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Abstract

We present M3ED, the first multi-sensor event camera
dataset focused on high-speed dynamic motions in robotics
applications. M3ED provides high-quality synchronized
and labeled data from multiple platforms, including ground
vehicles, legged robots, and aerial robots, operating in
challenging conditions such as driving along off-road trails,
navigating through dense forests, and performing aggres-
sive flight maneuvers. Our dataset also covers demand-
ing operational scenarios for event cameras, such as scenes
with high egomotion and multiple independently moving ob-
jects. The sensor suite used to collect M3ED includes high-
resolution stereo event cameras (1280×720), grayscale im-
agers, an RGB imager, a high-quality IMU, a 64-beam Li-
DAR, and RTK localization. This dataset aims to accelerate
the development of event-based algorithms and methods for
edge cases encountered by autonomous systems in dynamic
environments.

The dataset can be found at https://m3ed.io and
the code used to pre-process the data is available at https:
//github.com/daniilidis-group/m3ed.

1. Introduction
Mobile robotics has increasingly moved towards ap-

plications beyond the smooth streets of Karlsruhe, where
the pioneering KITTI [11] dataset was obtained. Next-
generation robotics perception systems must be able to han-
dle increasingly difficult tasks such as autonomous navi-
gation in rough terrain, aggressive fast motions, and large
amounts of mechanical vibration. Event cameras are par-
ticularly well suited for these operational scenarios, since
they can react and respond with low latencies and high dy-
namic range [7]. In recent years, event cameras have under-
gone a dramatic evolution, increasing their resolution and
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Figure 1. Overview of the methods and results for M3ED: Top
left: our modular sensor stack design incorporating all the sen-
sors in a compact package. Top right: Sensor stack on Boston
Dynamic Spot robot, one of our three platforms. Middle: Depth
estimated using the LiDAR for one of the car sequences. Bottom:
Corresponding framed events from Prophesee EVKv4 sensors and
grayscale stereo pair.
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Dataset Platform Terrain Event Cameras LiDAR CIS Cameras Semantic Labels
The Event Camera Slider Urban Inivation DVS 240C N/A DVS APS Pixel N/A

Dataset [19] Hand Held Indoor 240x180 240x180 Grayscale
MVSEC [29] Car + Motorcycle Urban Inivation DVS 346 Velodyne VLP-16 Vi-Sensor N/A

Quadrotor Indoor Flight 346x260 752x480 Grayscale
KITTI 360 [15] Car Urban N/A Velodyne HDL-64E YES 37 Classes

DSEC [9] Car Urban and Suburban Prophesee Gen 3 Velodyne VLP-16 FLIR Backfly S 11 Classes
640x480 1440x1080 RGB

VECtor [8] Helmet + Cart Indoor Prophesee Gen 3 Ouster OS0-128 FLIR Grasshopper3 N/A
640x480 1224 × 1024 Grayscale

TUM-VIE [14] Helmet + handheld Indoor and Outdoor Prophesee Gen 4 N/A IDS Camera uEye N/A
1280x720 1224 × 1024 Grayscale

Car Forest and Urban OVC 3b
M3ED Quadroped Forest and Urban Prophesee Gen 4 Ouster OS1-64U 1280x800 11 Classes

UAV Forest and Urban 1280x720 RGB + Grayscale 3D Instances

Table 1. Comparison of perception datasets acquired with event cameras, CIS cameras and LiDARs, for robotics and automotive applica-
tions. M3ED is the only dataset that provides indoor and outdoor sequences using high-resolution stereo event cameras, in heterogeneous
robotics platforms.

throughput, making them more attractive compared to con-
ventional CMOS-based image sensors (CISs). However, the
widespread adoption of event cameras in robotics is still in
its infancy. Event cameras are affected by rapid vibrations
and egomotion, which generate a large volume of events,
resulting in energy-intensive computation. Furthermore,
low-latency segmentation of independently moving objects
(IMOs) remains a challenging task for event cameras [5].
We propose an integrated dataset to evaluate event-based
algorithms for real-world robotics applications using high-
definition (HD) event cameras. Our dataset includes data
from a variety of robot platforms:

• A legged robot walking on paved and dirt paths.

• An unmanned Aerial Vehicle (UAV) flying in urban
and rural environments, including GPS-denied envi-
ronments such as under forest canopies.

• A wheeled ground vehicle driving in urban and off-
road environments.

Our sensor stack on a legged robot is shown in Fig. 1 along
with example data from one of the car sequences. Com-
pared to other publicly available datasets, M3ED’s contri-
butions and novelty include:

• The first dataset that includes data from high-
resolution event cameras mounted on heterogeneous
robotic platforms.

• Semantic labeling in unstructured, dynamic environ-
ments (off-road, under forest canopies), including Li-
DAR point clouds, images, and events.

• Ground truth pose, depth, and flow.

In this work, we describe the methods and implementa-
tions used for collecting the data, the different platforms and
sequences collected, and the future research that this dataset
enables.

2. Related Work

Event camera datasets have flourished over the last
decade, lowering the barrier of entry for algorithm develop-
ment. MVSEC [29] pioneered the multi-sensor real-world
event camera dataset, providing three primary flight and
driving sequences, including night sequences. Ground truth
depth was provided by LiDAR, and ground truth pose was
derived from a combination of GPS and motion capture data
(where applicable).

Other event-based datasets focus on automotive appli-
cations: ATIS Automotive dataset [4], N-Cars [24], and 1
MP Detection [20] are event-native datasets with car and
pedestrian labels directly on the event sensor. DDD17 [2]
and DDD20 [12] recorded car motion information (from the
CAN bus) synchronized with event camera streams. Re-
cently, DSEC [9] introduced a KITTI-like dataset provid-
ing ground-truth pose and depth with corresponding events.
DSEC has been extended for flow [10] and semantics [25].

Beyond automotive applications, event camera datasets
have also been published for robotic applications. EvIMO
[18] and EvIMO2 [3] study independently moving objects
through a combination of high-quality object scans, motion
capture, and event-based cameras. These datasets focus on
the quality of individual examples with variations in motion.
TUM-VIE [14] and VECtor [8] each provide head-mounted
ego-centric motion as well as smooth pole-mounted trajec-
tories inside a fixed indoor environment.

Our work aims to provide data sequences for both au-
tomotive and robotic applications, with novel platforms
such as legged robots, and challenging conditions such as
forests and off-road driving. Compared to other datasets in
the literature, M3ED provides similar hardware configura-
tions on different platforms, allowing a direct comparison
of algorithm performance. Furthermore, our dataset targets
heterogeneous conditions beyond driving in urban environ-
ments and indoors. Finally, we release all the raw data.
A summary of the differences between our work and the
literature is shown in Table 1.
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Sensor Type Description
OVC 3b 2x 1280x800 Grayscale

AR0144 1/4”
12 cm baseline
FoV: 61° × 40°

1x 1280x800 RGB
AR0144 1/4”
FoV: 52° × 34°

1x VectorNav
VN100T-SMD

2x Prophesee EVKv4 Prophesee IMX636
1280x720 1/2.5” sensor
FoV: 63° × 38°

Ouster OS1-64U 64 vertical channels
2048 horizontal points
120 m range
45°vertical FoV

UBlox ZED-F9P GPS Reciever
5Hz update
NTRIP RTK Corrections

Table 2. Sensor stack hardware details. All imagers have simi-
lar resolution, field of view, and baseline. RTK accuracy changes
greatly depending on environmental conditions.

3. Methods
3.1. Hardware Overview

The individual specifications of each sensor are provided
in Table 2. The Open Vision Computer 3b (OVC) [22]
provides high-quality hardware-synchronized global shutter
stereo images in grayscale, a single RGB image stream, and
high-quality IMU measurements. The OVC orchestrates the
system and provides synchronization signals to the other
sensors. We chose the Prophesee EVKv4 as our main event
camera sensors, due to its high resolution (1280× 720) and
small pixel pitch (4.86µm). The event cameras are placed
at an equivalent baseline and a similar field of view to the
OVC imagers to provide relevant comparisons for VIO ap-
plications. The Ouster OS1-64 provides high-resolution Li-
DAR for accurate mapping on all platforms. An RTK-GPS
module provides RTK GPS when available. Corrections are
provided in two manners: an NTRIP Server from a stati-
cally calibrated base station when internet is available (ur-
ban car and quadruped), or a mobile base station using the
U-Blox PointPerfect service, transmitting corrections with
a 915 MHz telemetry radio. Finally, all raw data is collected
onboard a NUC 10i7FNB.

3.2. Bias and Event Rate Controller

The IMX636ES sensor has a built-in event rate controller
(ERC) to limit the number of events received. We evalu-
ated the effectiveness of the ERC and experimentally found

that the overall quality of the events was reduced. This ulti-
mately led to the removal of the ERC at the expense of more
captured events.

The high data rate can cause issues within the data stream
itself. The data path was optimized to avoid unneces-
sary compute and memory copies. The following opti-
mizations were used: we recorded raw EVT3 packets from
Metavision, utilize a single ROS nodelet process for both
event cameras, and record the ROS bag itself from within
the nodelet process. We confirmed the integrity of the
data stream through analysis of the synchronization signals
through the camera. The observed error in these signals
is approximately 1 microsecond per second, which is well
within tolerance of the clocks involved.

Bias tuning provides a way of decreasing the noise
events depending on the signal-to-noise ratio (SNR) of the
scene. However, we experimentally observed that the num-
ber of events in static scenes were greatly modified, even for
small changes in the bias. As our goal is to provide com-
parable data across all sequences, we decided to keep the
same bias across all sequences.

3.3. Calibration

Event Cameras Calibration of event cameras was
achieved by reconstructing images and calibrating through
Kalibr [6]. The image reconstruction was done through
the simple image recon library that is based off the
methods described in Frequency Cam [21]. This provides
a network-free method for generating images from events
that are accurate enough for AprilTag detection.

Lidar Lidar was calibrated by initializing from CAD and
refining the rotation for each sequence through geometric
alignment of the stereo camera pair.

4. Sequences

The sequences recorded highlight particular challenges
for event cameras, such as large egomotion, low light con-
ditions, and noisy environments. Moreover, we targeted
scenarios where traditional CIS imagers fail, such as under-
canopy in forests or a fast transition from brightness to dark-
ness [7]. For each environment, we provide varying levels
of difficulty and lengths. Table 3 provides an overview of
the distribution of the sequence types. The remainder of this
section provides an insight into why each of the locations
was chosen.

4.1. Car Driving

Urban Driving loops were chosen that ranged from
dense urban driving to access-controlled parking lots. For
instance, urban parking, are easy sequences, where there
are no dynamic objects within the scenes, we have con-
stant RTK, and the driving speed is limited. In contrast,
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Figure 2. Example data for the spot outdoor steps sequence show-
ing events with accompanying grayscale and depth.

Figure 3. Event cameras for robotic vision face challenges in the
number of events that need to be processed. Two leading factors
are high motion and high texture. Both of these are exemplified
within the spot forest sequences. Left: The average rate during
motion is 100 MEPS. Center: Spikes up to 200 MEPS can be seen
during rotations of the robot. Right: a portion of the sequence fac-
ing up towards the sky, reducing the texture and thus the number
of events.

urban city hall and urban rittenhouse provide dynamic and
highly congested urban scenes of Center City Philadelphia,
with traffic and pedestrians, and opportunistic RTK. These
sequences were recorded during both day and night condi-
tions, providing contrasting lighting conditions for the same
scenes. urban schuykill tunnel provides a highway tunnel

Vehicle Environment Total Sequences (test) Time (s)
Car Urban 14 (3) 6342

Forest 3 (1) 485
Urban 8 (2) 929

UAV Indoor 3 (1) 171
Forest 9 (2) 1587
Urban 11 (2) 1668

Spot Indoor 3 (1) 287
Forest 6 (1) 768

Table 3. Total sequences for the dataset. 25% of the sequences
will be used as test data. For car urban, we provide day and night
sequences. Overall, M3ED provides approximately 3TB of usable
data.

with entrance and exit during the contiguous sequence.
Forest These sequences were recorded at the

Wharton State Forest, New Jersey. For example, for-
est turnpike into ponds showcases challenging under-
canopy images, mud ponds, and dirt roads. forest sand
offers an unstable road where the car drifts.

4.2. Legged Robot

This platform is comparatively new within robotics
datasets. Legged robots have matured in the past several
years and the challenges with perception are starting to
emerge. In particular, we see periodic oscillations due to
the gait of the robot and sudden jerks when the feet impacts
the ground.

Urban The outdoor parking sequences were recorded in
an access-controlled parking lot. The outdoor skate, out-
door steps, and outdoor under bridge sequences show Spot
in an open environment with a large number of pedestrians
and cyclists (Fig. 2) . These scenes offer a balanced combi-
nation of egomotion with a significant number of IMOs.

Indoor The indoor obstacles sequence was recorded at
an indoor testing locations for robots. We were able to test
Spot’s stair locomotion mode, as well as gaits on paved
roads. These scenes have few independent moving objects,
but particularly high egomotion due to the legged robot gait.

Forest The forest sequences have few IMOs but high-
texture scenes. These scenes are particularly challenging
for algorithms that exploit the sparsity of events to re-
duce computation [23], as the event count can average 100
MegaEvents per second (MEPS), as shown by Fig. 3.

4.3. UAV

Urban Outdoor flights in a Parking lot, in the out-
door parking sequences, provide a good benchmark for
event camera applications in UAVs. There is good RTK
coverage, the environment is structured, and the amount of
texture and IMOs is low. We provide slow and fast flights
in this environment.
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Forest Fast autonomous flights in forests have recently
attracted more attention in the robotics community, due
to the challenges of these cluttered environments [17, 28].
Vision-based perception is particularly difficult due to the
high dynamic range required [16]. The forest sequences
offer opportunities for the development of perception algo-
rithms with event cameras for UAVs in the wild.

5. Dataset Applications
We expect that M3ED will become a new standard for

evaluating applications and algorithms of event cameras,
such as optical flow estimation, IMO segmentation, and dis-
parity estimation. Approximately 25% of the data will be
used for test purposes, and we expect to provide metrics for
optical flow, IMO segmentation, disparity estimations, ego-
motion estimation, and semantics in future works.

5.1. Depth and Pose

FasterLIO [1] provides poses and velocity-corrected Li-
DAR frames for every sweep of the LiDAR.

Ground truth depth is generated through the projection of
accumulated velocity-corrected LiDAR frames provided by
FasterLIO. At HD resolutions, the sparseness of the point
cloud can be observed when the non-visible portions of the
scene show through the projection. This is mitigated by
running the hidden point removal (HPR) operator [13] of
the point cloud from every viewpoint along the trajectory
that is sampled.

Ground-truth pose is also obtained using FasterLIO. This
approach enables ground-truth pose for all the scenes with a
unified approach, including those scenes where GPS is not
available (such as indoors or under-canopy in forests). For
our longest sequence between re-observation of a location
(800 meters in length), we observed a 2 meter drift over this
distance.

5.2. Semantics

The semantics ground truth encompasses 11 categories
consistent with the DSEC Semantics extension by Sun et
al. [26]. This work utilizes InternImage [27] to generate
dense 2D semantic labels. These 11 categories are back-
ground, building, fence, person, pole, road, sidewalk, vege-
tation, car, wall, and traffic sign. An example overlaid frame
can be seen in Figure 4. In addition to the 2D semantic la-
bels, we provide 3D instance labels for pedestrians, build-
ings, cars, and trees. The 3D instance labels are generated
using the Segments.ai platform by labeling cuboids for ev-
ery frame. These IDs are consistent throughout the individ-
ual sequences.

5.3. Optical Flow

As an example of current tasks for which M3ED could
be used, we give the example of optical flow estimation.

Figure 4. Top: Scene-wide static object instance identification for
the car urban parking data sequence. Bottom: 2D semantic mask
generated from InternImage.

Event cameras are naturally suited for optical flow estima-
tion because motion is naturally encoded within the event
stream [7]. We evaluated our dataset on the current state-
of-the-art optical flow for event cameras, E-RAFT [10]. In
Table 4, we show the performance of E-RAFT on selected
sequences of our dataset. We use the flow evaluation met-
rics described in DSEC [9] NPE: the percentage of ground-
truth pixels with optical flow magnitude error > N. EPE:
The average L2-Norm of the optical flow error. AE: Angu-
lar error (degrees).

E-RAFT demonstrated state-of-the-art performance on
the DSEC [9] dataset. We used the provided network
weights pre-trained on DSEC. We show an example of the
flow results of E-RAFT in Fig. 5. To account for the fact that
the network has only seen low-resolution events, we also re-
size the event volumes to 640×480 and then rescale the out-
put flow to 1280×720, marked as E-RAFT. We run the eval-
uation at the same 10Hz that the network has been trained
with. In our experiment, the rapid turns in the sequences
cause the network to output erroneous optical flow. This
further suggests that a highly dynamic dataset is needed to
allow for the further development of event-based perception
algorithms.

We would anticipate that the 3D instance labels can be
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Figure 5. Example flow prediction on the car urban parking se-
quence using E-RAFT (color represents direction). The high-
resolution events allow rich details to appear in the flow results.
Color denotes the direction of the flow at each pixel. Best viewed
in color.

Method EPE 1EP 2EP 3EP AE
E-RAFT (pre-trained) 5.848 0.934 0.803 0.672 22.886

Table 4. Optical flow performance of E-RAFT [10] on
car urban parking sequence. E-RAFT runs inference on event
volumes resized to 640 × 480 and the flow is scaled back to full
resolution.

used to identify IMOs within the scene and act as a mask
for future works.

6. Conclusions

6.1. Contributions

This paper described M3ED, a state-of-the-art event-
camera dataset generated with heterogeneous sensors. Our
goal is that M3ED will allow researchers to better general-
ize beyond driving or indoor applications, by providing data
in challenging conditions that were not explored by other
datasets previously.

M3ED also allows the exploration of sensor fusion algo-
rithms in which multiple sensor systems are used to achieve
higher levels of robustness. The entire raw training data
will be available for download to allow development at any
level, as well as the automatic data processing pipeline to
generate the output files.

Calibration sequences for camera-to-LiDAR, camera in-
trinsics and extrinsics, and camera-to-IMU will also be
made available to researchers interested in addressing these
specific issues.

Overall, we hope that M3ED will become a new standard
for event-camera datasets in robotics.

6.2. Limitations

The OVC3b was designed to go on smaller robotic plat-
forms that have size constraints with a baseline of 12 cm.

This is a good match for the quadrotor and legged plat-
form, but limits some applications on the driving sequences.
Compared to DSEC, the single frame depth estimates will
not be as good for this specific scenario.

The lidar and camera field of view overlap only on the
top half of the image on the UAV. This limits the usefulness
of the lidar for instantaneous understanding of the whole
frame. However, the static scenes can still be observed
through the generated map. Additionally, the visual sen-
sors are soft mounted relative to the lidar itself and thus the
transformation between the lidar and the cameras may shift
slightly during sequences (the OVC and the event cameras
are rigidly attached). Soft mounting was performed to re-
duce vibrations on the cameras and IMU.

6.3. Data Availability and Data Content

The data will be fully open and available under Creative
Commons Attribution-ShareAlike 4.0 International.

We provide time-synchronized HDF5 files for the differ-
ent sensors of the stack, and simple code snippets to access
and process the data. We also provide pre-computed indices
to access the closest event timestamp for other sensors.

We also provide HDF5 files with the output of precom-
puted algorithms used to complement this dataset. For
example, as mentioned in Sec. 5.1, provides depth and
ground-truth pose. 3D semantic instances Sec. 5.2 obtained
through segments.ai are also provided.

Finally, we provide pre-computed extrinsics for all the
sensors, as well as intrinsics for the cameras.
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