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Abstract

Event cameras are a new type of vision sensor that
incorporates asynchronous and independent pixels, offer-
ing advantages over traditional frame-based cameras such
as high dynamic range and minimal motion blur. How-
ever, their output is not easily understandable by humans,
making the reconstruction of intensity images from event
streams a fundamental task in event-based vision. While
recent deep learning-based methods have shown promise in
video reconstruction from events, this problem is not com-
pletely solved yet. To facilitate comparison between differ-
ent approaches, standardized evaluation protocols and di-
verse test datasets are essential. This paper proposes a uni-
fied evaluation methodology and introduces an open-source
framework called EVREAL to comprehensively benchmark
and analyze various event-based video reconstruction meth-
ods from the literature. Using EVREAL, we give a de-
tailed analysis of the state-of-the-art methods for event-
based video reconstruction, and provide valuable insights
into the performance of these methods under varying set-
tings, challenging scenarios, and downstream tasks.

1. Introduction
Event cameras are a new type of biologically-inspired

vision sensor that have the potential to overcome the lim-
itations of conventional frame-based cameras. Unlike tra-
ditional cameras, event cameras have pixels that work in-
dependently and asynchronously from one another. Each
pixel detects changes in the relative brightness of its local
area and generates an event signal when the change ex-
ceeds a certain threshold. Hence, the output is a continu-
ous stream of events, with each event containing informa-
tion about the location, the polarity of the intensity change,
and the precise time of the detected change. The rate of
event generation varies depending on the scene characteris-
tics, with more events being triggered for scenes showing
rapid motion or instant changes in brightness and texture.

Due to their unique working principles, event cameras pro-
vide many advantages, such as high dynamic range, high
temporal resolution, and minimal motion blur [6].

While event streams have many desirable properties,
they have one major disadvantage – humans cannot easily
understand event streams in the same way as intensity im-
ages. Hence, a fundamental task in event-based vision liter-
ature is reconstructing intensity images from event streams.
Reconstructing high-quality videos from events also allows
for employing existing frame-based computer vision meth-
ods developed for several downstream tasks to event data in
a straightforward manner [20].

While deep learning-based methods have made impres-
sive progress in reconstructing videos from event streams
lately (e.g., [21, 24, 30]), this research problem is still not
completely solved. This can be primarily attributed to the
event representations being used in these state-of-the-art ap-
proaches, which can cause some latency issues. Moreover,
training these methods relies heavily on synthetically cre-
ated datasets. Consequently, these methods may produce
suboptimal video reconstructions that suffer from issues
such as blur, low contrast, or smearing artifacts.

A significant effort has been put forth to find better ways
to evaluate event-based video reconstruction methods and
assess the visual qualities of reconstructed videos. There
are several distinct evaluation methodologies involving dif-
ferent datasets, event representations, post-processing steps,
quantitative metrics, and downstream tasks (see Tab. 1 for
an overview, and refer to the supplementary materials for a
more detailed discussion). However, the lack of a standard
evaluation procedure makes it hard to fairly compare the
performances of different methods. The details of the eval-
uation procedures are sometimes not clearly defined, even
though each minor detail may significantly alter the results.
This also poses challenges for other researchers to repro-
duce the reported results. This motivates the need for open-
source codes and standardized protocols for evaluation.

Comparing different methods requires not only well-
defined evaluation protocols but also a diverse set of test
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datasets that cover various real-world settings. Large-scale
benchmarks have been instrumental in advancing many
computer vision tasks, as demonstrated by ImageNet [22]
for image classification and MS-COCO [10] for object de-
tection, providing results that are generalizable to unseen
real-world data. However, since event-based vision is a rel-
atively new field compared to classical frame-based com-
puter vision, the current datasets used for assessing event-
based video reconstruction are limited in scale and scope,
confined to specific domains, scenes, camera types, and mo-
tion patterns. To ensure the generalizability of the results
and evaluate the methods’ effectiveness in more real-world
scenarios, it is essential to assess their performances on a
large variety of datasets showing different characteristics.

Event data is handy in scenarios where traditional frame
cameras fail, such as scenes captured under low-light con-
ditions or with rapid motion, and underexposed or overex-
posed regions. Hence, it is of utmost importance to eval-
uate the effectiveness of event-based video reconstruction
models in those challenging situations. However, as tradi-
tional frame-based cameras especially struggle in these sce-
narios, collecting high-quality reference frames is a chal-
lenging task on its own. This paradox makes it difficult
to quantify the success of event-based video reconstruction
methods where they are most needed.

Even in scenarios where it is possible to collect high-
quality reference frames with minimal motion blur and opti-
mal exposure, assessing image quality remains a subjective
endeavor. Hence, the current studies generally consider a
perceptual metric like learned perceptual image patch simi-
larity (LPIPS) [32] along with distortion-aware metrics like
PSNR and structural similarity (SSIM) [29]. However, as
a full-reference metric, LPIPS is trained on distortions that
are not commonly seen in the reconstructed intensity im-
ages from event data. Hence, this raises some doubts about
the significance of these perceptual comparisons.

Reconstructing images from events is a complex task. It
depends on many variables that can affect the performance
of the methods. These include sensor noise characteris-
tics, sensor parameters, event generation rate, event group-
ing scheme, grouping rate, frame reconstruction rate, and
temporal regularity. Despite their importance, the literature
often overlooks the robustness of the methods to changes in
these variables. Therefore, it is crucial to evaluate the sensi-
tivity of the methods to these variables and to consider their
performance under changing conditions. A method that per-
forms well under specific settings may not be suitable for
general use when these variables are expected to change.

Event cameras are known for their low-latency and non-
redundant data flow, making them ideal for scenarios that
require real-time and low-power processing. As a result,
the computational efficiency of event-based video recon-
struction methods is just as important as the visual quality

of reconstructions. Neglecting this aspect in a benchmark
could lead to choosing a method that provides high-quality
reconstructions, but is impractical for real-time processing.

To address these issues and facilitate progress in event-
based video reconstruction, in this study, we propose
EVREAL, Event-based Video Reconstruction Evaluation
and Analysis Library, an open-source framework based on
PyTorch [19]. Our framework offers a unified evaluation
pipeline to benchmark pre-trained neural networks and a re-
sult analysis tool to visualize and compare reconstructions
and their scores. We use a large set of real-world test se-
quences and various full-, and no-reference image quality
metrics to perform qualitative and quantitative analysis un-
der diverse conditions, including challenging scenarios such
as rapid motion, low light, and high dynamic range, many
of which have not been reported before. Moreover, we con-
duct experiments to assess the performance of each method
under variable conditions and analyze their robustness to
these varying settings. We also evaluate the quality of video
reconstructions via downstream tasks like camera calibra-
tion, image classification, and object detection. This extrin-
sic evaluation can be considered a proxy metric for image
quality and a task-specific metric if the goal of event-based
video reconstruction is to perform these downstream tasks.

In Table 1, we present an overview of our experimental
setup in comparison to prior work. Along with this paper,
we build a website to share our results and findings, together
with the source code to reproduce them1. We also intend to
update this webpage on a regular basis as new event-based
video reconstruction methods are proposed. Our contribu-
tions in this paper can be summarized as follows:
• We propose a unified evaluation methodology and an

open-source framework to benchmark and analyze event-
based video reconstruction methods from the literature.

• Our benchmark includes additional datasets, metrics, and
analysis settings that have not been reported before. We
present quantitative results on challenging scenarios in-
volving rapid motion, low light, and high dynamic range.

• Moreover, we conduct additional experiments to analyze
the robustness of methods under varying settings such as
event rate, event tensor sparsity, reconstruction rate, and
temporal irregularity.

• To further examine the quality of the reconstructions,
we provide quantitative analysis on several downstream
tasks, including camera calibration, image classification,
and object detection.

2. Methodology of Evaluation and Analysis
2.1. Task Description

Suppose we have a stream of events {ei} containing NE

events and spanning T sec. Each event ei = (xi, yi, ti, pi)

1https://ercanburak.github.io/evreal.html
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Evaluation Test # of Compared Metrics Comp. Chlng. Downst. Robust. Open
Setup in Datasets Frames Methods (FR/NR) Eff. Scnrs. Tasks Exp. Source

[27] [1] 0.2K [1, 15, 27] –/B Õ
[21] [13] 1.9K [1, 15, 21] MSLT/– ✓ Õ ÕÕ || Õ
[23] [13] 1.9K [1, 15, 21, 23] MSL/– ✓ Õ
[24] [13, 24, 34] 28.7K [21, 23, 24] MSL/–
[2] [13] 3.1K [2, 21, 23] MSLT/R ✓ | ✓
[30] [13, 24, 34] 28.7K [21, 23, 24, 30] MSL/– Õ ✓
[18] [13, 24] 17.4K [18, 21, 23, 24] MSL/– Õ
[35] [13, 24, 34] 28.7K [2, 21, 23, 24, 35] MSL/– ✓ |
[33] [13, 16] 1.9K [18, 21, 24, 33] MSL/– ✓ Õ |
Ours [13, 21, 24, 25, 34] 47.7K [2, 18, 21, 23, 24, 30] MSL/BNM ✓ | ||| | ✓

Table 1. A summary of experimental setups considered in earlier work. We provide a comparison of our proposed EVREAL frame-
work to the experimental evaluation setups reported in the existing work in terms of datasets being used, methods compared, number of
reconstructed frames used in quantitative analysis, and metrics being utilized. We also indicate whether each evaluation setup includes
analysis of computational efficiency, challenging scenarios (fast motion, low light, or high-dynamic range), downstream tasks, and robust-
ness. Finally, we mark whether the implementation of this evaluation setup is open-sourced or not. In the metrics column, FR and NR
stand for full-reference and no-reference metrics, respectively. M:MSE, S:SSIM [29], L:LPIPS [32], and T:Temporal Consistency [9] are
the full-reference metrics, while R:RMS contrast, B:BRISQUE [11], N:NIQE [12], and M:MANIQA [31] are the no-reference metrics. In
the Challenging Scenarios, the Downstream Tasks and Robustness Experiments columns, each Õ symbol denotes a reported qualitative
analysis and a | symbol represents a quantitative analysis being performed along with a qualitative comparison.

in the stream represents a change in brightness perceived
by the sensor, and contains information about the loca-
tion (xi, yi), the timestamp ti, and the polarity pi of this
intensity change. Here, ti ∈ [0, T ], pi ∈ {+1,−1},
xi ∈ {0, . . . ,W − 1}, and yi ∈ {0, . . . ,H − 1} for all i ∈
{0, . . . , NE − 1}, with W and H denoting the width and
height of the sensor array, respectively. Given these events,
the task aims to generate a stream of NI images {Îk}, cor-
responding to the same T sec. period as the events. Each
image Îk represents the absolute brightness of the scene,
as if it were captured by a standard frame-based camera at
a particular time sk within the time period of T seconds,
where k ranges from 1 to NI , and Îk ranges from 0 to 1.

2.2. Evaluation Framework and Pipeline

EVREAL implements several standardized components
crucial for deep event-based video reconstruction mod-
els, including event pre-processing, event grouping, event
representation, representation processing, and image post-
processing (see Fig. 1). We have included components to
evaluate the visual quality of each frame in the generated
videos, which are split into full-reference metrics and no-
reference metrics. The former is utilized when high-quality,
distortion-free ground truth frames are available, whereas
the latter are used when ground truth frames are of low
quality or not available at all (refer to Sec. 2.4). EVREAL
also includes an analysis tool. Given a set of reconstruc-
tions generated by one or more methods, it collects ground
truth frames, event visualizations, event rate statistics, and
instantaneous values for a set of quantitative metrics. It
then generates an output video that displays this data in a
time-synchronized manner, including plots of quantitative

metrics (see the supplementary for a sample output video).
Our tool is particularly valuable in pinpointing specific lim-
itations and failure cases of methods. For instance, it can
reveal situations where noisy reconstructions significantly
impact future reconstructions due to the sequential nature of
the method. Such scenarios can be visually identified from
the plots of quantitative metrics. To assess the practical use
of a given method, our framework allows for evaluating it
on several downstream tasks. Specifically, we analyze the
performance of tested models on three downstream tasks,
object detection, image classification, and camera calibra-
tion (Sec. 2.7). We want to emphasize that our objective
with this work is to conduct a comprehensive evaluation and
analysis of existing pre-trained models from the literature in
order to characterize them rather than to provide a ranking
of them. Developing a new model is also beyond the scope
of this work. In the following, we provide detailed descrip-
tions of the components of our evaluation framework.
Event pre-processing. This component can be employed
to process raw events before grouping them. Possible pre-
processing operations include event temporal downsam-
pling and adding artificial event noise, to perform robust-
ness experiments under these conditions.
Event grouping. Each event in isolation contains limited
information about the scene, so a common practice is to
group a number of events together and process them as a
whole. We consider the following grouping options:
• Fixed-number: We group every NG number of events

such that the kth event group can be defined as:

Gk
.
= {ei | kNG ≤ i < (k + 1)NG} (1)

Here, the rate at which the groups are formed varies ac-
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Figure 1. An overall look at our proposed EVREAL (Event-based Video Reconstruction – Evaluation and Analysis Library) toolkit.

cording to the incoming event rate.
• Fixed-duration: We group events according to non-

overlapping time windows with a fixed duration of TG

secs. The kth event group contains all events with times-
tamps ti falling within the kth time window, defined as:

Gk
.
= {ei | kTG ≤ ti < (k + 1)TG} (2)

In this scheme, the number of events in each group varies
according to the incoming event rate.

• Between-frames: If we also have ground truth intensity
frames together with the incoming event stream, we can
group events such that every event between consecutive
frames belongs to the same group. Therefore, the set of
events in the kth event group can be defined as follows:

Gk
.
= {ei | sk ≤ ti < sk+1} (3)

If the ground truth frames arrive at a fixed rate, then this
option is a special case of the fixed temporal window
grouping. Note that, however, the time difference be-
tween consecutive frames may not be fixed all the time,
e.g., due to changing exposure times of the camera in real-
world datasets, or due to adaptive rendering schemes of
simulators in synthetic datasets.

Event representation. To utilize deep CNN architectures
for event-based data, a common choice is to accumulate
grouped events into a grid-structured representation such as
a voxel grid [36]. We also follow this approach in our eval-
uation procedure. The details of this event representation
are given in the supplementary material.
Representation pre-processing. After forming a represen-
tation from grouped events, it is possible to pre-process this
representation before feeding it to the neural network, such

as cropping or applying normalization. While our frame-
work supports this, we did not include such a pre-processing
in the experimental analysis reported in this paper.
Neural network inference. This module is used for pre-
dicting intensity frames given the event representation by
employing the pre-trained neural network model chosen by
the user. As mentioned earlier, we use PyTorch here.
Post-processing. It is also possible to post-process the in-
tensity frame that the network predicts, by utilizing proce-
dures like robust min/max normalization, as done in [21].
While EVREAL supports this, we did not employ any post-
processing operations in our experiments in this paper.

2.3. Tested Approaches

We compare seven methods from the literature that have
PyTorch based open-source model codes and pre-trained
models. These methods include E2VID [21], FireNet [23],
FireNet+ and E2VID+ [24], SPADE-E2VID [2], SSL-
E2VID [18], and ET-Net [30]. Note that E2VID+ and SSL-
E2VID share the same deep network architecture as E2VID,
while FireNet+ employs the same architecture as FireNet.
Here we utilize the pre-trained models shared publicly by
the authors and evaluate them on the same datasets under a
common experimental evaluation setup.

2.4. Quantitative Image Quality Metrics

To quantitatively assess the quality of videos recon-
structed from events, we use both full-reference and no-
reference metrics. Full-reference metrics, as their name
implies, provide a quality score for an image in regard to
a given reference image. In contrast, no-reference metrics
do not require any ground truth image and give perceptual
quality scores by directly processing input images.
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We utilize three full-reference evaluation metrics: MSE,
SSIM [29], and LPIPS [32]. These metrics are employed
only when high-quality, distortion-free ground truth frames
are available. While the MSE and SSIM are better suited for
capturing distortions, LPIPS measures the perceptual simi-
larity by a deep network trained to conform with human vi-
sual perception. Furthermore, we utilize three no-reference
metrics: BRISQUE [11], NIQE [12], and MANIQA [31].
These metrics are used when the ground truth frames are of
low quality or when they are not available at all. BRISQUE
and NIQE are traditional metrics that employ hand-crafted
features and measure conformity to natural scene statis-
tics, considering various synthetic and authentic distortions
such as blur, noise, and compression. On the other hand,
MANIQA is a deep-learning based method employing vi-
sion transformer architecture [3], which is trained in an
end-to-end manner to assess perceptual image quality while
specifically focusing on distortions seen in the outputs of
neural network based image restoration algorithms.

The results of the aforementioned metrics can be influ-
enced by specific settings. Hence, to ensure consistency, we
provide the detailed settings that we use in the supplemen-
tary material. Although performing histogram equalization
before calculating image quality metrics (as in [18, 20, 23])
is supported by EVREAL, we do not perform this operation
in our experiments reported in this paper.

2.5. Datasets

We adopt commonly used sequences from three datasets
in our evaluation framework, namely the Event Camera
Dataset (ECD) [13], the Multi Vehicle Stereo Event Cam-
era (MVSEC) dataset [34], the High-Quality Frames (HQF)
dataset. In addition, we use handheld sequences from the
Beam Splitter Event and RGB (BS-ERGB) Dataset [25].
We use full-reference metrics to evaluate the performance
of the models on these sequences. To assess the perfor-
mance of the models in challenging scenarios, we also use
no-reference metrics and include sequences with fast mo-
tion, low light, and high dynamic range scenes. Specifi-
cally, we use the latter parts of ECD sequences where cam-
era movements increase to evaluate fast motion (denoted as
ECD-FAST), night driving sequences from the MVSEC to
evaluate low light (denoted as MVSEC-NIGHT), and HDR
sequences from [21] to evaluate high dynamic range scenes.
Please refer to the supplementary material for detailed in-
formation about these datasets.

2.6. Robustness Analysis

To analyze the factors that affect the performance of re-
constructing images from events, several variables need to
be considered. In this paper, we investigate the impact of
four critical ones: event rate, event tensor sparsity, image
reconstruction rate, and temporal irregularity. To evaluate

the results, we utilize the LPIPS metric and employ com-
monly used sequences from the ECD, MVSEC, and HQF
datasets, as mentioned earlier. In the following sections, we
provide detailed descriptions of these experiments.
Event rate. To evaluate the robustness of the methods
to varying event rates, we employ between-frames event
grouping and collect statistics on event rates, measured in
events per second, for each group. We then reconstruct
intensity images using each method based on the event
groups, and calculate LPIPS scores for each time step.
We divide the event rate spectrum into ten equally spaced
bins and compute the mean LPIPS scores for each bin and
method. This enables us to assess the performance of each
method under different event rate conditions and determine
which methods are most robust to changes in event rate.
Tensor sparsity. To analyze how the sparsity of event ten-
sors affect the performance of each method, we carry out
experiments utilizing fixed-number grouping and a toler-
ance of 1 ms to match the reconstructions with ground truth
frames. With this grouping approach, each group contains
the same number of events, resulting in event tensors with
the same sparsity level. Specifically, we conduct 9 differ-
ent experiment runs, with event numbers ranging from 5K
to 45K. We then compute the mean LPIPS scores for each
experiment run and for each method.

Note that if there exists slow motion or little texture in
the scene, using fixed-number grouping can result in event
groups that span a large temporal window when the event
rate is small. Furthermore, the motion or texture captured
by the event camera might be contained in a small region
of pixels rather than being homogeneously distributed to all
of the sensor area. In that case, the temporal discretization
performed in the event representation (to a fixed number of
temporal bins) means more compression of the temporal in-
formation, and this might result in reconstruction artifacts
such as saturation or blur in these regions. The tensor spar-
sity experiments aid us in assessing each method’s robust-
ness to these situations.
Reconstruction rate. To evaluate the impact of chang-
ing frame reconstruction rates on each method’s perfor-
mance, we conduct experiments using fixed-duration group-
ing, which generates a fixed number of frames per second.
We perform ten experiment runs, each with a different event
grouping duration ranging from 10 ms to 100 ms, which
correspond to frame reconstruction rates from 10 FPS to
100 FPS. We use a tolerance of 1 ms to match the recon-
structions with ground truth frames. We then compute the
average LPIPS values for each experiment run and method
to determine their performance under different frame rates.
Temporal irregularity. To evaluate the robustness of
each method in generating frames at irregular intervals,
we conduct experiments by removing a certain percentage
of ground truth frames from each sequence and by using
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between-frames event grouping to group events between the
remaining frames. In particular, we conduct ten experiment
runs with different discarding ratios ranging from 0.0 (stan-
dard case) to 0.9. We then calculate the mean LPIPS scores
obtained for each experiment run for each method.

2.7. Analysis on Downstream Tasks

Event cameras, due to their unique characteristics, can
provide a viable alternative to traditional frame-based cam-
eras in challenging conditions. As a result, using images re-
constructed from event streams for downstream tasks when
standard cameras fail can be beneficial. To assess the effec-
tiveness of each method in an extrinsic manner, we leverage
downstream computer vision tasks including object detec-
tion, image classification, and camera calibration.
Object detection. Object detection is a crucial area of
research in computer vision, with numerous applications
ranging from autonomous navigation to medical imaging.
However, traditional frame-based cameras often fail to cap-
ture satisfactory images under low-light conditions, affect-
ing the performance of object detection methods. Since
event cameras have a high dynamic range compared to tra-
ditional cameras, we evaluated the performance of object
detection on low-light images captured by event cameras.
For this purpose, we used the MVSEC-NIGHTL21 car de-
tection dataset [8], derived from the outdoor night1 data
sequence of MVSEC, captured under night driving condi-
tions. The dataset contains 2,000 labeled intensity images,
with 1,600 frames for training and 400 frames for valida-
tion. We reconstructed images from the provided event se-
quence for each method and extracted frames corresponding
to those in the MVSEC-NIGHTL21 dataset. We then used
YOLOv7 [26] object detector to detect cars in the recon-
structed images and intensity images of the frame camera.
We used a model trained on the COCO dataset [10] for car
detection in the images and evaluated the results using the
PASCAL VOC metric [4], providing the AP score for each
method on the dataset. See the supplementary material for
sample detection visualizations.
Image classification. We evaluated the performance of
our image reconstruction methods using two image classifi-
cation datasets: Neuromorphic-Caltech101 (N-Caltech101)
[16] and Caltech101 [5]. N-Caltech101 is a spiking ver-
sion of the original Caltech101 dataset, containing 100 ob-
ject classes plus a background class (excluding the “Faces”
class). We trained a ResNet50 [7] classification model on
Caltech101, excluding the “Faces” class to ensure consis-
tency between the datasets. For each method, we recon-
structed images on event streams from N-Caltech101, and
ran the ResNet50 model on the reconstructions to evaluate
their accuracy on the dataset.
Camera calibration. It is a critical component of computer
vision systems, but traditional calibration techniques for

standard frame-based cameras cannot be applied to event
cameras due to their asynchronous pixel output. Recently,
Muglikar et al. [14] demonstrated that image reconstruction
can be used to apply conventional calibration techniques for
accurate event-camera calibration. In this study, we com-
pare the performance of various image reconstruction meth-
ods for camera calibration using the calibration sequence
from the ECD dataset. This sequence consists of an event
camera moving in front of a calibration target, and the in-
trinsic calibration parameters of the DAVIS240C, provided
by ECD, serve as the ground truth. We reconstruct image
sequences using each method and accordingly obtain intrin-
sic calibration parameters using the reconstructed images
and the kalibr toolbox [17]. We then measure the mean
absolute percentage error (MAPE) of the intrinsic calibra-
tion parameters to determine the most effective method.

3. Evaluation Results and Discussion
Table 2 presents the quantitative results of image recon-

struction methods on four datasets (ECD, MVSEC, HQF,
and BS-ERGB) and using three evaluation metrics (MSE,
SSIM, and LPIPS), while Fig. 2 displays qualitative re-
sults from sample scenes. The table highlights that the
methods ET-Net and E2VID+ are the top performers across
all datasets, with ET-Net being overall the most accurate.
E2VID+ performs the best on the BS-ERGB dataset, ob-
taining the lowest LPIPS score and highest SSIM. The
self-supervised method SSL-E2VID obtains the best MSE
scores on the ECD and MVSEC datasets, while also obtain-
ing the worst SSIM and LPIPS scores on the ECD, HQF,
and BS-ERGB datasets. This demonstrates the importance
of the metrics used for image quality assessment and em-
phasizes the need for prudence while interpreting the re-
sults of these metrics. The ground truth images from the
ECD and MVSEC datasets are often underexposed, and the
reconstructions of SSL-E2VID are quite dark compared to
other methods (Fig. 2). This brings an advantage to the
SSL-E2VID method in terms of MSE scores on the ECD
and MVSEC datasets, but one should note that MSE scores
are not always in line with human perception of image fi-
delity [28]. While the other methods achieve lower perfor-
mance than these three, some of them still obtain relatively
good results on specific datasets. These results demonstrate
that the choice of the method can depend on the dataset,
highlighting the importance of evaluating methods on mul-
tiple datasets to assess their generalization ability.

Table 3 presents the results of the quantitative analysis on
challenging scenarios involving fast motion, low light, and
high-dynamic range, assessed by using no-reference met-
rics BRISQUE, NIQE, and MANIQA. Among the meth-
ods compared in the table, in general, FireNet+ and E2VID
achieve the best results. SPADE-E2VID and SSL-E2VID
achieve the lowest scores in all three metrics compared
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ECD [13] MVSEC [34] HQF [24] BS-ERGB [25]

MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓

E2VID [21] 0.212 0.424 0.350 0.337 0.206 0.705 0.127 0.540 0.382 0.121 0.446 0.548
FireNet [23] 0.131 0.502 0.320 0.292 0.261 0.700 0.094 0.533 0.441 0.096 0.449 0.532
E2VID+ [24] 0.070 0.560 0.236 0.132 0.345 0.514 0.036 0.643 0.252 0.075 0.493 0.432
FireNet+ [24] 0.063 0.555 0.290 0.218 0.297 0.570 0.040 0.614 0.314 0.090 0.453 0.480
SPADE-E2VID [2] 0.091 0.517 0.337 0.138 0.342 0.589 0.077 0.521 0.502 0.090 0.464 0.641
SSL-E2VID [18] 0.046 0.364 0.425 0.062 0.345 0.593 0.126 0.295 0.498 0.192 0.196 0.676
ET-Net [30] 0.047 0.617 0.224 0.107 0.380 0.489 0.032 0.658 0.260 0.071 0.491 0.442

Table 2. Full-reference quantitative results on the ECD, MVSEC, HQF, and BS-ERGB datasets. In here, we use between-frames
event grouping. No pre-processing or post-processing is applied. The best and second best scores are given in bold and underlined.
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Figure 2. Qualitative comparisons. A sample scene from the ECD, MVSEC, HQF, BS-ERGB, and HDR datasets is given at each row,
from top to bottom, respectively (Note that the rightmost image in the last row is a reference frame rather than the groundtruth.)

ECD-FAST [13] MVSEC-NIGHT [34] HDR [21]

BRISQUE↓ NIQE↓ MANIQA↑ BRISQUE↓ NIQE↓ MANIQA↑ BRISQUE↓ NIQE↓ MANIQA↑

E2VID [21] 14.729 7.991 0.407 8.793 5.191 0.431 18.330 4.209 0.4255
FireNet [23] 19.957 8.095 0.393 21.311 6.071 0.413 21.540 4.085 0.389
E2VID+ [24] 22.627 6.734 0.372 12.285 4.313 0.379 21.340 3.903 0.3751
FireNet+ [24] 18.399 5.460 0.395 10.019 4.306 0.439 15.680 3.236 0.3813
SPADE-E2VID [2] 18.925 10.008 0.094 24.011 8.485 0.434 25.838 5.567 0.4069
SSL-E2VID [18] 60.523 19.201 0.350 63.847 14.133 0.373 69.471 9.358 0.3525
ET-Net [30] 19.698 7.530 0.381 15.533 5.229 0.416 23.526 3.643 0.3791

Table 3. No-reference quantitative results on challenging sequences involving fast motion, low light, and high-dynamic range. Here,
we use between-frames event grouping for ECD-FAST and MVSEC-NIGHT, and fixed-duration event grouping for HDR with a duration
of 40 ms. No pre-processing or post-processing is applied. The best and second best results are given in bold and underlined.

to other methods. Interestingly, ET-Net, the model that
achieves the best scores on standard benchmark datasets
in terms of full-reference metrics (cf. Table 2), performs
poorly in these challenging situations. These results sug-
gest that to assess the overall effectiveness of the image re-
construction methods from events, standard benchmark se-

quences are not enough and further analysis is needed.
Table 4 shows the quantitative results of image recon-

struction methods on three downstream tasks, including re-
sults using ground truth intensity frames as a baseline for
comparison. The evaluation metrics employed are AP (Av-
erage Precision) for object detection, accuracy for image
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Figure 3. Robustness analysis. We investigate how factors including (a) image reconstruction rate, (b) event tensor sparsity, (c) temporal
irregularity (c), and (d) event rate affect the performance of each method.

Obj. Det. Img. Class. Img. Cal.

Methods AP (%) Accuracy (%) MAPE (%)

E2VID [21] 47.51 71.34 1.89
FireNet [23] 45.78 67.91 1.63
E2VID+ [24] 30.58 70.49 10.24
FireNet+ [24] 9.83 47.18 3.90
SPADE-E2VID [2] 19.90 19.53 0.70
SSL-E2VID [18] 3.35 33.90 14.89
ET-Net [30] 21.24 26.61 3.46

Ground Truth Frames 66.84 – 5.06

Table 4. Quantitative results on downstream tasks. The best
and second best results are highlighted in bold and underlined.

classification, and MAPE (Mean Absolute Percentage Er-
ror) for camera calibration. E2VID achieves the highest
scores on object detection and image classification tasks,
with FireNet being the second and third best, respectively.
E2VID+ obtains lower scores on object detection but still
performs well on image classification. Its performance
on camera calibration is, however, significantly worse than
the first two methods. Conversely, SPADE-E2VID has the
lowest score on object detection but the highest score on
camera calibration. However, its performance on image
classification is substantially lower than the other methods.
Even though ET-Net achieves state-of-the-art results in full-
reference image quality metrics, its downstream task perfor-
mance is relatively low compared to other methods.

The object detector achieves the highest score when run
on the original intensity images. Interestingly, on the cam-
era calibration task, using intensity sequence does not give
the minimum MAPE scores. For the image classification
task, since the N-Caltech101 dataset does not include inten-
sity images, we leave the accuracy of the intensity images
blank in the last row. In conclusion, choosing a method
depends on the specific downstream task: E2VID is supe-
rior for night-time vehicle detection and image classifica-
tion, while SPADE-E2VID is the best performer for camera
calibration. However, it is important to consider other fac-
tors such as model complexity, training time, and dataset
size when choosing a method. Intensity images provide a
strong baseline for the object detection task, and further re-
search is needed to improve object detection performance.

Fig. 3 shows plots of mean LPIPS scores for robustness

analysis. As the event grouping duration increases (3a),
some of the worse-performing methods start to improve
while the best-performing methods maintain their per-
formance. When the number of events in groups in-
creases (3b), the performance of SPADE-E2VID decreases
significantly, while a decrease in the number of events re-
duces the performance of SSL-E2VID and E2VID. The
other methods remain fairly robust to changes in this set-
ting. Interestingly, as we discard 10% of the ground truth
frames (3c), all the performances improve, which may be
an indication of a sub-optimal event grouping in the orig-
inal setting. As the discard ratio is increased above 0.1,
the performances decrease significantly, except for E2VID.
SPADE-E2VID is susceptible to event rate increase (3d),
while this change is beneficial for some other methods.

We also analyzed the computational complexity of each
method, which is presented in the supplementary material.

4. Conclusion
This paper presents a framework called EVREAL, which

provides a unified evaluation scheme for event-based video
reconstruction methods. EVREAL can serve as a valuable
resource for researchers and practitioners working in event-
based vision. In this study, we utilized EVREAL to analyze
state-of-the-art models and yielded insightful observations
on their performance under varying settings, challenging
scenarios, and downstream tasks. These models, however,
require certain event representations as their inputs, mak-
ing evaluating them with different event representations im-
practical. This could be considered a limitation of the cur-
rent work. Future work will include incorporating a tem-
poral consistency metric, expanding our test datasets, ex-
ploring additional downstream tasks, and developing color
image reconstruction capabilities in conjunction with model
training. Overall, we believe that our work will contribute
to the development of more effective and robust event-based
video reconstruction models.
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