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Abstract

Event cameras are image sensors inspired by biology
and offer several advantages over traditional frame-based
cameras. However, most algorithms for reconstructing im-
ages from event camera data do not exploit the sparsity
of events, resulting in inefficient zero-filled data. Given
that event cameras typically have a sparse index of 90%
or higher, this is particularly wasteful. In this work, we
propose a sparse model, Sparse-E2VID, that efficiently re-
constructs event-based images, reducing inference time by
30%. Our model takes advantage of the sparsity of event
data, making it more computationally efficient, and scales
better at higher resolutions. Additionally, by using data
augmentation and real noise from an event camera, our
model reconstructs nearly noise-free images. In summary,
our proposed model efficiently and accurately reconstructs
images from event camera data by exploiting the sparsity of
events. This has the potential to greatly improve the perfor-
mance of event-based applications, particularly at higher
resolutions. Some results can be seen in the following video:
https://youtu.be/sFH9zp6kuWE, 1.

1. Introduction

Event cameras are image sensors that offer several ad-
vantages over frame-based cameras [17], such as a 120dB
dynamic range, high temporal resolution, and sparsity,
among others [11, 28]. Although ConvRNN-based models
for event-based image reconstruction preserve most of these
features, they do not take full advantage of the sparse and
asynchronous properties of event data. Event cameras have
a sparse index of 90% or more in the spatial dimensions
u = (x, y) [11]. To perform event-based image reconstruc-
tion, these models convert the event data into a dense format

1Link for Bilibili https://www.bilibili.com/video/
BV1dT411W7QQ/?spm_id_from=333.999.0.0&vd_source=
cc66e37794f0bcc99d29fb7152a03960

using voxels. This involves filling each empty space with
zeros. As a result, these models mainly process zeros during
image reconstruction. Generally, the larger the model (more
parameters), the better the quality of the reconstructed im-
ages. However, long inference times and excessive memory
usage limit the use of such models in mobile applications.

Models such as ET-Net [33] E2VID+ and FireNet+
[30] are considered state-of-the-art (SOTA) for event-based
image reconstruction and are capable of producing high-
quality images. FireNet+ [30] and the original FireNet
[27] share the same architecture, this is also the case with
E2VID+ [30] and E2VID [24], the difference is in the train-
ing method and data. The difference between FireNet and
E2VID is mainly in the inference time. E2VID has an in-
ference time of 360 ms and FireNet has an inference time
of 93 ms, all this at a resolution of 720 × 1280. However,
these models process all data in dense format.

To address the issue of dense processing, this paper in-
troduces Sparse-E2VID, an architecture that processes data
in sparse format (COO [3]). With Sparse-E2VID, the in-
ference time is reduced to 55 ms (at 720 × 1280 resolu-
tion), which is 30% faster than FireNet [30]. Addition-
ally, Sparse-E2VID reduces the computational cost by 98%
compared to FireNet+ [30], while also improving image
quality.

Our Sparse-E2VID model is a Recurrent Convolutional
model (ConvRNN) like FireNet, but Sparse-E2VID uses
sparse convolution [6]. However, it is not as simple as
replacing all convolution modules with sparse convolution
modules. Recursive models for video reconstruction use the
hidden state (as a memory tensor), which accumulates past
information (events). Although the hidden state tensor is
initialized with zeros, it becomes quite dense after accumu-
lating data.

Sparse convolution is not as efficient as traditional con-
volution. Still, if the data has a sparse index greater than
80%, it can reduce the inference time and memory usage
compared to traditional convolution. In the FireNet and
E2VID architecture, ConvRNN modules are at the begin-
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ning and end of the models, but their positioning is not
strict, so they can be anywhere in the model. Another as-
pect to consider is that the required output is an image in
dense format. This means that Sparse-E2VID converts the
data from sparse to dense format at some point.

Given the concept of the hidden state, the minimum spar-
sity index of 80%, the possibility of positioning the Con-
vRNN module anywhere, and the need to provide a final re-
sult in dense format, we redesigned the FireNet architecture
to use sparse convolution. In Sparse-E2VID, we positioned
the ConvRNN module at the end of the model. The first
modules are sparse convolutional modules, and the Con-
vRNN module processes the hidden state tensor at the end
of the model with dense convolution to generate an image
in dense format. This is a simple but effective solution.

One aspect to note about Sparse-E2VID is that it pre-
dicts the gradient of the image. Recent research has shown
that it is simpler for neuronal models to predict image gra-
dients [9], which can reduce the number of parameters in
a model or result in better image quality with a relatively
small model. However, numerical integration of the result
is still necessary. In previous work [9], an inverse matrix
was used for this purpose, but the computational cost is ex-
tremely high and increases exponentially with resolution. In
our work, instead we use the Fast Fourier Transform (FFT)
to perform the integration, which scales better at higher res-
olutions and has a time of only 5 ms.

To further improve the quality of reconstructed images
and reduce noise, we add real noise from an event camera
to the training set. Although E2VID+ and FireNet+ [30]
also add noise to their training sets, their noise is synthetic.
Therefore, E2VID+ and FireNet+ still generate images with
noise, especially in night scenes or at higher resolutions
(e.g., 1 megapixel cameras).

In summary, our contributions are two fold:

• Firstly, we propose a sparse architecture that, in con-
junction with FFT, reduces inference time by 30% an
the computational cost.

• Secondly, we successfully reconstructed images with
almost noise-free, thanks to the inclusion of real noise
from an event camera and data augmentation.

2. Related Works
2.1. Early Methods

Since the first event cameras were commercialized [17,
28], researchers have been investigating the reconstruction
of event-based images. The earliest methods for event-
based image reconstruction involved integrating the ob-
tained signal to produce a natural image [2, 7]. One of
the first methods used motion prediction (tracking and map-
ping) to estimate the gradient of the image at a pixel-wise

level. This gradient could then be numerically integrated
[16]. While this work results in good quality reconstruction
of event-based images, it also suffers from gross failures at
times. This is due to the motion prediction algorithm, which
is not only difficult to obtain but also error-prone.

2.2. Deep learning methods

A direct integration algorithm was proposed to avoid the
reliance on motion prediction [26]. However, event cameras
are not ideal sensors and hence, the resulting images are of-
ten noisy. Nevertheless, with the use of ConvRNN made
it possible to achieve high-quality event-based video recon-
struction without any constraints or motion prediction [23].
Several studies have built on this approach, resulting in im-
proved video quality [4, 5, 24, 30, 33] and one reduced the
inference time [27]. While these models are trained in a
supervised manner, it is practically impossible to generate
frame-based images that are well-synchronized and free of
image blur, underexposure, or overexposure. Thus, event
simulators are used to create training sets [15,22]. However,
a recent work [21] used the generative event mathematical
model to train in a self-supervised manner the FireNet and
E2VID models. Although the reconstruction quality is not
better than the SOTA, it is still a great advantage to be able
to train a model without the need for ground truth data.

2.3. Sparse methods

Although one of the most important features of event
cameras is their sparsity, it has not been extensively utilized
in event-based video reconstruction. This is because CPUs
and GPUs are optimized for processing dense data, and the
end product of event-based video reconstruction is typically
a dense image. However, some works have explored the
use of sparse event data in conjunction with Graph Con-
volutional Networks (GCN) [8, 12, 25] and sparse convolu-
tion [20] for object classification and detection tasks. De-
spite this, there has been little investigation into event-based
video reconstruction. In this work, we leverage the spar-
sity of event cameras to reduce inference time and com-
putational cost for event-based video reconstruction. Our
model, Sparse-E2VID, is 30% faster and computational
cheaper compared to the FireNet architecture.

3. Method

3.1. Architecture

As mentioned earlier, the FireNet architecture is well-
known for its fast inference time, which is achieved through
a balance between the number of parameters and image
quality. Therefore, we started with this model and adapted
it for use with sparse convolution in our model, Sparse-
E2VID.
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Figure 1. Diagram of Sparse-E2VID. The network comprises two main blocks: the Sparse Block and the Dense Block. The Sparse Block
has four 2D Sparse convolution layers with a kernel size of 3 and GELU activation. The Dense Block contains only one layer, which is the
Convolutional Gated Recurrent Unit (ConvGRU).

The FireNet architecture includes two ConvGRU mod-
ules that are placed at the start and end of the model. How-
ever, the location of these modules is flexible, as they can
be placed anywhere in the model. Nevertheless, since these
modules process the hidden state, which accumulates past
information throughout the video reconstruction, it eventu-
ally becomes a dense tensor.

To achieve efficiency comparable to or higher than dense
convolution, sparse convolution requires a sparse index of
at least 80%. As mentioned earlier, the hidden state of the
ConvGRU module is a dense tensor. Therefore, in Sparse-
E2VID, we use a single ConvGRU module positioned at
the end that employs dense convolution. This allows us
to use sparse convolution in the initial layers of Sparse-
E2VID, with the conversion to a dense format occurring at
the ConvGRU module. Figure 1 shows the architecture of
our model.

The Sparse Block has four 2D Sparse convolution layers
with a kernel size of 3 and GELU activation. The first layer
has an input of 5 channels and an output of 32 channels.
The second and third layers have an input and output of 32
channels. The fourth layer has an input of 32 channels and
an output of 16 channels. The Dense Block contains only
one module, which is the ConvGRU unit with 16 channels
in the input and 2 channels on the output. All layer uses a
kernel size of 3×3. The model estimates the image gradient,
and the final image is obtained using the Frankot-Chellappa
algorithm [1, 10].

3.2. FFT image integration

Unlike FireNet, E2VID, and other models, Sparse-
E2VID predicts the image gradient (later integrated using
the FFT). Previous work [9] has shown that by predicting
the gradient instead of the full image, we can reduce the
size of the neural network while maintaining image qual-
ity. However, in this work, the authors used the inverse

matrix −→u = A−1−→b for integration [32]. Obtaining this
inverse matrix is costly, especially in resolutions equal to or
higher than CGA, VGA and HD. Moreover, integrating us-
ing the inverse matrix is prohibitively expensive, rendering
this method infeasible. To overcome this problem, inspired
by early work on event-based image reconstruction [16], we
use the Frankot-Chellappa algorithm [1,10], which is shown
in equation 1. Where sx and sy represent the gradient cal-
culated by Sparse-E2VID, F is the 2D FFT function, and
fx and fy are the grid coordinates.

F [s] =
−ifxF [sx]− ifyF [sy]

2π(f2
x + f2

y )
(1)

3.3. Input data

Like FireNet+, we utilize an intermediate event repre-
sentation [34] in our work. Specifically, we transform the
events to voxels, using B = 5 bins in the temporal reso-
lution, as shown in equation 2, while preserving the spatial
resolution.

t∗k = (B − 1)× tk − tmin

tmax − tmin

Ex,y,t =
∑

pkmax(0, 1− |tn − t∗k|)
(2)

However, this tensor is transformed into a sparse COO
format to be processed by our Sparse-E2VID model. There
are two forms of sparse convolution: ”normal” sparse con-
volution [13] and submanifold sparse convolution [14]. The
”normal” sparse convolution works like traditional dense
convolution, but operations are only performed when the
kernel finds a non-zero value. In contrast, with subman-
ifold sparse convolution, operations are only performed
when the center of the kernel encounters a non-zero value.
Consequently, submanifold convolution is computationally
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Algorithm 1 Event Noise concatenation

1: procedure CONCATENATE EVENTS(Noise, Train) ▷ Event data in [x, y, t, p] format
2: Input: Noise, Train
3: output: y ▷ Noise and Train data concatenation
4: n, x← Noise, Train
5: nt ← (nt − nt[0]) ▷ Subtracted the value of the first timestamp
6: xt ← (xt − xt[0]) ▷ Subtracted the value of the first timestamp
7: nt ← nt/nt[−1] ▷ Normalize noise data within 0 - 1 values
8: nt ← nt ∗ xt[−1] ▷ Synchronize noise data
9: idx← where(nx,y < max(xx,y))

10: n← n[idx] ▷ Eliminate events greater than the training resolution
11: y ← x ∥ n ▷ Concatenate train and noise data
12: y ← sort(y, yt) ▷ Sort the concatenated data by its timestamp

cheaper, and for this reason, we chose this type of convolu-
tion.

3.4. Training data

For training event-based video reconstruction models,
event simulators are typically used to produce event se-
quences that are paired with highly synchronized full-frame
images. In our work, similar to FireNet+, we use the
ESIM [22] simulator to generate the training set. However,
FireNet+ only uses daytime images from the MS COCO
dataset [18]. In contrast, we use 30% nighttime images 2

and 70% daytime images from the MS COCO dataset to
improve the model’s performance in nighttime scenarios.

Another aspect to note is that FireNet+ introduces syn-
thetic noise in the training data to reduce noise in the video
reconstruction. However, these models are unable to com-
pletely filter out noise, which becomes more noticeable
when using higher resolution event cameras or in night
scenes. To address this limitation, we propose a simple yet
effective solution in which real noise from an event cam-
era is added to the training sequences. This allows Sparse-
E2VID to reconstruct almost noise-free images, even in
night scenes.

To capture noise from an event camera, we used the
Prophesee Gen 4.0 HD camera. To do this, we covered the
camera lens and recorded. In some sequences, the event
camera was pointed at a non-textured surface, such as a
wall, and kept still. The sequences where recorded at dif-
ferent light conditions, daytime, nighttime, indoors and out-
dors (with no moving object). In total we recorded 20 se-
quences, each of 10 seconds. We then used these recorded
noise sequences in our training data.

To introduce noise into the training data, we followed
several steps. Firstly, we subtracted the value of the first
timestamp from both the training and noise sequence to en-
sure they started at time zero. Next, we normalized the

2The night images were obtained from www.pixel.com, a free photo
repository.

timestamps of the noise sequence to a range of 0 to 1.
We then multiplied the last timestamp value (i.e., the high-
est value) from the training sequence by the timestamps of
the noise sequence to temporally synchronize the two se-
quences. Finally, we concatenated the two sequences and
sorted them based on their timestamps. The detailed pro-
cess is shown in algorithm 1.

3.5. Training details

To train our model, we utilized the Many-to-One (M2O)
training scheme [4]. While different schemes can be used to
train an RNN or ConvRNN model, most models that recon-
struct event-based videos use the Many-to-Many (M2M)
scheme. In contrast to the M2M scheme, where the loss
function is run once for each sample during the training
stage, the M2O scheme only runs the loss function once.
This reduces training time by 40%, because of the rela-
tively big computational and time cost of the loss function.
Additionally, this method enables us to perform data aug-
mentation by varying the number of events in a sequence.
Events do not need to be synchronized with the images;
they only need to match the last event with the last ground
truth image. We also incorporated random stops, similar to
FireNet+ and E2VID+. However, for our stops, we added
noise from a real event camera, and the stopping probability
within a sequence was set to 80%.

The loss function used in this work is a combination
of Mean Squared Error (MSE), Learned Perceptual Image
Patch Similarity (LPIPS), and Structural Similarity Index
(SSIM). For the LPIPS function, the VGG16 model with
5 intermediate layers was used. Each feature map (coming
from each layer) is multiplied by [ 1

32 ,
1
16 ,

1
8 ,

1
4 , 1] weight. To

calculate the L2 error of the feature maps later. To prevent
the reconstructed images from being blurry, we reduced the
impact of MSE by setting λ = 0.2. The complete loss func-
tion is presented in Equation 3.
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Table 1. Comparison with SOTA methods of video reconstruction, on low reslution (240× 180), lower is better.

1-SSIM MSE LPIPS

Experiment E2VID+ Sparse
E2VID FireNet+ E2VID+ Sparse

E2VID FireNet+ E2VID+ Sparse
E2VID FireNet+

bike bay hdr 0.55485 0.60857 0.69178 0.03348 0.05736 0.08131 0.64656 0.75104 0.85852
boxes 0.52938 0.62412 0.64885 0.04414 0.09417 0.09466 0.64613 0.73270 0.83270
desk 0.46450 0.55839 0.56700 0.03964 0.11655 0.11315 0.69371 0.92372 0.95514
desk fast 0.43876 0.53766 0.54470 0.03643 0.09833 0.09517 0.70014 0.91419 0.94066
desk hand only 0.46109 0.50588 0.52888 0.04664 0.09878 0.09986 0.77272 0.94610 0.95130
desk slow 0.39598 0.50137 0.46651 0.03918 0.10439 0.08846 0.61470 0.90516 0.80388
engineering posters 0.52867 0.66264 0.64825 0.03570 0.07583 0.04618 0.63258 0.67328 0.77404
high texture plants 0.44663 0.72862 0.59296 0.02252 0.05081 0.04642 0.71303 0.94203 0.89636
poster pillar 1 0.57243 0.67897 0.67910 0.02254 0.04540 0.03998 0.75394 0.84058 0.87530
poster pillar 2 0.57901 0.58862 0.70727 0.03898 0.02426 0.06043 0.74459 0.83776 0.90499
reflective materials 0.51040 0.63025 0.67669 0.03900 0.07721 0.08352 0.71379 0.83758 0.95104
slow and fast desk 0.48912 0.57173 0.63475 0.03013 0.06778 0.07720 0.61738 0.75759 0.86131
slow hand 0.57125 0.63465 0.69921 0.04071 0.07412 0.10448 0.71322 0.81017 0.95279
still life 0.47320 0.65992 0.62571 0.02809 0.09307 0.05226 0.72851 0.87256 0.95143
Mean 0.50109 0.60652 0.62226 0.03551 0.07701 0.07736 0.69221 0.83889 0.89353

Table 2. Comparison with SOTA methods of video reconstruction, on HD reslution (720x1280), lower is better.

1-SSIM MSE LPIPS

Experiment E2VID+ Sparse
E2VID FireNet+ E2VID+ Sparse

E2VID FireNet+ E2VID+ Sparse
E2VID FireNet+

colition 1 0.60352 0.39989 0.58599 0.11473 0.13023 0.32517 0.09683 0.04042 0.18272
colition 2 0.23503 0.52484 0.51225 0.04566 0.17263 0.23323 0.05079 0.05365 0.14863
cubeBox night 0.50315 0.40037 0.56429 0.10254 0.13112 0.32568 0.07542 0.05023 0.17193
notebook night 0.33366 0.12868 0.26951 0.04088 0.02550 0.04376 0.09135 0.05922 0.19272
legoCam night 0.40923 0.10897 0.25289 0.03644 0.01933 0.03726 0.10269 0.06185 0.19715
Mean 0.41691 0.31255 0.43698 0.06805 0.09576 0.19302 0.08341 0.05307 0.17863

L = λ×MSE + LPIPS + (1− SSIM) (3)

For training our model, we adopted the one cycle learn-
ing rate scheduling policy [29], with a learning rate of
LR = 1 × 10−3 and a batch size of 2. Each sequence in
the training data consists of 25 samples, and we trained the
model for 200 epochs with adamW [19].

4. Results

4.1. Evaluation procedure

To validate our experiments, we used the same test set
as FireNet+ and E2VID+, which utilized an event camera
with a resolution of 240 × 180. Additionally, we created
a small test set with an event camera with a resolution of
720×1280. This additional dataset was included to explore
image reconstruction at higher resolutions. The dataset was
recorded with a beam splitter. We used the Prophesee Gen
4.0 HD camera event and a global shutter camera at 30
FPS. We transformed the images taken with the global shut-
ter camera to the event camera dimension. A microcon-

troller synchronized the frames of both cameras, recording
the timestamps.

For event grouping (sampling), we use the method of
constant number of events. The number of events used is
equal to 1% of the spatial resolution of the event camera
W ×H × 0.01, where H is the height and W is the width.

To maintain consistency in the measurement of all
models, we use custom metrics, with which we evaluate
E2VID+, FireNet+ and our Sparse-E2VID model. The im-
age quality metrics used in our evaluation are SSIM, MSE,
and LPIPS. The SSIM is calculated by (1-SSIM), so we
have an index where a lower value indicates a better image
quality.

For the LPIPS, we used a custom function with the
VGG16 model that included five layers and their respec-
tive weights; [ 1

32 ,
1
16 ,

1
8 ,

1
4 , 1]. In addition, we assessed the

inference speed and computational cost (in terms of aver-
age FLOPs) of the models. All tests were conducted on an
i7-7700HQ laptop with an Nvidia GTX 1060 MAX-Q fea-
turing 6 GB of video memory (VRAM).

To compute the temporal consistency error, we need to
calculate the optical flow between two consecutive ground
truth frames; Ik and Ik−1. We use RAFT [31] to obtain the
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Figure 2. Qualitative results in different light conditions (from left to right), day, sunset and night. We can notice that Sparse-E2VID
contains almost no noise and controls the dynamic range better.

Table 3. Models profile at different resolutions, lower is better.

Models
E2VID+ Sparse-E2VID FireNet+

Num parametres 10710467 25578 37777
MFLOPs 720x1280 837237.658 1822.9 69423.206
MFLOPs 180x240 40117.638 85.444 3254.212
inference time 180x240 18.972 ms 9.045 ms 5.242 ms
inference time 720x1280 357.862 ms 53.811 ms 90.275 ms
Memory 720x1280 4.8GB 0.9 GB 3.0GB
Memory 180x240 0.54GB 0.55GB 0.52GB

backward optical flow map F k
k−1 = Ik ⇒ Ik−1. Then, we

use the warping function W (·) to calculate the past ground
truth image Ikk−1 and the past predicted image Îkk−1. One
thing we need to mention is, we need the past ground truth
image Ikk−1 to obtain the mask Mk. Then, the temporal
consistency is obtained by comparing the original past pre-
dicted image Îk−1 and the calculated past predicted image
Îkk−1, as shown in equation 4, where α = 50 and ϵ = 1e−6.

Ikk−1 = W (Ik, F k
k−1)

Îkk−1 = W (Îk, F k
k−1)

Mk = exp(−α× (Ik−1 − Ikk−1)
2)

Ltc
k =

Mk ×
∣∣∣Îk−1 − Îkk−1

∣∣∣∣∣∣Îk−1

∣∣∣+ ∣∣∣Îkk−1

∣∣∣+ ϵ

(4)

4.2. Results and discussion

Table 1 demonstrates that, our model, Sparse-E2VID has
better results than FireNet+. One thing we want to point
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a) Sparse-E2VID variant: Predicts an image directly b) Original Sparse-E2VID: Predicts an image by the gradient

Figure 3. This figure shows the difference between the original Spade-E2VID and a variant of it. The variant has the same architecture as
the original Spade-E2VID, but it skips the gradient and directly reconstructs images from events. As we can see, the original Spade-E2VID
generates better quality images than the variant.
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Figure 4. Sparsity vs. Inference Time: Sparse-E2VID has a dy-
namic inference time that decreases or increases according to the
number of events, unlike FireNet or other types of architectures
that have a static inference time.
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Figure 5. Time consistency in our dataset with 5 sequences in HD
resolution. The temporal consistency of Sparse-E2VID is better
than FireNet+ and E2VID+, lower is better.

out is that this is achieved with a smaller number of pa-
rameters. This is posible, because Sparse-E2VID predicts
the gradient of the image, making it easier for the model
to perform image reconstruction. According to the event
generation model −∇L · v∆t ≈ ∆L, were the v∆t is the
optical flow in a delta time, the image gradient ∇L has a
more direct relationship with the event data ∆L. Fugure 3
shows an example of the difference between two variants of
Sparse-E2VID. Figure 3 a) shows an image reconstructed

by a variant that directly reconstructs images from events
without passing through the gradient. Figure 3 b) shows
an image predicted by the original Sparse-E2VID model,
which has better quality.

At higher resolutions (720 × 1280), Sparse-E2VID is
comparable to E2VID+ and it is superiority to FireNet+,
as it is presented in Table 2. It is noteworthy that Sparse-
E2VID can reconstruct images with minimal noise, as seen
in Figure 2. However, it should be noted that the noise re-
duction is specific to a certain event camera (the one from
which the noise was sampled). If we use a different event
camera data to reconstruct images, the video may have some
noise (minimal). We can reduce the noise by collecting
more noise data from various event cameras.

One thing to note is that Sparse-E2VID has a signifi-
cantly lower computational cost than FireNet+, with only
2% of the cost, as Table 3 shows. While the computational
cost varies with the sparse index, the highest computational
cost is found in the module that performs the dense convo-
lution. The ConvGRU module has a computational cost of
MFLOPs = 1794 at a resolution of 720 x 1280. Therefore,
we can consider the computational cost as constant.

Another important aspect is the speed of inference. Al-
though Sparse-E2VID is slower than FireNet+ at lower res-
olutions due to the additional step of numerical integration,
which takes 5 ms, the impact of this step is less significant at
higher resolutions (720×1280). As a result, Sparse-E2VID
is 30% to 40% faster than FireNet+. This difference in in-
ference speed is due to the dynamic variation in the number
of events in the spatial dimension of event cameras (spar-
sity).

In Figure 4, we can observe the inference time of Sparse-
E2VID and FireNet. Sparse-E2VID has a dynamic infer-
ence time that is directly related to the sparsity index. An
event camera typically has an average sparsity of 90%, re-
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sulting in an average inference time of 55ms for our model.
In low motion or night scenarios, we can achieve up to 99%
sparsity, resulting in a faster inference time of 45ms. It is
worth noting that the sparse rate of an event camera never
drops below 80% in normal situations. Therefore, in the
worst-case scenario, our model reaches an inference time
of 70ms, which is 22% faster than FireNet.

Due to the utilization of the M2O training scheme, we
did not to use the time consistency loss function. Despite
this, our model is not plagued by flickering or jittering, as
evident in Figure 5. Notably, Sparse-E2VID refrains from
performing normalization on the input data. As highlighted
in SPADE-E2VID [4], the act of normalization can impair
temporal consistency. This is due to the fact that during
the normalization of the data input, the consistency between
frames can be compromised.

5. Conclusion
Our architecture, Sparse-E2VID, offers a significant re-

duction in the computational cost for event-based video re-
construction. Our model’s computational cost is only 2% of
that of the FireNet architecture, and it also reduces the infer-
ence time by an average of 30%. This was achieved through
the use of sparse convolution in the architecture design. Ad-
ditionally, Sparse-E2VID is effective at reducing noise due
to its training with real noise from an event camera.

We hope that the inclusion of real noise in the training se-
quences and our architecture will inspire new research, not
only in event-based image reconstruction but also in other
applications.
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