This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

HUGNet: Hemi-Spherical Update Graph Neural Network
applied to low-latency event-based optical flow

Thomas Dalgaty' * Thomas Mesquida'! Damien Joubert?> ¥ Amos Sironi’> Pascal Vivet'! Christoph Posch?

! Université Grenoble-Alpes, CEA-List, Grenoble, France, 2 Prophesee, Paris, France

thomas.dalgaty@cea.fr thomas.mesquidalcea.fr cposch@prophesee.ai

Abstract

Event camera pixels asynchronously output binary
events corresponding to local light intensity changes in
time. While encoding visual information in this fashion
increases sparsity and the temporal detail of motion with
respect to frame-based cameras, there is not yet an es-
tablished machine learning method capable of exploiting
these features to increase efficiency, reduce latency and,
ultimately, perform optimally in event-based tasks. Graph
neural networks are a promising avenue for such a method,
but current solutions are too slow to be compatible with the
continuous streaming nature of event-data. In this study, we
propose a hemi-spherical update event-graph neural net-
work that significantly reduces the complexity and latency
of graph updating and event-level prediction. We compare
our approach to existing graph neural network methods, as
well as to dense-frame convolutional neural networks, on
optical flow estimation tasks. Relative to the previous state
of the art in event-graphs, we reduce event-graph update la-
tency by more than four orders of magnitude and reduce the
number of neural network calculations per second by 70X
while predicting optical flow more accurately.

1. Introduction

From initial work where the analogue properties of tran-
sistors were used to mimic the early-stages of the mam-
malian visual system [6,22,26,34], we now have at our dis-
posal industrial event-cameras [1 1,29, 33,39]. In contrast
to conventional frame-based cameras, where pixels periodi-
cally integrate photon-generated charges to record absolute
light intensity, event-camera pixels asynchronously gener-
ate binary flags, referred to as events, upon the detection
of relative light intensity changes (i.e., temporal contrast).

*Corresponding author

fContact djoubert @prophesee. ai for access to Rock Scenes
This work is partly funded thanks to the French national program “Pro-
gramme d’Investissements d’ Avenir, IRT Nanoelec” ANR-10-AIRT-05.

This approach to artificial vision is seductive for a vari-
ety of reasons. Notably, due to logarithmic transimpedance
sensing [22], event-pixels are able to detect light intensity
change over a large dynamic range which makes them ef-
fectively agnostic to absolute scene illumination. Further-
more, event-cameras capture a fine spatiotemporal structure
of motion at a scale of microseconds, preserving dynamics
that are otherwise lost between frames, and which may be
of importance for tasks such as predicting optical flow (i.e.,
the apparent, relative motion of objects within a scene) [38].

While convolutional neural networks [19], and more re-
cently, vision transformers [8], offer an excellent means of
solving computer vision tasks based on frames, they are
not naturally compatible with event-data. In order to treat
event-data using such models, events must be integrated
into so-called dense-frames [13, 20, 23, 25, 31, 46] by, for
example, counting the number of events generated per pixel
within a given time window. Despite discarding the pre-
cise temporal structure of motion, this approach has been
remarkably successful on available benchmark tasks - al-
though which, arguably, often put a greater emphasis on
spatial information than temporal patterns.

Recently, graph neural networks (GNNs) [10, 18] have
been proposed as an elegant means of processing event-
camera data. Events in a 3D-pointcloud (defined by an
XY pixel coordinate and a timestamp) are connected to
neighbouring events within an ellipsoidal volume (a warped
sphere) via edges to build a graph. We use the terms event-
graph and event-graph neural network to refer to this data
structure and the model applied to it. Early work has shown
that event-graph neural networks are able to match, or even
outperform, dense-frame convolutional models on classi-
fication [5], segmentation [28] and detection [37] tasks.
Furthermore, because GNN computation is proportional to
the number of events, the total amount of multiply-and-
accumulate (MAC) operations required to solve these tasks
was observed to be orders of magnitude lower than that re-
quired by dense-frame CNNs. CNNs do no not naturally
exploit event-data sparsity - a dense frame with many zero
pixels requires the same computation as a less sparse frame.

3953

Previous event-graph works however have not reported
on the additional computational burden inherent to the in-
corporation of new events into a continuously evolving
event-graph, where events may connect to previously gener-
ated and future events. The resulting high per-event latency
required to update the event-graph and to output a predic-
tion makes existing approaches poorly adapted for many ap-
plications where event cameras are well suited (i.e., embed-
ded and edge AI). In this paper, we solve these problems
by introducing HUGNet - en event-graph neural network
method which uses only the information instantaneously
available in a hemi-spherical volume of past events to create
a tiny sub-graph for each newly generated event. We com-
pare HUGNet to fully-spherical event-graph approaches
and to dense-frame convolutional neural networks on op-
tical flow estimation tasks. Compared to the previous state-
of-the-art event-graphs, we observe a remarkable four order
of magnitude reduction in event-graph update latency and
eliminate event-level prediction latency altogether, while
predicting optical flow more accurately. We also reduce the
number of multiply-and-accumulate operations per second
by 70x. Furthermore, we obtain favourable results relative
to dense-frame convolutional approaches with significantly
fewer MAC operations. The specific contributions of this
work are as follows:

* We restrict event-graphs nodes to form directed edges
(past to future) to past events only which drastically
reduces event-graph update latency and the number of
MAC operations per second.

¢ We demonstrate for the first time the effectiveness of
graph neural networks for event-based optical flow
prediction.

* We introduce a lightweight synthetic dataset for opti-
cal flow and motion segmentation called Rock scenes.
The dataset features a very high rate of ground truth
labelling and challenging fast direction changes which
are not readily available in existing datasets. Rock
Scenes will be shared upon request.

2. Related Work

Hand-crafted event-camera algorithms : Under cer-
tain assumptions, mathematical models can be developed
that solve some computer vision tasks using event-camera
data. For instance, previous works introduced optical-
flow estimation based on local partial derivatives of event-
surfaces [4], tracking via probabilistic filtering [!7] and
depth estimation using relative timing differences from a
pair of event cameras [35]. Such approaches often do not
generalise well to real-world settings [46].

Dense-frame convolutional networks : Convolutional
neural networks are not adapted to deal with event-based

data. In order to render them compatible with what are ef-
fectively 3D-pointclouds, events within temporal slices are
integrated into a sequence of 2D dense frames [13, 20, 23,

,46]. Dense-frame CNNs have been applied to dense op-
tical flow prediction in this fashion [14,46]. While these
approaches allow the use of existing CNN architectures and
optimised hardware implementations, the fine spatiotempo-
ral detail captured by event cameras is effectively discarded.
While in many tasks (i.e., object detection and classifica-
tion) the spatial information alone may be sufficient to solve
a task well, others such as optical flow prediction may be
negatively impacted. Dense-frame CNNs also do not read-
ily leverage the inherent sparsity of event-data to reduce
computational requirements. Although techniques such as
sub-manifold sparse convolutions [5] have been applied to
event-data [27], their additional computational and memory
requirements are not yet clear.

Spiking neural networks : Spiking models [21,32,43]
are similar in conception to recurrent neural networks, but
instead neurons are modelled using a step function that rec-
tifies the state of a leaky-integrator model - generating an
output spike. After a spike, neurons typically undergo a re-
fractory period in which its input is reset to zero and it does
not integrate input spikes from other neurons for a limited
time. Training SNNGs, typically using surrogate-gradient ap-
proximations and backpropagation through-time [42], can
be time-consuming since this dynamical system must be
modelled laboriously over a series of fine-grain timesteps.
SNNs have been applied to optical flow estimation by in-
corporating spiking neuron models into the UNet architec-
tures [16,20].

Event-graph neural networks : Graph neural networks
(GNNs) have recently been applied to event-camera data,
as well as other event datasets [3], by building graphs from
3D-pointclouds. Layers of graph convolutions [18] are then
applied in order to find useful embeddings for events for use
in a downstream task. Furthermore, the fine spatiotemporal
structure of the event-data can be stored, and leveraged, in
the graph edges. Event-graphs are typically constructed by
performing a K-nearest neighbour search around each point
and connecting the nearest events through edges. Edges can
be binary flags [28] or they can contain vectors describing,
for example, local spatiotemporal differences [5,37].

Despite promising early results [5,28,37], their suitabil-
ity for processing a continuous stream of events has not
yet been fully considered. Current methods build graphs
using edges to past and to future events - i.e., a fully-
spherical search radius (Fig.1(a)). This has two major draw-
backs. First, event-level predictions cannot be made instan-
taneously. A newly arrived event may be updated by an
event arriving within a time equal to the search radius mul-
tiplied by the number of graph layers. For example, for
five layers and a temporal search radius of 20ms, an event

3954

4 o A :
S edgfgs O<—>: S I !
:8, k-hop subgraph : ", | :g event<—>s
7] k=3 k=2 e 1 r r
NG O « s
o3
O 1 ev
k=4 X .
I .
‘ S ‘edges
O i O - | edg
. I
search volume O : > search volume : R
Time t=0s Time t=0s
(a) (b)

Figure 1. Event-graph update strategies. (a) The fully-spherical event-graph update [5,

]. Events (black and grey circles) exist in a two

dimensional space of XY position and time. A generated event, ev;, makes edges (red arrows) to other events which are within its search
volume (red circle) that has a radius 7; in the temporal axis and 7, in the spatial axis. For one of these connected events, a subset of the
events present in its k-hop sub-graph are shown. The number of hops, K, is annotated for each edge (grey arrows) - note that some events
(top left) may appear at different numbers of K-hops. (b) Hemi-spherical event-graph update. Events and edges are drawn as in part (a).
The search volume corresponds to the red-shaded half-ellipsoid within which past-events form edges (red single-sided arrows) to the event
ev; generated at time ¢ = 0. The temporal radius of this half-ellipsoid is equal to r;. Since edges are directed from past to future, we do
not need to re-calculate the node embeddings for events in the vicinity and k-hop search is not computed.

may be impacted by future events arriving within 100ms.
Secondly, the node embeddings of all previously arrived
events within this same temporal window are subject to
change [37] and, after incorporating a new event, graph con-
volutions must be re-applied. This must be done each time
an event arrives and is particularly problematic for high-
resolution event cameras where event-rates can be on the
order of millions of events per second [1].

Event-based optical flow : We evaluate HUGNet using
the case study of event-based optical flow. Intuitively, it is
a task which should be reliant on the fine temporal infor-
mation captured by event cameras and for which the event-
by-event prediction capabilities of graph neural networks
may be highly desirable. While many event-based optical
flow processing approaches based on the supervised and
self-supervised training of convolutional and spiking neural
networks have already been proposed [7, 12, 14, 16,20, 23,

,38,46,47], no previous work has studied the application
of event-graph neural networks to optical flow estimation.

3. Method

In this study we propose that, in order to simplify the
continuous updating of event-graphs, and eliminate event-
level prediction latency, event-graphs should be updated us-
ing a hemi-spherical search volume where directed (past to
future) graph edges are formed only from past events to a
newly generated events (Fig.1(b)).

In previous work [5, 37], each event in an event-graph
is connected not only to past events, but also to events that
will arrive in the future. The required steps for such an algo-
rithm are denoted in the pseudo-code of Algorithm.1. For

a newly generated event ev;, at time t;, the first step is to
find the subset of EV = {z,y,t} € R3 within the radii
r¢ and 74, (in respective temporal and spatial dimensions)
of ev; using a function B(). For each of the M events con-
cerned, a K-nearest neighbour search function, knn(), must
be performed. This defines what edges, &,,, are formed be-
tween the existing events and ev; as well as updating the
edge configurations of existing events in the case where ev;
becomes one of their own K-nearest neighbours. The dis-
tance r; is typically on the order of tens of milliseconds
whilst 75, can be a small number of pixels (here between 6
and 9). The nodes, E'V, and edges, £, of the event-graph,
G, are then updated using a function 7r() which takes as in-
put the previous graph state, the new event ev;, and the new
and re-calculated edges &,,, and returns an updated event-
graph. Next, the effect of the new event, ev;, on the ex-
isting event-graph node embeddings must be evaluated for
all L event-graph neural network layers. To avoid updating
the node embeddings of the entire event-graph, a recursive
k-hop graph search function hop() can be used to find the
sparse subset of nodes impacted in each of the [layers [37].
This function simply finds which events are connected to
other events in the graph over an integer number, K, of
hops through immediately connected nodes (see Fig.1(a)).
The affected node embeddings in a given layer, z; ;, are then
updated using a graph convolutional function ¢(). A final
function, o(), is applied to the node embeddings of ev;, Z;

which outputs the optical flow prediction V; for the node.
However, this cannot be done instantaneously. The event
ev; may be influenced by future events arriving within a
time equal to the time search radius r; multiplied by the

3955

number of graph neural network layers and therefore it is
required to store of all generated events and their edges dur-
ing this time. A prediction must therefore be scheduled in
the future accordingly - typically this delay may be on the
order of hundreds of milliseconds.

Algorithm 1 Sparse fully-spherical update

Input : ev; = {x;,yi,ti,p: }, G ={EV,E}, 14,7y, L
Output : V;
M = EV N B(ev;, ray, rt)
for ev,, € M do
Em = knn(evn,, EV, 1, 72y)
end for
G =7(G,En, ev;)
for [in range(L) do
for ev; € hop(M,G,!1) do
Zgl = (;S(B’Uj, G, l)
end for
end for
ift > t; + (r; x L) then
Vi =0(Zi)
end if

3.1. Hemi-spherical event-graph updates

Evidently updating an event-graph where each event can
make edges to past and future events is highly complicated.
The resulting per-event latency risks to be prohibitive and
incompatible with the continuous stream of data generated
by an event camera. In order to reduce this latency, we pro-
pose to constrain graph connectivity such that (i) new edges
are only formed from events in the past to a new event ev;,
and (ii) that these are directed edges such that information
always flows from the past to the future.

Our approach, HUGNet, is detailed in Algorithm 2.
Given a newly generated event ev;, a K-nearest neighbours
search is performed to find up to K nearest neighbouring
events within a hemi-spherical search volume that extends
into the past only. Relative to the fully-spherical method,
the temporal search radius, 7, is increased such that the
search volume is equivalent. At this point our Algorithm
2 diverges from, and greatly simplifies upon, the previous
Algorithm 1. First, a tiny sub-graph containing ev; and its
neighbours, G;, is created. This sub-graph is then used to
calculate the L node embeddings for the new event ev; us-
ing a graph convolution function ¢’'(). Crucially, the only
node embeddings that are calculated are those of the newly
arrived event - it is not required to re-apply graph convo-
lutions to update past events. These embeddings, Z;, can
then be immediately used (neither the edges nor the node
embeddings of ev; will be updated by future events) in the
calculation of output optical flow, V;, using a function ¢’ ().
Note that, relative to Algorithm 1, only the events generated

within a past temporal window of 7, need to be stored. Fur-
thermore the edges, and in fact the entire event-graph struc-
ture, do not need to be stored explicitly. They are implicitly
represented within the node embeddings of the past events
EV. This will permit the total system memory require-
ments of HUGNet to be greatly reduced relative to fully-
spherical approaches, which is of great importance in edge
computer vision systems where memory may be severely
limited.

In our implementation of these algorithms we use the
KD-tree K-nearest neighbour search algorithm [44] imple-
mented in the Open3D library [45]. The graph convolution
functions are implemented using the framework PyTorch
geometric [9]. Specific codes were developed in order to
measure the graph update latencies of Algorithms 1 (GNN-
sparse) and 2 (HUGNet) as well as a third algorithm, iden-
tical to Algorithm 1, but where a k-hop search is not used
and all nodes, EV, within a certain time window are up-
dated (GNN-full).

Algorithm 2 Hemi-spherical update

IHPUt L eV = {‘r’ia yi7tiap’i}7 E‘/v Ttv"":cmL
Output : V;
K;, & = knn(evi, EV, 1y, 74y)
G = {K;, &}
for [in range(L) do
zig = ¢'(Gy, 1)
end for
Vi=o'(2)

3.2. Event-graph neural network architecture

Our architecture for event-graph optical flow prediction,
depicted in Fig.2, takes as input the tiny sub-graph G; (as
described in Algorithm 2) built upon the generation of each
new event ev;. It is composed of five successive graph con-
volutional layers. A node embedding, Z;;, is calculated
for the new event in each of the [layers using the previ-
ously calculated node embeddings of the past events in the
sub-graph. Node embeddings are 64-size vectors in each
of the layers which are concatenated together into a single
vector Z; which is then processed by a multi-layer percep-
tron (MLP) (Fig.2(b)). In the first layer of this MLP, an
instance normalisation [41] is applied to produce a 128-
size vector representation for the event. Instance normal-
isation is an appealing alternative to batch normalisation in
this step since feature normalisation can be performed us-
ing node-level, instead of graph-level, statistics. Finally, to
predict the optical flow of ev;, we apply three further layers
(128 x 128, 128 x 64, 64 x 2) resulting in a final two-size vec-
tor V; whose components correspond to the x and y flow V,
and V,,. The architecture is agnostic to convolution method

3956

Z,§
()

(b)

Figure 2. The event-graph neural network used for event-based optical flow prediction. (a) The graph convolutional backbone of
our model. The extracted sub-graph G; (black circles connected via red directed arrows) is used to calculate five node embedding vectors
(green rectangles) - Z; 1, Z; 2 and Z; 5 shown. An example of the calculated node embeddings for event ev; is shown as five stacked blue
rectangles. Black arrows indicate the passage between subsequent graph convolutional layers (layers three and four are not shown). (b) A
multi-layer perceptron takes as input the concatenated five node embeddings (those in part (a)). The output layer returns two values V,, and
V,, which are the x and y components of the event’s optical flow vector V;.

and could be applied to any event-level prediction task - not
only optical flow.

3.3. Supervised event-graph optical flow learning

For a given event ev;, the objective is to output a vector
Vi describing the optical flow 110 (2, ¥, t):

d—[flow

dIflow d—[flow
Va
- dt

dx dy

of the object that generated the event. We minimise a
smooth-L1 loss, L, for a event-graph of N, vertices,

=0, (D

Vy +

Ney 1 7\ 2 . 9
L= 1) Z{ B =02 if |-, <
ew TVi- Vi - 18 otherwise

) @)
given a ground-truth flow V;. The threshold £ is set to
0.025.

Additionally, to enforce smoothness in the spatiotempo-
ral evolution of predicted flow, we add a constraint based
on the Charbonnier loss: p(z) = (22 + ¢2)< [40]. Instead
of iterating over events within a certain radius (that could
be computationally costly to find), we propose a graph-
Charbonnier loss that enforces smoothness between imme-
diately connected nodes:

Ney

— Y (Vi 4 I V) +), (3)

%

where A; is the normalised adjacency matrix for a graph
G, the symbol [is the identity matrix of a dimension two
and V is the matrix of predicted flow for the past events,
EV. Alphais set to 0.5 and epsilon to 0.001. This smooth-
ness loss is weighted by 0.1 and summed with Ly (the

supplementary material reports on an ablation study of this
smoothness loss).

Event-graphs are processed in single batches, after
which the gradient is calculated using the the AdamW op-
timisation method [24]. A plateau scheduling is applied to
the learning rate where, if no relative change of 0.05 is ob-
served in the loss during ten successive epochs, the learning
rate is divided by two. All event-graph neural networks are
trained over 100 epochs on a single NVIDIA GeForce RTX
2080 GPU.

4. Experiments
4.1. Metrics

Average Endpoint Error (AEE) is a commonly used as
a metric in optical flow prediction tasks [46]. We adapt
this metric for the event-based setting, simply by comput-
ing end-point error over generated events instead of over all
active pixels in a frame:

N,
1 X -
AEE = > Vi = Vill2)

ev .
?

where V; and V; are respectively the predicted and the
ground-truth optical flow vectors and N, is the number of
events. Similarly to [46], we also report the percentage of
outlying event predictions - defined as the fraction of events
with an end-point error greater than a given number of pix-
els and in excess of 5% of the magnitude of the ground-truth
flow vector.

While these metrics allow for a concise means of quickly
comparing different approaches, AEE is not normalised.
Large flows contribute more than smaller ones. We there-
fore introduce an additional metric - event flow accuracy -
which we find to be more informative since it assesses the

3957

ability of a model to correctly predict optical flow regardless
of its magnitude:

N .
1 X e IVizVillo
Fep= > 4L Womn <c 0)
Ney — (0 otherwise

where (is a number between zero and one corresponding to
a tolerated percentage error of the ground truth magnitude.

4.2. Datasets

We compare HUGNet to existing methods using two
event-based optical flow datasets: the commonly used
MVSEC [46] and Rock Scenes (RS) - which we intro-
duce in this paper (refer to the supplementary material for
examples). In our experience, the construction of graph
data-structures and the development of graph neural net-
work models is time intensive - in particular for the large
3D-pointclouds generated by high-resolution event-camera
recordings. For this reason, it can be difficult to perform
extensive early-exploration in new applications and event-
graph architectures. We have therefore developed a man-
ageable yet challenging synthetic motion segmentation and
optical flow dataset that will be made available on request.
The 100100 resolution sequences from RS last between
3 and 6 seconds and feature a classic rock album moving
in front of a natural background. Both the album cover
and the background scene (simulating ego-motion) exhibit
non-periodic and uncorrelated sharp direction and speed
changes which are often not present in many available auto-
motive datasets - which are largely characterised by smooth
changes in flow. This will allow us to test the ability of mod-
els to exploit the high-temporal resolution of event-cameras.
Ground truth flow and an object masks are provided at a rate
of SkHz. The training split is composed of one hundred se-
quences (ten objects combined with ten scenes) while the
test set has a further four sequences with two new unseen
objects and scenes.

We use RS to select the graph convolution method and
the event and edge features that will be used to benchmark
against other approaches in Section 4.3. MVSEC is com-
posed of longer event-camera recordings with ground truth
optical flow masks provided at 20Hz: four indoor drone,
and two outdoor vehicle sequences. We split MVSEC into
two tasks - indoor and outdoor optical flow prediction due
to the difference in event density in each scenario. For
the indoor task we train on the first, third and fourth se-
quences and test on the second. For the outdoor task, we
train on the second outdoor sequence and test on the first.
Both datasets are pre-filtered using an event-based spa-
tiotemporal contrast filter [2], already built-in to state-of-
the-art event-cameras [], that operates by removing redun-
dant contrast information encoded in the number of events
emitted by a pixel as it is crossed by an edge. This filter-

ing strategy is preferable to thr uniform downsamplingtypi-
cally used in previous works, since it preserves the original
fine spatiotemporal structure of motion. The event-graphs
of full sequences are chopped into smaller temporal slices
of a fixed duration and with a certain temporal overlap. Our
slices are 400ms long for both RS and MVSEC and we use
an overlap equal to half of this. In order to mitigate over-
fitting, slices undergo a temporal warping, whereby event
timestamps are multiplied by a sample from a uniform ran-
dom variable between 0.5 and 1.5. We also randomly xy-
flip the graph. The optical flow ground-truths are updated
accordingly. We additionally perform edge dropout [36]
where event-graph edges are removed with a probability of
0.25 during the forward pass. At test time, graph slices do
not undergo these augmentations and the metrics are evalu-
ated from half of the temporal search radius in each slice.

4.3. Optical-flow results

We first investigate, using Rock scenes, what combina-
tion of input and edge features are most pertinent for op-
tical flow estimation. In addition to the pixel coordinates
XY (which are always used) we study the effect of the event
timestamp 7, the polarity P, and an approximation to the
event normal-vector N - calculated as described in [28]. The
edge features, XY and T, correspond to the normalised spa-
tial and temporal differences between events as described in
[10]. We also compare three graph convolution approaches:
GCNConv [18], B-spline [10] (with a kernel size of five and
linear basis functions) and Hybrid which combines an input
B-spline layer with four subsequent GCNConv layers.

The results are summarised in Table 1 where each cell
contains two metrics - on top the flow accuracy at 25% error
Fy59, (Eq.5), and below the average end-point error AEE
(Eq.4). For all models, but in particular for GCNConv, we
note that the polarity and the event timestamps are not ade-
quate to accurately predict optical flow from event-graphs.
In all cases, the normal-vector features greatly improve per-
formance, and the addition of polarity and timestamp as fea-
tures bring about only a small improvement in performance.
Across the three methods, the use of all feature results in the
highest F55,. It also results in the lowest AE E for the GC-
NConv and Hybrid methods, whilst the B-Spline method
achieves a marginally improved AEE without the times-
tamp. The impact of temporal difference between events as
edge features are studied in the final three rows of Table 1.
Relative to the first three rows of the table, temporal differ-
ences in edges appear to be an important feature, bringing
an improvement in all cases. Table 1 also underlines the
utility of the flow accuracy metric (Eq.5) whereby models
that have an almost equivalent AEE often exhibit impor-
tant differences in Fo50,. This highlights the ability of some
models to remain accurate over a wide range of optical flow
- not only large flows.

3958

Table 1. Comparison of input node features and the graph con-
volutional type applied. Fbs59 (top, higher is better) and AEFE
(bottom, lower is better) are given for each model. The best re-
sult per column is highlighted by a bold font. Features: (X,Y,T)
event coordinates, P polarity, /N approximate normal vector to
local event surface. Edges: (X,Y,T) edge coordinates between
events. Note that GCNConv does not support edge features and
that all results are obtained using the a hemi-spherical event-graph.

The event-graph neural networks based solely on GC-
NConv layers consistently exhibit lower performance than
the others. They have access only to absolute coordinates as
features, and the data aggregation from neighbouring events
is effectively an averaging. On the contrary, B-spline convo-
lutions exploit relative spatiotemporal differences with re-
spect to neighbouring events which seems to extract more
useful representations for the downstream optical flow pre-
diction. However, B-spline convolutions are also more
complex than those of GCNconv, since a basis-function
weighted combination of products from a 3D-kernel of ma-
trices is required. To better understand the trade-off in com-
putational complexity between the methods, we count the
number of parameters, the total number of multiply-and-
accumulate operations per second (MAC/s) and the latency
of one training epoch in Table 2. We note that, whilst the
B-spline method does perform better than GCNConv, it re-
quires an order of magnitude more parameters and double
the MAC/s while being several times slower to train. The
advantage of the Hybrid approach, where B-spline graph
convolution is used only in the first layer, can be clearly
seen whereby it greatly improves upon the performance of
GCNconv for a relatively modest increase in the number of
parameters and MAC/s.

In light of this, we elect to use the Hybrid method with
all available event and edge features as our reference model
in two benchmarking studies: RS and MVSEC. We com-
pare our hemi-spherical update approach, HUGNet, against
two event-graph neural networks based on fully-spherical

Features Edges GCNConv| B-Spline | Hybrid Metric GCNConv B-Spline Hybrid
XY,TPN | XY, T 0.398 0.612 0.557 #params 75k 2.2M 122k
0.0446 0.0343 0.0371 MAC/s 2.22G 4.63G 227G
XY,PN XY, T 0.378 0.603 0.549 Epoch Lat. 118s 412s 123s
0.0466 0.0338 0.0380
XY, TP XY, T 0.061 0.526 0.294 Table 2. Comparison of model and calculation complexity be-
0.0753 0.0384 0.0498 tween the three graph neural network architectures computed on
XYN XY, T 0.374 0.587 0.544 the RS dataset. All results use a hemi-spherical event-graph.
XYP XYT 88336 822(5)8 82225 updates which we refer to as GNN-full [5] and GNN-sparse
0.0850 0.0390 0.0484 [37] as described in Sec 3.1. It should be noted that the ac-
XY.TPN | XY - 0361 0526 tual graph neural network architectures for HUGNet, GNN-
0.0367 0.0397 sparse and GNN-full are identical. It is only the graph up-
XY.PN XY _ 0.580 0.536 date method and, therefore, the structure of the resulting
0.0364 0.0391 event-graph that differ. We also compare to two dense-
XY, TP XY - 0.510 0.362 frame CNN approaches: Seg-flownet and EV-flownet [46].
0.0391 0.0465 Since EV-flownet was designed using the MVSEC dataset,

we only apply it to the MVSEC benchmark and re-train it in
a self-supervised fashion using the publicly available code
on our MVSEC splits. Seq-flownet is a convolutional ar-
chitecture very similar to EV-flownet but trained in a fully-
supervised fashion and applied to both RS and MVSEC -
more details can be found in the supplementary material.

Table 3 presents the benchmarking results on RS. We re-
port the AFE and the Fy59 to quantify the performance
of each approach in the tasks. In addition, we add to
the Table the average latency required to update an event-
graph due to a newly generated event (Graph update), the
number of model parameters (#params) and the number
of multiply-and-accumulations per second (MAC/s) to up-
date the event-graph and output a prediction. As expected,
HUGNet greatly improves upon the update latency achieved
by the fully-spherical event graph neural networks. While
the measured graph update latency for GNN-full and GNN-
sparse is on the order of hundreds of milliseconds, HUGNet
is capable of rapidly incorporating events with a latency of
only some tens of microseconds - a striking improvement
spanning four orders of magnitude. Similarly, the num-
ber of MAC operations per second required by HUGNet
is reduced by almost two orders of magnitude. This re-
duction is due to the fact that each time an event is in-
corporated into GNN-sparse or GNN-full, all of the node
embeddings impacted by the new event (typically several
thousand), must be updated by re-applying graph convo-
lutions. In the case of HUGNet, only the newly arrived
event requires MAC operations. While we only report the
latency incurred due to graph building, it is important to
note that the fully-spherical approaches will incur a fur-
ther delay equal to the temporal search radius multiplied
by the number of layers (HUGNet requires no such delay)
that further increases the total latency of these approaches.
More surprisingly however, is the observation that, given
the constraints imposed upon the event-graph structure in
order to achieve these impressive efficiency gains, HUGNet

3959

Method AEE ({) Foso (1) Graph update ({) #params ({) MAC/s (1)
GNN-full [5] 0.0424 0.431 431ms 122k 1409G
GNN-sparse [37] 0.0424 0.431 181ms 122k 159G
HUGNet (ours) 0.0371 0.557 0.035ms 122k 2.2G
Seq-Flownet [0.0467 0.398 - 1.3M 46G

Table 3. Benchmarking on the RS dataset. RS has an average event-rate of 18keV/s and Seq-flownet uses a framerate of 100Hz.

Sample indoor_flying2 outdoor_day1 Processing KPIs
Metric AEE () %Out ({) Fos9, (1) AEE () %Out ({) Fos9, (1) MAC/s ({) | Update ()
Sparse- 1.540 10.2 0.368 1.164 10.1 0.385 1078G 707ms
GNN [37]

HUGNet 1.475 9.6 0.396 1.158 10.1 0.406 154G 0.062ms
(ours)

EV- 1.180 3.73 0.499 1.133 5.2 0.181 138.8G* -

Flow [46]

Seq- 2.299 26.4 0.101 1.144 10.5 0.306 421.5G -

flownet

Table 4. Benchmarking on the MVSEC dataset. GNN-full is removed from this table - it requires more calculations to update the graph
than GNN-sparse, but the underlying graph structure is identical. Indoor and outdoor have respective average event rates of 122kev/s and
198kev/s and key performance indicators (KPIs) are reported for indoor only. *MAC/s due to bi-linear upsampling in the decoder are not

computed.

also outperforms the fully-spherical approaches on Rock
Scenes. HUGNet achieves a smaller average end-point er-
ror and a greatly improved flow accuracy at 25%. The
reason for this is not yet well understood and warrants a
deeper exploration in future work. Finally, we also observe
that both HUGNet and the fully-spherical event-graph neu-
ral networks outperform the fully-supervised convolutional
approach Seq-flownet, despite requiring an order of mag-
nitude fewer parameters. This underlines the potential of
the event-graph approach to become a powerful method in
event-based optical flow prediction.

The benchmarking study on the two MVSEC tasks (in-
door and outdoor) is presented in Table 4. The full-GNN
results have been omitted due to the exaggerated number
of MAC/s relative to Sparse-GNN. We additionally report
the metric percentage outliers, %Out. As was the case for
RS, HUGNet outperforms the fully-spherical event-graph
method over all metrics - obtaining an even greater reduc-
tion in the graph update latency and MAC/s than observed
in RS. While HUGNet outperforms Seq-flownet, in partic-
ular on the indoor task, we note that this is not the case
(besides Fy59, in the outdoor task) compared to EV-flownet
- the only dense-frame CNN benchmark trained in a self-
supervised fashion [46] (although it should be noted that
EV-flownet does require a significantly greater number of
MAC/s). Given that Seq-flownet and EV-flownet are largely
identical, this echos observations that self-supervised learn-
ing of optical flow can greatly improve upon supervised
methods [38], and indicates that a promising future avenue
will be to understand how event-graph neural networks can
be adapted for self-supervised optical flow learning. Fi-

nally, it is indicative to note that while Seq-flownet requires
21x more MAC/s than HUGNet in RS (at a 100x 100 res-
olution), in MVSEC (260x346) the difference increased
to 27x. In fact, as we scale to higher resolution event-
cameras, this efficiency gap from CNNs to event-graph neu-
ral networks will only increase, and in a quadratic fashion.

5. Conclusion

We have presented HUGNet, an event-graph neural
network approach that, with respect to state of the art
event-graph methods, reduces graph update latency and
the required number multiply-and-accumulate operations
per second by up to four orders of magnitude and by
70x respectively. On two optical flow benchmarks we
observed that the hemi-spherical updates of HUGNet
allowed for a better accuracy in all cases relative to existing
fully-spherical methods. HUGNet was also found to
perform favourably relative to dense-frame convolutional
approaches, in particular with respect to MAC/s, whereby
event-graphs will become increasingly more efficient than
CNNss as camera resolution increases. By forming directed
(past to future) edges with previously generated events only,
we have slashed the latency inherent to continuous graph
adaptation and make it possible to apply event-graph neural
networks to a stream of event-camera data efficiently, with
a low latency and with high fidelity.

Acknowledgements: We would like to thank Z. Hua
(Univ. Maryland) for his help during the early phase of this
study.

3960

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Event signal processing. https://docs.prophesee.

ai/stable/hw/manuals/esp.html. Accessed:
2021-10-22. 6

Spatiotemporal ~ contrast algorithm. https :
/ / docs prophesee ai / stable /
metavision _ sdk / modules / cv / python _

html # metavision_sdk_cv.
Accessed:

api / bindings .
SpatioTemporalContrastAlgorithm.
2021-10-24. 6

R Abbasi, M Ackermann, J Adams, N Aggarwal, JA Aguilar,
M Ahlers, M Ahrens, JM Alameddine, AA Alves, NM
Amin, et al. Graph neural networks for low-energy event
classification & reconstruction in icecube. Journal of Instru-
mentation, 17(11):P11003, 2022. 2

Ryad Benosman, Sio-Hoi Ieng, Charles Clercq, Chiara Bar-
tolozzi, and Mandyam Srinivasan. Asynchronous frameless
event-based optical flow. Neural Networks, 27:32-37, 2012.
2

Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze,
and Yiannis Andreopoulos. Graph-based object classifica-
tion for neuromorphic vision sensing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 491-501, 2019. 1,2,3,7, 8

Kwabena A Boahen and Andreas Andreou. A contrast sen-
sitive silicon retina with reciprocal synapses. Advances in
neural information processing systems, 4, 1991. 1

Ziluo Ding, Rui Zhao, Jiyuan Zhang, Tianxiao Gao, Ruiqin
Xiong, Zhaofei Yu, and Tiejun Huang. Spatio-temporal re-
current networks for event-based optical flow estimation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pages 525-533, 2022. 3

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. Proceedings of the In-
ternational Conference on Learning Representations, 2021.
1

Matthias Fey and Jan Eric Lenssen. Fast graph represen-
tation learning with pytorch geometric. Proceedings of the
International Conference on Learning Representation, 2019.
4

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-
rich Miiller. Splinecnn: Fast geometric deep learning with
continuous b-spline kernels. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
869-877,2018. 1,6

Thomas Finateu, Atsumi Niwa, Daniel Matolin, Koya
Tsuchimoto, Andrea Mascheroni, Etienne Reynaud, Poo-
ria Mostafalu, Frederick Brady, Ludovic Chotard, Florian
LeGoft, Hirotsugu Takahashi, Hayato Wakabayashi, Yusuke
Oike, and Christoph Posch. A 1280x720 back-illuminated
stacked temporal contrast event-based vision sensor with
4.86um pixels, 1.066geps readout, programmable event-rate
controller and compressive data-formatting pipeline. In

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

3961

2020 IEEE International Solid- State Circuits Conference -
(ISSCC), pages 112-114,2020. 1, 3

Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza.
A unifying contrast maximization framework for event cam-
eras, with applications to motion, depth, and optical flow
estimation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3867-3876,
2018. 3

Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpa-
nis, and Davide Scaramuzza. End-to-end learning of repre-
sentations for asynchronous event-based data. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 5633-5643, 2019. 1, 2

Mathias Gehrig, Mario Millhidusler, Daniel Gehrig, and Da-
vide Scaramuzza. E-raft: Dense optical flow from event cam-
eras. In International Conference on 3D Vision (3DV), 2021.
2,3

Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submani-
fold sparse convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 9224-9232, 2018. 2

Jesse Hagenaars, Federico Paredes-Vallés, and Guido
De Croon. Self-supervised learning of event-based optical
flow with spiking neural networks. Advances in Neural In-
formation Processing Systems, 34:7167-7179, 2021. 2, 3
Hanme Kim, Stefan Leutenegger, and Andrew J Davison.
Real-time 3d reconstruction and 6-dof tracking with an event
camera. In European conference on computer vision, pages
349-364. Springer, 2016. 2

Thomas N Kipf and Max Welling. Semi-supervised clas-
sification with graph convolutional networks. Proceedings
of the International Conference on Learning Representation,
2016. 1,2,6

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84-90, 2017. 1
Chankyu Lee, Adarsh Kumar Kosta, Alex Zihao Zhu, Ken-
neth Chaney, Kostas Daniilidis, and Kaushik Roy. Spike-
flownet: event-based optical flow estimation with energy-
efficient hybrid neural networks. In European Conference
on Computer Vision, pages 366-382. Springer, 2020. 1, 2, 3
Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Train-
ing deep spiking neural networks using backpropagation.
Frontiers in neuroscience, 10:508, 2016. 2

Patrick Lichtsteiner, Christoph Posch, and Tobi Delbriick. A
128x128 120 db 15 us latency asynchronous temporal con-
trast vision sensor. [EEE Journal of Solid-State Circuits,
43:566-576, 2008. 1

Min Liu and Tobi Delbruck. Adaptive time-slice block-
matching optical flow algorithm for dynamic vision sensors.
2018.1,2,3

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. Proceedings of the International Conference
on Learning Representation, 2017. 5

Ana I Maqueda, Antonio Loquercio, Guillermo Gallego,
Narciso Garcia, and Davide Scaramuzza. Event-based vision

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

meets deep learning on steering prediction for self-driving
cars. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5419-5427,2018. 1, 2
Carver A Mead and Misha A Mahowald. A silicon model of
early visual processing. Neural networks, 1(1):91-97, 1988.
1

Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and
Davide Scaramuzza. Event-based asynchronous sparse con-
volutional networks. In European Conference on Computer
Vision, pages 415-431. Springer, 2020. 2

Anton Mitrokhin, Zhiyuan Hua, Cornelia Fermuller, and
Yiannis Aloimonos. Learning visual motion segmentation
using event surfaces. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14414-14423,2020. 1,2, 6

Atsumi Niwa, Futa Mochizuki, Raphael Berner, Takuya
Maruyarma, Toshio Terano, Kenichi Takamiya, Yasutaka
Kimura, Kyoji Mizoguchi, Takahiro Miyazaki, Shun Kaizu,
et al. A 2.97 pm-pitch event-based vision sensor with
shared pixel front-end circuitry and low-noise intensity read-
out mode. In 2023 IEEE International Solid-State Circuits
Conference (ISSCC), pages 4-6. IEEE, 2023. 1

Federico Paredes-Vallés, Kirk YW Scheper, and Guido CHE
De Croon. Unsupervised learning of a hierarchical spik-
ing neural network for optical flow estimation: From events
to global motion perception. IEEE transactions on pattern
analysis and machine intelligence, 42(8):2051-2064, 2019.
3

Etienne Perot, Pierre de Tournemire, Davide Nitti, Jonathan
Masci, and Amos Sironi. Learning to detect objects with a 1
megapixel event camera. In Advances in Neural Information
Processing Systems, volume 33, 2020. 1

Michael Pfeiffer and Thomas Pfeil. Deep learning with spik-
ing neurons: opportunities and challenges. Frontiers in neu-
roscience, page 774, 2018. 2

Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt.
A qvga 143 db dynamic range frame-free pwm image sensor
with lossless pixel-level video compression and time-domain
cds. IEEE Journal of Solid-State Circuits, 46(1):259-275,
2010. 1

Christoph Posch, Teresa Serrano-Gotarredona, Bernabe
Linares-Barranco, and Tobi Delbruck. Retinomorphic event-
based vision sensors: Bioinspired cameras with spiking out-
put. Proceedings of the IEEE, 102(10):1470-1484, 2014. 1
Paul Rogister, Ryad Benosman, Sio-Hoi Ieng, Patrick Licht-
steiner, and Tobi Delbruck. Asynchronous event-based
binocular stereo matching. [EEE Transactions on Neural
Networks and Learning Systems, 23(2):347-353, 2011. 2
Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang. Dropedge: Towards deep graph convolutional net-
works on node classification. Proceedings of the Interna-
tional Conference on Learning Representation, 2019. 6
Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza.
Aegnn: Asynchronous event-based graph neural networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12371-12381, 2022.
1,2,3,7,8

(38]

(39]

(40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

3962

Shintaro Shiba, Yoshimitsu Aoki, and Guillermo Gal-
lego. Secrets of event-based optical flow. arXiv preprint
arXiv:2207.10022,2022. 1, 3, 8

Yunjae Suh, Seungnam Choi, Masamichi Ito, Jeongseok
Kim, Youngho Lee, Jongseok Seo, Heejae Jung, Dong-Hee
Yeo, Seol Namgung, Jongwoo Bong, Sehoon Yoo, Seung-
Hun Shin, Doowon Kwon, Pilkyu Kang, Seokho Kim,
Hoonjoo Na, Kihyun Hwang, Changwoo Shin, Jun-Seok
Kim, Paul K. J. Park, Joonseok Kim, Hyunsurk Ryu, and
Yongin Park. A 1280x960 dynamic vision sensor with a
4.95-m pixel pitch and motion artifact minimization. In 2020
IEEE International Symposium on Circuits and Systems (IS-
CAS), pages 1-5, 2020. 1

Deqing Sun, Stefan Roth, and Michael J Black. Secrets of
optical flow estimation and their principles. In 2010 IEEE
computer society conference on computer vision and pattern
recognition, pages 2432-2439. IEEE, 2010. 5

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 4

Paul J Werbos. Backpropagation through time: what it does
and how to do it. Proceedings of the IEEE, 78(10):1550-
1560, 1990. 2

Friedemann Zenke and Surya Ganguli. Superspike: Super-
vised learning in multilayer spiking neural networks. Neural
computation, 30(6):1514-1541, 2018. 2

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-
time kd-tree construction on graphics hardware. ACM Trans-
actions on Graphics (TOG), 27(5):1-11, 2008. 4

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:
A modern library for 3d data processing. arXiv preprint
arXiv:1801.09847,2018. 4

Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas
Daniilidis. Ev-flownet: Self-supervised optical flow estima-
tion for event-based cameras. In Proceedings of Robotics:
Science and Systems, Pittsburgh, Pennsylvania, June 2018.
1,2,3,5,6,7,8

Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised event-based learning of
optical flow, depth, and egomotion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 989-997, 2019. 3

