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Abstract

Human Pose Estimation (HPE) is crucial as a building
block for tasks that are based on the accurate understand-
ing of human position, pose and movements. Therefore, ac-
curacy and efficiency in this block echo throughout a sys-
tem, making it important to find efficient methods, that run
at fast rates for online applications. The state of the art
for mainstream sensors has made considerable advances,
but event camera based HPE is still in its infancy. Event
cameras boast high rates of data capture in a compact data
structure, with advantages like high dynamic range and low
power consumption. In this work, we present a system for
a high frequency estimation of 2D, single-person Human
Pose with event cameras. We provide an online system, that
can be paired directly with an event camera to obtain high
accuracy in real time. For quantitative results, we present
our results on two large scale datasets, DHP19 and event-
Human 3.6m. The system is robust to variance in the res-
olution of the camera and can run at up to 100Hz and an
accuracy 89%.

1. Introduction

Human Pose Estimation (HPE) is often defined as the lo-
calisation of a fixed number of body joints in a human agent
and is widely considered a crucial building block in a vari-
ety of human-centric tasks [29, 30, 36, 41]. In robotics, IoT
or smart home applications that need to assess the environ-
ment and human agents, each person’s pose estimation is
the preliminary stage that feeds action recognition, posture,
emotion and intent estimation pipelines [8, 9]. To this end,
HPE must be accurate and fast, while taking up minimal
computation power. Due to this instrumental role, HPE has
been investigated strongly in the recent years, with various
sensory modalities, like digital cameras, marker based sys-
tems like motion capture and RGBD sensors [8, 28, 31, 37]

On the other hand, the popularity of neuromorphic event

Figure 1. Sample result of MoveEnet from the event-Human 3.6m
dataset superimposed on EROS representation

cameras has increased in the recent years, as they de-
liver information in a more compact data format, thus,
the processing can be faster, with lower computational
load, freeing it up for other components in a larger sys-
tem. This has boosted interest in formulation of algo-
rithms and systems that leverage such advantages for low-
latency tracking, motion estimation, gesture recognition,
etc. (see [12]). However, the field is quite recent and there
are a plethora of visual tasks that need further exploration
to move towards full event-driven pipelines for vision, in-
cluding HPE. Specific applications can benefit substantially
from a high-frequency, marker-less system that event cam-
eras can uniquely provide, like tracking fast motions in
sports applications.

In this work, we exploit the recent advancements in Deep
Learning based HPE to create a pipeline that combines the
advantages of event cameras with the performance of Arti-
ficial Neural Networks (ANNs). We take the approach of
using a smart image-like representation, EROS (described
in Sec. 3.1) of the asynchronous event stream from event
cameras, that supports the re-use of existing and robust
ANNs. This representation is chosen to overcome two
major roadblocks in developing event-based HPE. On one
hand, it allows for a low cost and fast conversion of avail-
able large-scale image-based HPE datasets into an EROS-
like representation, leveraging their diversity for effective
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pre-training of an ANN, before fine-tuning on event camera
datasets. On the other hand, EROS keeps persistent activity
in face of the blind-spot problem, whereby any body part
that is stationary becomes invisible in data representations
with fixed number of events or temporal window.

As architecture for HPE, we traded off accuracy and
efficiency in the available state of the art, choosing
MoveNet [1] for its high frequency inference.

In this paper, we propose a Human Pose Estimation sys-
tem, MoveEnet, that can take events as input from a camera
and estimate 2D pose of the human agent in the scene. The
final system can be attached to any event camera, regard-
less of resolution. We demonstrate the results on 2 large
scale benchmark dataset, DHP19 [3] which has been ac-
quired by event cameras directly and Human 3.6m [20], a
popular video based benchmark converted to events by us.
The resulting pose is can run at up to 100Hz frequency on a
GPU enabled machine, and up to 20 Hz on a CPU-only ma-
chine with 89% accuracy. Code for running the model and
conversion of datasets is made available to the community1.

2. Related Works

We considered works published in peer reviewed venues
as state of the art and for comparative analysis.

Frame-based Human Pose Estimation Many works
have been published in Human Pose Estimation in the last
few years [5,11,21] in the RGB domain, varying from skele-
ton pose, localising few predefined poses [5] to volumetric
pose represented by a mesh over the full body volume [25].
A few surveys covering the area in detail are already avail-
able [2, 8, 24, 38], even as more works are published every
year. Most recent works rely on ANNs, either following a
bottom-up approach or a top-down, holistic approach. One
of the seminal works in the area, OpenPose [4] follows the
bottom-up approach, first detecting limbs in the view and
then grouping them for each human agent. Though many
more works have been published since, OpenPose still re-
mains widely used due to ease of use and high accuracy and
offers a reasonable baseline method.

Bottom-up approaches are widely used and are accurate
on images but when moving to videos, there is no direct way
to optimise the system, even though consecutive frames are
generally relatively similar. This is possible in a top-down
approach [29, 36], where single person pose estimation is
run for each person detected by a person detector running on
the raw input. For a video, the detection can be done less of-
ten than the pose estimation, being computationally lighter.
One recent high frequency system available is MoveNet,

1https://github.com/event-driven-robotics/hpe-
core

though no paper has been published associated with it at
the time of writing [1].

Event-based Human Pose Estimation In event-based vi-
sion, there are very few models addressing Human Pose
Estimation. EventCap [39] employs an hybrid event cam-
era, that creates both an asynchronous event stream as well
as low frequency grayscale intensity images, to obtain a
high frequency 3D volumetric pose. The accuracy of the
pose estimation relies on the optimization step between
the two frames, that can be executed only once the next
grayscale image is available, making it a strictly offline sys-
tem. LiftMono-HPE [32] is an ANN based system that es-
timates a 3D skeleton pose from a monocular event camera.
It uses integrated images obtained by accumulating a fixed
number of events, from which it estimates the pose on 3
orthogonal planes, followed by triangulation. The system
uses the torso length of the person to estimate depth as a
prior, and thus is challenging to use in real world scenario
and runs at about 2Hz online.

EventHPE [43] requires both events and grayscale im-
ages created by an event camera. It first uses the grayscale
image to estimate a starting pose. Simultaneously the events
and grayscale image are fed to an ANN to estimate the op-
tical flow and the silhouette of the person. Another ANN
combines these to initial pose to estimate the change in
the pose. Majority of latest event cameras do not pro-
vide these grayscale images, but this method cannot work
without them, making it less interesting for online testing.
EventPointPose [7] estimates 2D human pose with low la-
tency, by converting the events to a 3D point cloud which
is fed to a point cloud based ANNs to estimate the pose.
Training labels are generated with different modalities, but
the preferred uses the mid point of the moving window,
adding latency (and hence inaccuracy) to the system, if con-
sidered for an online application. The baseline method for
DHP19 [3] uses input from two cameras to triangulate 3D
HPE.

To the author’s best knowledge, there are not any avail-
able system that run directly on the camera’s event stream.
In this work, we present a system that not only runs online
but is also light-weight and updates high frequency and high
accuracy human pose estimates from the event stream.

Representations A single event sourced from an event
camera is not sufficiently informative to make complex es-
timates such as in HPE. A number of events must be ac-
cumulated, either by the algorithm itself [33], or in a pre-
processing layer that creates a spatial or spatio-temporal
representation. Such a representation provides context to
each event, and thus can be used to provide a more infor-
mative input to the algorithm [12].

4025



Events represent incremental change in light, and such
can be integrated to produce absolute intensity images,
however camera bias and noise typically results in poor
quality representations. Error can be decayed over time to
produce reasonable imagery over short periods of time [34],
which we call polarity-integrated images (PIM) in this
work. [19] represented events in a binary 2D image-like ma-
trix that indicated event presence. The Surface of Active
Events [27] encodes the time of the latest event for every
pixel location. Hierarchy of Time Surfaces (HOTS) [22]
calculated features based on neighbourhoods of spatio-
temporal patterns, which are assigned to the pixel locations
with the help of indices. Histogram of Averaged Time-
Surfaces (HATS) [35] applied filtering in the space-time
window to calculate the pixel values, minimising noise. 3D
voxel-like structures [42] can represent events with a third,
temporal, dimension. The timestamp and polarity can be
encoded in many different ways [12].

An important characteristic of an event representation is
the selection of which (or how many) events should be en-
coded at any point in time. Simple metrics such as a moving
time window or a constant number of events can be highly
effective under certain application constraints. However,
anything that is not moving in the scene in this window is
invisible to the camera (blind spots). A moving camera cre-
ates a large, but highly variable, number of events, which
also create an issue with this type of selection methods, as
the computation time strongly depends on the number of
events and can lead to large system latency.

Thus some other representations are designed for speed
invariance and persistence of features across time as they
accumulate the events. The Speed Invariant Time-surface
(SITS) [26] accumulates all past events and produces a lin-
ear scaling based on event order, ignoring the value of the
timestamp. Task dependent tuning has moved away from
the temporal domain, and placed on local region of interest
size, which is less sensitive and requires less modification.
Other representations that embody this property are Thresh-
old Ordinal Surface (TOS) [15] and Exponentially Reduced
Ordinal Surface (EROS) [13], which (among other differ-
ences) use a non-linear and exponential decay, respectively.

3. Methodology

Our approach is to leverage powerful, but efficient-by-
design, frame-based ANN architectures for HPE. The core
of this work is the use of a light-weight image-like event
representation, that solves the disappearance of static body
parts (blind-spots) and allows for pre-training on widely
available frame-based datasets with high accuracy ground
truth followed by fine tuning with native event-camera
datasets.

(a) EROS (b) FixedCount

Figure 2. Samples of EROS and fixedCount of the same moment
for a sample from event-Human 3.6m dataset. The legs are not
visible in the fixedCount representation as the legs are not moving
and, hence, not generating events. The hand-like shape to the right
of the leg is an artifact created by the EROS representation, as a
trade-off for the persistence it offers.

(a) (b)

Figure 3. Samples of the EROS-like representation from images
from the MPII [2] dataset.

3.1. Event-based Input to the Network

The first challenge for event-based HPE comes as events
are a very different data representation compared to images.
To bootstrap from traditional HPE domain, the events and
images must be converted into a common representation.

Commonly used approaches, such as the accumulation
of the most recent events defined by a temporal window [14]
or with a fixed number of events (fixed count) [3, 32] are
simple to implement. However, the representation formed is
far from an image taken by a traditional camera and suffers
from artificially introduced motion blur, that is inherently
absent in the event-stream, or lack the persistence needed
to overcome the blind spots, illustrated in Fig. 2, whereby
the representation of static body parts fades away when a
person moves a set of limbs while the others remain static.

We use the EROS [13] to both mitigate blind spots and
artificial motion blur, and also bridge the gap from events to
RGB for training purposes. Learning efficiency is boosted
when, for any given output, the input is consistent; therefore
it is important that the event-based representation is consis-
tent independent of the dynamics of the scene. EROS has
the following beneficial properties:

• Speed invariance: a consistent representation should
be produced if the person is moving quickly or slowly;

• Local-region update: two limbs should be represented
identically even if one is moving quickly, while the
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(a) (b)

Figure 4. Methodological pipelines. (a) indicates the overall MoveEnet system at inference. Events are converted to the EROS representa-
tion. This is sent through the Deep network to get the Pose. The MoveEnet model indicated in this figure is trained by steps shown in (b):
pre-trained on the EROS-like MPII-based image dataset, followed by finetuning on event-Human 3.6m.

other is stationary;

• Persistence: if the person stops moving the represen-
tation is not modified and the person remains in the
representation;

• Edge features: the surface resembles an edge map
making it compatible with edge-extraction of RGB im-
ages;

The EROS is not perfect in these aspects and artefacts ac-
cumulate on the surface depending on the quality of the in-
put events and the type of scene being observed. The data-
driven, network trained on the EROS offers some mitigation
of noise and artefacts in the representation.

Finally, EROS is a light-weight representation (around
10 million events per second) and remains asynchronous (it
can be queried with millisecond resolution), supporting the
targeted goal of high-frequency, on-line HPE.

3.2. Training Paradigm

Training is performed in two-stages: pre-training from
RGB image-based datasets and refinement on datasets of
event-streams, as shown in Fig. 4b.

3.2.1 Pre-training using RGB Images

Pre-training is now considered to be standard practice, due
to its contribution to generalization and robustness in Deep
Learning models, given the variety and diversity incorpo-
rated in the pre-training datasets, in terms of factors like
viewpoints, lighting conditions, environments etc. [16, 40].
In frame-based vision, pre-training was made possible by
the availability of large scale image and video datasets. In
contrast, large scale datasets in event vision are few and far
between [3].

An important aspect of this work was to unlock RGB
datasets for training neural networks for event cameras. We
bridge the gap between events and frames by processing

each data source to arrive at a common, compatible data
structure.

EROS generates an edge-like output, with other event-
based artefacts. To convert RGB images to a similar repre-
sentation, we perform a canny edge detection on the image
to find points of image gradients and add salt-and-pepper
noise, as in [6]. Samples of EROS-like images obtained
from RGB datasets are shown in Fig. 3

3.2.2 Refinement from Event-streams

Pre-training on EROS-like images does not capture all the
nuances of the artefacts in real EROS representations. The
model is therefore refined on the EROS produced from
event data.

The ground-truth in HPE datasets is created using mo-
tion capture systems with millisecond resolution. The
EROS is speed invariant, and can be queried asyn-
chronously at the precise millisecond to synchronise with
the ground-truth, resulting in highly accurate association.
Representations that accumulate events (i.e. temporal win-
dow or number of events), instead have a non-discrete tem-
poral period that is represented. Ambiguity in exact joint
position arises if the joint moves many pixel during this pe-
riod.

3.3. Choice of Network: MoveNet

The methodology described in Sec. 3 can be applied to
any deep learning architecture as the EROS can be consid-
ered analogous to a greyscale image. The MoveNet [1] ar-
chitecture is a HPE network and was selected, specifically
the Lightning version because it is lightweight and can run
at high frequencies even without a dedicated GPU.

MoveNet is a single person, 2D, HPE deep learning
model published by Google in May 2021 [1]. The model ar-
chitecture is inspired by the multi-headed CenterNet [10]. It
consists of a MobileNetV2 [17] feature extractor backbone
with a Feature Pyramid Network (FPN). Designed for sports
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applications, the original version is trained on COCO [23]
image dataset and a proprietary dataset.

Since the original API does not allow further training of
the model, we trained our model from scratch. The original
MoveNet also boasts a number of library-based optimisa-
tions that have not been incorporated but could be consid-
ered in future work.

4. Implementation
4.1. Datasets

In this work we used a variety of datasets to pre-train and
train the proposed models:

• Pre-training: MPII [2, 6] converted into EROS-like
representation;

• Finetuning: Event-Human 3.6million (eH36m) con-
verted from images to events by us from [20];

• Finetuning: DHP19 [3];

For the comparative analysis, the two event-based
datasets, eH36m and DHP19, allow for a wider comparison
to other methods.

4.1.1 MPII

MPII [2] is an image based large scale, multi-person HPE
dataset with 25k images from a large variety of viewpoints
and cluttered, “in-the-wild” scenarios, that promote gener-
alisation [40].

MoveNet is designed for single-person HPE, while MPII
contains samples with multiple people. Therefore, the train-
ing samples were cropped to segment each person into an
individual sample, thereby maximising the number of sam-
ples available. Images in which multiple people were still
present in the resulting samples were kept to provide fur-
ther generalisation of the trained models. In a pre-training
dataset, the small amount of the increased environment clut-
ter should be constructive to the training paradigm.

The dataset was cropped and converted into the EROS-
like representation as described in Section 3.2.1. Samples
of MPII after the conversion are shown in Fig. 3.

4.1.2 Event-Human 3.6million

The Human 3.6m dataset [20] is a widely used large scale,
multi-view, benchmark video dataset for single person 2D
HPE. Each sequence is captured from 4 video cameras (res-
olution 1000×1000 pixels; frequency 50 Hz), 2 facing the
front and 2 behind each subject. It was recorded on 11 sub-
jects and contains 17 scenarios. We converted this dataset to
events with the resolution of the target camera: 640×480,
employing v2e, a state of the art method [18]. v2e first

generates a set of intermediate frames with a slow-motion
model, then creates the events based on the changes be-
tween these new consecutive frames. It also adds synthetic
noise to the output with a noise model derived from the
event camera. The dataset provides a pose annotation fre-
quency of 50 Hz.

The following steps are followed to crop and convert
each sample to events: The bounding box (BB) defines the

Algorithm 1 Conversion of video sample to events
Require: vid = RGB video
Require: gt = MoCap annotation

bounding box← find min max x y(gt)
bounding box← add margin(bounding box)
bounding box← smart resize to cam res(bounding box)
vid cropped← crop(vid, bounding box)
event stream← v2e(vid cropped)

minimum region in the image that captures all joint loca-
tions over the full sample video. The boundary is then en-
larged by 10 pixels in all directions. If the resulting bound-
ing box is smaller than the target camera resolution, it is
set to the target camera resolution maintaining the central
position. If the bounding box is larger than the target cam-
era resolution the image is resized (maintaining the aspect
ratio). The procedure ensures that:

• No joints of the actor are cropped out;

• There is a single cropping area for the sample. Dif-
ferent cropping area between consecutive frames can
create an discontinuity between frames resulting it ar-
tifacts in the resulting events.

• Joints may move to the edges of the view, mitigating
data bias of centrally located objects, thus promoting
better training for a deep network.

The original dataset is openly available, and the code for
conversion is provided. The choice of timestamp resolution
is (the highest possible), 1ms. eH36m has a spatial resolu-
tion of 640×480, the maximum allowed by the v2e model,
and identical to the camera used to test this method online
(Prophesee ATIS Gen3).

The front and back view of subjects look very similar in
the EROS representation. Therefore, we only consider the
front cameras in this study.

4.1.3 DHP19

The DHP19 dataset [3] is the first and, at the time of writing,
the only large scale HPE dataset acquired from event cam-
eras. It is acquired in an indoor, un-cluttered environment,
using 4 synchronised cameras (346×280 pixels) placed at
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-90, -45, 45 and 90 degrees from the front face of the sub-
ject. It provides 3D annotation, and the camera parameters
required to calculate the 2D projections. 17 subjects were
recorded, performing 33 movements each.

The 13 joint annotations refer to the position of the lo-
cation of the markers, however the standard practice in-
stead provides the center of the joints using a biomechan-
ical model. The difference in annotation results in DHP19
annotations being different from eH3.6m and MPII. Cor-
recting joint locations to the standard positions should be
solved at dataset creation, and is non-trivial in post process-
ing. For example the head (the marker is on top of the head,
instead of the centre of the head) could possibly be shifted
by a fixed offset, but the same is not true for other joints, in
which the joint orientation is required to be known to shift
the joint correctly.

Therefore, a model that has been trained on DHP19,
would give low accuracy values on another dataset in this
study. In contrast, the annotations of MPII and event-human
3.6m are consistent with each other, and with most bench-
mark datasets and state of the art models like OpenPose and
MoveNet.

4.2. Metrics

The primary metric presented in this work is the PCK
(percentage of correct keypoints), it is a percentage accu-
racy measure and is well suited for a single person HPE
scenario. PCK is defined as:

100

N

N∑
i=1

δ(T − di) where δ(x) =

{
1 if x > 0

0 if x < 0

where di is the distance between the predicted and
Ground Truth positions of the ith joint, N = 13 is the num-
ber of keypoints, and T is the percentage of the Threshold,
defined by a limb of the subject in the scene. Therefore,
the PCK metric is independent of the resolution, the height
of the subject, the orientation or viewpoint of the camera, or
the distance of the subject from the camera. Instead MPJPE,
used in most HPE benchmarks, is biased by the camera res-
olution, but we still report values for the sake of comparison
with other manuscripts. In this work, the PCK threshold is
the diagonal torso length of the subject. We use all 13 joints
in the calculation of the PCK.

4.3. Technical specifications

All the results presented in this section were performed
using a Dell Alienware m15 R3, Intel Core i9-10980HK @
2.40GHz x 16, NVIDIA GeForce RTX 2070, 32 GB DDR4
@ 2667MHz. The event camera used for online experi-
ments is Prophesee’s evaluation kit EVK1 with array size
640x480, pixel pitch 15 µm, optical format 3/4”, typical
latency 200 µs and events temporal resolution 1 µs.

Figure 5. PCK results on Event-Human 3.6m dataset as compared
to other methods.

Figure 6. PCK results on DHP19 dataset as compared to other
methods.

Training The MoveNet architecture is first pre-trained
from scratch on EROS-like representation of the MPII
dataset until convergence. The resulting model is trained on
a subset of the target dataset, i.e. either eH36m or DHP19.
The architecture is designed to take inputs of spatial res-
olution 192×192. Thus, the inputs are resized to fit this
dimension, and the resulting predictions are re-scaled to the
original size. The method is tested with a 13-joint skele-
ton. A random hyper-parameter search was executed with
eH36m. The optimal parameters found are used for both
datasets.

5. Experiments
5.1. Comparison to state-of-the-art

Few methods can be compared directly to our work
without placing too many assumptions. We compare to
OpenPose-RGB and MoveNet-RGB as we can use the origi-
nal RGB images of Human 3.6m. As a baseline comparison
for an event-based method, we ran OpenPose on polarity-
integrated images (PIM, see Sec. 2), which operated rea-
sonably for the conditions present in H3.6m. To facilitate
a 2D comparison, LiftMono-HPE [32] was projected onto
a single image plane. Considering it produces a 3D pose
from a monocular input, the projected joints would be less
precise but the comparison is valid for larger PCK thresh-
olds. The model presented with DHP19 [3] is also com-
pared, with additional use of MPJPE2D calculated only on
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(a) Input RGB frame and GT (b) Movenet rgb (c) Movenet fixedcount (d) MoveEnet

Figure 7. Qualitative results on a sample from eH36m. (a) Frame from original Human 3.6m with superimposed pose annotation; (b)
inference of original MoveNet on an RGB frame; (c) fixed count representation and pose estimated by movenet fixedCount and (d) Result
from MoveEnet. The sample has movement in the entire nody simultaneously. All methods are effective in this scenario.

Metric dhp19 [3] LiftMono [32] MoveEnet
PCK@0.4 – 0.28 0.97
PCK@0.6 – 0.51 0.98
MPJPE2D 7.03 26.79 6.28

Table 1. Results for DHP19 dataset on available models with mul-
tiple metrics. PCK is an accuracy out of 1. MPJPE is an average
error in pixels.

Method Representation PCK@0.4 PCK@0.8
openpose rgb

RGB
0.91 0.92

movenet rgb 0.84 0.91
movenet fixedCount fixed Count 0.87 0.93
openpose pim PIM 0.46 0.54
movenet wo finetune

EROS
0.3 0.52

movenet wo pretrain 0.59 0.81
MoveEnet (ours) EROS 0.89 0.93

Table 2. Comparison of accuracy with method for events-Human
3.6m dataset. 0.4 and 0.8 are the Threshold values.

Figure 8. Ablation Study on Event-Human 3.6m dataset.

the front cameras of DHP19 dataset.
Results are shown in Figs. 5 and 6 for eH36m and

DHP19 datasets respectively. Select results are also re-
ported in Tabs. 1 and 2.

5.2. Ablation Studies

The presented model, MoveEnet, has 3 different com-
ponents that contribute to its accuracy and robustness: the
EROS representation, the pre-training, and the targeted fine-

Fixed Count MoveEnet-DHP19 MoveEnet-eH36m

Figure 9. Samples from event stream captured on the
event camera, evaluated on (left to right) movenet fixedCount,
movenet dhp19 (training on lower resolution), and moveEnet.
Top: Person is moving their full body: all 3 identify most joints.
Bottom: Only the hand moves: The first system does not find the
rest of the body.

tuning. The contribution of each of these components can
be understood from Fig. 8. Since the pre-training was
made possible only due to the relationship between EROS
and EROS-like representations, the movenet fixedCount
which is trained on a fixed-count representation, accumula-
tion of n events, also did not have fine tuning. The associ-
ated ground truth is defined as the pose at the average times-
tamp within the integration time window of the n = 7500
used for each input. Results are shown in Fig. 8.

5.3. On-line Experiments

An event stream was captured from the camera with
blind spots, and a single person in the view and
played back at regular speed to be tested by MoveEnet,
movenet fixedCount and movenet dhp19 (trained on
lower resolution). The system was tested to maximum fre-
quency without glitches or system crash. The results are in-
cluded in a single video in the supplementary material and
a few extracted images are shown in Fig. 9.
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6. Results and Discussion

Global analysis MoveEnet performs well on eH3.6m
dataset and is extremely accurate for DHP19. PCK across
the threshold values provides information about the pre-
cision of a system, accuracy at lower thresholds requires
higher precision. MoveEnet obtains high accuracy at even
small threshold values, showing high precision.

With respect to RGB methods processed on RGB values,
MoveEnet is less precise than OpenPose, but more precise
than MoveNet for low thresholds. At high thresholds, all 3
methods converge. The MoveNet architecture has multiple
models. MoveNet has been extensively trained on a large
scale proprietary dataset. Thus, like OpenPose, MoveNet
is challenging to fine tune, if at all. OpenPose is more ac-
curate than MoveEnet but runs at about 10 Hz as opposed
to MoveEnet’s 100Hz. In conclusion, MoveEnet provides
competitive results to both RGB counterparts, especially for
online applications of HPE.

On the DHP19 analysis, MoveEnet performs better than
LiftMono-HPE, as expected, especially because of the error
added to LiftMono-HPE due to the projection from 2D to
3D and then back. However, this influence is minimal at
high threshold values, showing MoveEnet has superior per-
formance. In fact, MoveEnet’s performance with DHP19
is extremely accurate at 97% PCK@0.4. Additionally, the
DHP19 baseline model shows higher average error for 2D
than MoveEnet.

Ablation Without any targeted fine tuning
(movenet wo finetune) with EROS, MoveEnet is
relatively inaccurate, as expected. Without any pre-
training, its precision is lower. movenet fixedCount,
instead, performs well in the structured experiment. This
happens for a number of reasons. Firstly, as mentioned
in Sec. 5.2 since the fixed-Count representation lacks
temporal information, the associated labels are the pose at
the average timestamp of the sample, increasing accuracy,
but adding latency to the system. Additionally, the dataset
has stationary camera. In practice, if the camera moves,
the number of events is very high, and an approach based
on fixed-Count frames would fail, but the EROS repre-
sentation is robust to camera movement and therefore is
expected to maintain its performance. The same issue can
emerge if there is large movement in the scene, with the
same results. Moreover, fixed-Count fails to handle blind
spots and generalise for camera input. These is evident
qualitatively from Fig. 7 where movenet fixedCount
fails to find the legs of the human agent since the movement
is primarily in the torso of the person. Video attached in the
supplementary material would clarify this further.

MoveEnet is robust to changes in resolution, as can
be seen from Fig. 7: The MoveEnet trained on DHP19

(with resolution of 346×280) performs remarkably on the
new data that is acquired with a higher resolution camera
(640×480).

With the success of this 2D single pose estimation
method, MoveEnet can be run on a Region of Interest, in
a larger, multi-person HPE system, by combining it with
a person detector. Moreover, with this precision, a stereo
system can also be created to get accurate 3D Human Pose.

On-line The system can operate at up to 100Hz without
glitch on the GPU enabled system employed. On the CPU-
only this value was 20Hz. Fig. 9 shows the results of 3 mod-
els on event streams acquired by an event camera. The full
video with results from the 3 models is in the supplementary
results. MoveEnet generalises to this real world input. The
model trained on DHP19 with the lower resolution still per-
forms reasonably well on the higher resolution input. When
some parts of the body are in blind spot, MoveEnet with
EROS input continues to work accurately, while the fixed
Count based model fails.

7. Conclusions

In this work, we presented a system for online, high fre-
quency, 2D, single person Human Pose Estimation. To this
end, we created a training paradigm that leveraged the vi-
sual similarity of the EROS event representation, with edge
detection on images to widen access to annotated training
data, thereby obtaining more data for pre-training. This pre-
training is followed by a training on the event-based conver-
sion of the widely used baseline Human 3.6m dataset. The
proposed system is robust to different resolution in event
cameras. Additionally, we demonstrate additional quantita-
tive results on DHP19 and qualitative results on a data sam-
ple with a different setting, acquired in house. Our analysis
shows that MoveEnet performs competitively to state-of-the
art methods, while achieving low-latency online inference,
that is crucial in natural interaction of machines with hu-
mans in application that requires fast decision making and
actuation, for example in ensuring safety in industrial phys-
ical human-robot collaboration. MoveEnet can be used in
a variety of scenarios, especially robot-machine interaction
and collaboration, safety or for sports applications. Expand-
ing MoveEnet to multi-person HPE will entail the develop-
ment of a low-latency person detector, that could be based
on a parallel frame-based pipeline, or rely solely on events.
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