30.95% us-
ing the expected ones. We report these experimental re-
sults in Tab. 3. This confirms that neuromorphic cameras
are well suited for analyzing faces and that event footage
carries valuable information for identifying subtle micro-
expressions that are not easily detectable with RGB data.

Interestingly, we observed that our baseline model, just
as the human a-priori assumptions, tends to confuse classes
that share similar expressions, such as fear with surprise or
anger with contempt even when trained on the self-reported
emotions.

Finally, we perform a control experiment by running a
frame-based pre-trained state of the art emotion recogni-
tion framework on the RGB data. As a model we adopt
Deepface [54], a recent facial attribute analysis framework.
The model uses the same categories as we do, following
Ekman’s emotion classification, with the only exception of
the Contempt category, which is missing in Deepface. As
shown in Fig.8, we note its tendency towards classifying
most of the frames with the neutral class None. This under-
lines the difficulty of the task in the setting that we propose:
most frames do not carry a very polarized expression and
most emotion cues happen very quickly, in a way that it is
difficult to grasp them with RGB cameras. We argue that to
fully comprehend the underlying emotions of humans from
a vision-based point of view, event cameras will play an
important role in the near future due to their ability to cap-
ture fine-grained micro-expressions and micro-movements
of the face.

7. Conclusions and Future Work

In this paper, we presented a first release of NEFER, a
dataset for expression recognition based on event camera
data. This dataset is composed of paired visual spectrum
images and event camera streams. For every sequence of
frames, both the expected emotion and the self reported one
by the user are given. Every frame has multiple annota-
tions, namely the user face bounding box and the respec-
tive facial landmarks that we collected by leveraging mod-
els trained on synthetic data obtained using a simulator. Fi-
nally, we presented and discussed a 3D convolutional base-
line, trained on both version of our dataset, which achieved
improved results on event camera data with respect to the
RGB frame based data.

We consider this a starting point for a future larger col-
lection of data in the event camera domain for similar high-
time resolution tasks. The large interest given by the com-
puter vision community towards understanding facial ex-
pressions and emotions proves the importance of the task,
yet the neuromorphic community and the traditional RGB
vision one still have several gaps to be bridged. We be-
lieve that pursuing this line of research will bring atten-
tion to an emerging field, bringing together the best of both
worlds and providing multiple modalities to approach prob-
lems that, based on experimental results, appear to be better
addressed in the event domain rather than in the RGB do-
main alone.
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