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Abstract

When designing embedded computer vision systems with
limited computational budget, one often needs to take care
of the size of input data. In recent years, however, event
cameras have shown increasingly large sensor sizes. How
small can event data be, while preserving sufficient infor-
mation for the task at hand? We present in this paper a
study to assess and compare human performance in a ges-
ture classification task using event data. Original event data
from IBM’s DVS128 Gesture dataset is downscaled with
several spatial and temporal methods, and the classification
performance on 4 classes is measured with human partic-
ipants. The contributions of this paper are 3-fold: (1) we
establish a size threshold under which the human perfor-
mance falls behind the chance level, (2) we compare sev-
eral spatial and temporal event downscaling methods and
show that all methods give unequal data quality, and (3)
we highlight some unexpected discrepancies in a compari-
son between human vs machine performance. To the best of
our knowledge, this is the first human perception study with
event data.

1. Introduction

In recent years, event cameras have gained signifi-
cant attention as an alternative or a complement to tradi-
tional frame-based cameras for computer vision applica-
tions. Event cameras are capable of capturing temporal
changes in the scene with high temporal resolution and low
latency, making them ideal for real-time applications [4].
However, event data typically contains much more tempo-
ral information than traditional frame-based cameras [10],
making it challenging to process and analyse event data on
embedded systems with limited computational budgets.

One approach to address this challenge is to downscale
the event data before processing it. Downscaling the data
can significantly reduce the computational cost while main-
taining sufficient information for the intended task [6, 7].

However, the optimal size for downscaling event data is not
well established, and there is a need to evaluate the trade-
off between data size and task performance. In this context,
we present a study to assess and compare human perfor-
mance in a gesture classification task using event data. The
study uses original event data from IBM’s DVS128 Gesture
Dataset [1], which consists of a collection of hand gestures
captured using a dynamic vision sensor (DVS) camera.

The study evaluates human classification performance of
four different hand gestures using event data downscaled
with several methods. The study measures human perfor-
mance to establish a size threshold under which human per-
formance falls below the chance level. The paper also com-
pares several downscaling methods and shows that all meth-
ods yield unequal data quality. Additionally, unexpected
discrepancies in a comparison between human and machine
learning are highlighted.

This study is the first of its kind to investigate human per-
ception with event data; this study adds to the machine per-
formance analysis presented in [6] as humans are less sus-
ceptible to spurious correlation in the data than most neural
networks [13] and do not suffer from shortcut learning [5],
especially on the relatively small dataset that is DVS128
gesture (only 133 samples). The findings provide insights
into optimising event data for gesture classification tasks,
which are crucial in embedded computer vision systems
with limited computational budgets, where low latency and
energy efficiency are essential.

2. Material and Method

Hand gesture recognition is a skill used daily in human
society and is tightly integrated with verbal communication,
hence the need for computational learning of such data.
Since it relies heavily on low latency, this task is well-suited
for event-based computation.

2.1. Event dataset

Building on this notion, Amir et al. presented at CVPR
2017 a complete hand gesture neuromorphic dataset called
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DVS128 Gesture [1]. As this dataset has now become a
standard benchmark in event data classification, we will as-
sess in this work the evolution of the human performance of
gesture classification on downscaled samples. To this end,
29 subjects were recorded performing 11 different hand ges-
tures under 3 kinds of illumination conditions, by a DVS128
camera. A total of about 133 samples are available for each
gesture, each composed roughly of 400,000 events and of
dimension 128× 128 pixels, for a duration of 6 seconds ap-
proximately. The dataset is split into two sub-datasets to fa-
cilitate machine learning training: the train sub-category re-
ceived 80% of the recorded samples and the test 20%, with
an even distribution of the 11 gestures between them.

In this work, we aim to evaluate the evolution of hu-
man performance according to different event downscaling
methods at different resolutions — not the human perfor-
mance in a classification task. To achieve this objective,
one did not have to correctly classify each of the 11 gestures
comprised in DVS128 Gesture, but would have to demon-
strate that they were able to correctly separate very similar
gestures in order to prove that the reduction method stud-
ied retained sufficient relevant information. For this pur-
pose, we decided to display to the participants only four
gestures instead of eleven, two by two similar together but
different between the two pairs; our choice was to focus on
the gestures ”right hand clockwise”, ”right hand counter-
clockwise” (both quite similar, only differentiable by the
direction of the hand movement), ”drums” and ”hand rolls”
(similar through the spatial use of events). For each figure,
a short sample from 5 of the original 29 recorded subjects

Figure 1. Poster presented to the participants, illustrating the four
annotated gestures selected from the DVS128 Gesture dataset to
conduct the experiment.

were selected and randomly displayed to the participant, so
that they classify the gesture itself and not the performing
subject. Fig. 1 presents a screenshot of those four gestures
as presented to the participants.

2.2. Methods for event data downscaling

2.2.1 Spatial event downscaling

We describe below the six spatial event downscaling tech-
niques that we assess in this paper. The first four methods
were introduced by Gruel et al. in [7]: a simple event fun-
nelling, a method based on a count of positive and nega-
tive events and two log-luminance reconstructions, one lin-
ear and the other cubic. The additional two neuromorphic
methods were introduced by the same authors in [6]. All
these methods reduce the data by downscaling the x, y co-
ordinates of pixels, bringing an original width × height
sensor size to a target (width/ratio)×(height/ratio) size,
where ratio is the downscaling ratio.

Spatial funnelling The spatial funnelling method simply
consists in dividing all the spatial coordinates of the events
by the dividing factor (and removing any duplicate) to ob-
tain the spatially reduced events. From a computational
point of view, this downscaling method consists simply in
updating the memory address of the event’s x, y coordi-
nates. This process can easily be implemented with low
resource usage given its simplicity. Other advantages lie in
speed and the absence of significant resource usage. How-
ever, a main drawback is the increased spatial density in the
event data, as nearly every event is kept, which may have an
impact on the target task.

Event count The event count method consists in estimat-
ing the normalised value reached by the log-luminance re-
lated to the (larger) pixels in each target size. This nor-
malised event count is updated every time a new event is
triggered. By definition, this method waits for the next event
to be produced before it is able to trigger the next output
event. As previously, its benefits include low computational
resource consumption and speed.

Linear and cubic log-luminance reconstruction The
log-luminance reconstruction method aims to recreate the
log-luminance curves seen by the pixels in the target sensor
size, then extrapolate the events produced by the average of
these curves (see [7] for more details). The curves can be
estimated with linear or cubic interpolation, both linear and
cubic methods are considered in this paper.

In contrast to both previous spatial reduction meth-
ods, this log-luminance reconstruction needs information
on when in the future will be the next event, which is obvi-
ously unknown in the current timestamps. Even though the
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real-time processing needs to adjust the algorithm, the log-
luminance reconstruction has the best optical coherence out
of the existing event downscaling methods.

2.2.2 Spiking neural network-based pooling

As mentioned in [7], it is possible to elegantly use a Spik-
ing Neural Network (SNN) [12] of Leaky-Integrate-and-
Fire (LIF) neurons [8] to downscale events, using a simple
2-layer network. An input 2D layer of size width× height
is connected to a smaller 2D layer of size (width/ratio)×
(height/ratio), which implements a convolutional layer
with a kernel size ratio × ratio, a stride ratio and no
padding. Two different versions were implemented to
downscale events using SNNs, depending on whether the
positive and negative events are handled separately or not.
These two versions will respectively be referenced as sepa-
rate SNN and mutual SNN methods in the remainder. Fur-
thermore, in order to trigger downscaled events that include
both polarities, the input and output SNN layers are actually
composed of 2 × (width × height) neurons (one feature
map per polarity).

The run time of the SNN spatial downscaling method
suffers from the limitations of the SpiNN-3 board [3] it
is run on. The number of input events per simulation
time-step does not influence the simulation run time,
contrary to the number of neurons and connections, i.e. to
the spatial dividing factor.

The six spatial event downscaling methods described
above were experimentally evaluated in this work at four
different dividing factors: 2 (resolution of 64× 64), 4 (res-
olution of 32× 32), 8 (resolution of 16× 16) and 10 (reso-
lution of 13× 13).

2.2.3 Temporal event downscaling

In the present work, we introduce four temporal downscal-
ing methods, reducing the data flow by sub-sampling events
without impacting the spatial resolution. These methods are
adapted to scenarios that highly differ from the ones where
a spatial downscaling method would be used. We believe
their use is especially relevant for embedded models, whose
computing power may not be sufficient to record and pro-
cess all events at the time of their arrival, but which do not
necessarily have a limit on spatial resolution.

Temporal funnelling The temporal funnelling method
comes close to Tonic’s temporal ”Downsample” method [9].
Similarly to the spatial funnelling technique we imple-
mented (see Paragraph 2.2.1), it involves the pooling of
events according to their timestamp rather than spatial coor-
dinates and removes any duplicates. Event data is expressed

with a µs temporal precision. Pooling them according to
their timestamp amounts to keeping only one event of the
current polarity at the current pixel in the time window de-
fined by the temporal factor t, which leads to changing the
temporal precision.

We differentiate between two types of temporal fun-
nelling:

• asynchronous temporal funnelling: each event kept per
pixel, per polarity and per time-window maintains its
original timestamp, with a thinner temporal grain than
the one defined by t.

• synchronous temporal funnelling: each of those events
is kept but with a timestamp rounded to the following
t. This aims to illustrate the behaviour of an embedded
system which would accumulate the kept events into
frames, once all the events of the corresponding time
window are processed.

The main disadvantages of these methods are the in-
duced loss of precision and the increased event density. As
for the spatial funnelling, this amounts to simply updat-
ing the memory address of the events’ t coordinates, thus
having a complexity O(n). These two temporal funnelling
downscaling methods were experimentally evaluated in this
work at five different dividing factors: with time-window
lengths of 0.05s, 0.1s and 0.5s for the synchronous fun-
nelling, and 1s and 5s for the asynchronous funnelling.
These were agreed upon as it was immediately obvious to
us that humans would understand the data obtained with
the asynchronous method much better and for a longer time
window, while they would have a harder time understanding
events accumulated into frames displayed at the end of sim-
ilar time windows. We thus decided to differentiate the fac-
tors used between the synchronous and asynchronous meth-
ods in order to limit the experimental time and not to collect
expected and therefore irrelevant data.

Structural downscaling The structural downscaling
methods can be subdivided into a deterministic one and a
stochastic one. The deterministic method keeps every kth

event out of N . The stochastic method filters events with
a probability p. This strategy has the benefit of maintain-
ing the original time and space scales. It handles events
efficiently, simply deciding whether to keep or discard each
new event. It should be highlighted that this strategy sim-
ulates the real-world situation where an embedded system
is overflowed with a dense event stream and is not able to
process them all: some events will just be dropped [4].

These two temporal structural downscaling methods
were experimentally evaluated in this work at three different
dividing factors p: 10%, 1% and 0.1%. In other words, the
deterministic factor k was respectively set dividing 10, 100
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Figure 2. Interface presented to the subjects during the experiment.

Figure 3. Subjects performing the experiment.

and 1000 and k was converted into p according to Eq. 1.

p = 100× 1

k
(1)

2.3. Interface

Participants interacted with the interface to classify dif-
ferent samples of the 4 gestures, with different downscaling
techniques and resolutions recorded from 5 different users.

To capture the user input, the interface was implemented
using OpenSesame [11], an open-source tool for experiment
creation in the fields of psychology, neuroscience, and ex-
perimental economics. This interface allows for easy stor-
age of the gesture shown in each sample, its downscaling
technique and resolution, enabling also to capture the sub-
ject’s response and its velocity.

The experiment encompassed a training phase to famil-
iarise subjects with the four gestures, and a testing phase
to record the data for analysis. During both phases, every
sample was showcased for 10 seconds in mp4 format. Af-
terwards, subjects could click one of the 4 options (A, B, C,
D) corresponding to the gestures or otherwise click ”I don’t
know” (see Fig. 2).

In the training phase, subjects were presented with the
different gestures without any downscaling and received a
short feedback on the correctness of their answer. This
training was repeated twice per participant. Afterwards,
in the testing phase, the samples were shown without any
feedback. All these visualisations were preceded by a brief
experiment explanation, as well as demographic questions,
such as gender and age range. Moreover, during the whole
experiment, subjects had access to a poster (see Fig. 1) with

illustrations showing each gesture involved in the study.

2.4. Protocol

The study involved two experiments, one to evaluate the
spatial techniques and another to evaluate the temporal tech-
niques. Both were performed by 30 subjects each. The par-
ticipants gave informed consent to participate and were in-
formed of the purpose and nature of the study. The study
was conducted in designated rooms intended only for par-
ticipants, on laptops with screens of similar size and quality.
The participants were invited into the room at different in-
tervals where they could choose one of the 3 stations which
positioning prevented access to the answers of other partic-
ipants (see Fig. 3).

In the experiment to assess spatial methods, participants
identified 122 samples, with an average of 8m30s in the
total task. In the experiment to assess temporal methods,
participants had to identify 44 samples, with an average
of 3m06s in the total task. In both experiments, the ex-
pected response time per sample was 15 seconds. However,
in most cases, the subjects were able to choose an answer
faster (about 4,45 seconds).

To reduce selection bias, participants of different gen-
ders, across all ages took part in the experiment (see Tab. 1).
To reduce expectation bias, participants were not informed
of the techniques they were classifying at any moment. To
minimise order bias, the order of the shown samples was
randomised.

3. Experimental results
3.1. Assessing human performance

In this subsection, we assess the quality of human classi-
fication by analysing the accuracy, the number of unknown
answers, the time to reply and the average number of events
for the different downscaling methods.

As expected, the human accuracy decreases and the per-
centage of unknown answers increases as the dividing fac-
tor increments across all spatial downscaling methods (see
Fig. 4). We can observe that separate SNN and spatial fun-
nelling are the techniques with the best human accuracy
while log-luminance techniques have the worst results.

Human accuracy drops below the chance level (25%) for

Age 18-25 y.o.
More than

25 years old Total
Female 11 11 22
Male 20 17 37
Other 0 1 1
Total 31 29 60

Table 1. Demographic repartition of the experiment participants.
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Figure 4. Human accuracy, rate of ”unknown” responses and human response time to event data downsized spatially.

Figure 5. Human accuracy, rate of ”unknown” responses and human response time to event data downsized temporally.

a spatial diving factor 10 in the log-luminance and mutual
SNN techniques. The biggest drop in human accuracy oc-
curs from factor 4 to factor 8. Exceptionally, this fall is less
steep for log-luminance techniques, where it even increases
slightly but always stays close to the chance level threshold.
The notable difference of human accuracy and percentage

of unknown answers between techniques does not translate
to the time per answer results, which are very homogeneous
among techniques (see Fig. 4).

The temporal techniques with similar resolutions are as-
sessed in Fig. 5 and in the following paragraph. Amongst
the structural techniques, the stochastic outperforms the de-
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Figure 6. Human accuracy according to the number of events produced by spatial downscaling methods.

Figure 7. Human accuracy according to the number of events produced by temporal downscaling methods.

terministic. As for the temporal funnelling techniques, the
asynchronous technique obtains better results, with a small
percentage of unknown answers and a very notable accu-
racy of 70% despite an accumulation of events over 5s.
The temporal downscaling techniques have overall a better
human accuracy and a lesser amount of unknown answers
than the spatial techniques, which might be explained by the
higher number of events. The time per answer is also faster
than for spatial techniques. Only the synchronous tempo-
ral funnelling technique falls below the chance level when
accumulated over a time window of 0.5s.

Fig. 6 plots the human accuracy by spatial techniques
against the number of events kept and clearly shows that the
two techniques with the best overall human performance,
Spatial Funnelling and Separate SNN, also have the highest
number of events from dividing factor 4 onwards. More-
over, the techniques with the worst human accuracy, the log-
luminance techniques, have the smallest number of events

kept with respect to the original number of events.
Regarding the temporal downscaling techniques (see

Fig. 7), we can observe that the number of events kept is the
same across all dividing factors. As mentioned, the stochas-
tic technique’s accuracy exceeds the deterministic’s perfor-
mance.

3.2. Comparing human and machine performance

In this subsection, we assess the quality of human classi-
fication compared to the performance achieved by a neural
network. We compare the results we experimentally col-
lected with the results output by the SNN classifier intro-
duced by Fang et al. in 2021, consisting of a new spiking
neuron model called Parametric Leaky Integrate-and-Fire
(PLIF) [2]. This model allows the authors to implement a
backpropagation learning algorithm, applied to a classifi-
cation task. They present the results obtained when clas-
sifying traditional RGB datasets, as well as neuromorphic
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Figure 8. Ratio of the human accuracy to the classifier accuracy, for each downscale factor, for spatial and temporal. When the curve
exceeds 100% (dotted grey line), the human performance is higher than the classifier’s; when it falls below 100%, the classifier outperforms
humans.

Figure 9. Global comparison between spatial and temporal event downscaling methods, according to the overall human and machine
performance, number of events and downscaling time of 1s of input event data (in s). All those criteria are weighted by the downscaling
factor: the bigger the reduction, the higher the weight of the corresponding value. The number of events corresponds to the ratio of reduced
events to the original number (in %). Each barplot presents the weighted mean of the corresponding value, and the black error bars the
weighted standard deviation.

datasets such as DVS128 Gesture [1]. It is important to note
that the authors chose to process the datasets as frames, and
this precisely because of their high number of events.

For the structural and temporal funnelling techniques,
the classifier outperforms the human as expected, with a
minor exception in the Synchronous Temporal Funnelling
method with a time-window of 0.05s (see Fig. 8). The
difference between human and machine performance is

especially stark for the synchronous temporal funnelling:
this underlines the bias of using a frame-based classifier
with event data. For the spatial methods, we encounter
more evident exceptions in the mutual and separate SNN at
the dividing factors between 2 and 4.

Fig. 9 adds a fourth comparison factor to the three eval-
uated so far (human accuracy, machine performance and
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number of events compared to the original data): the down-
scaling time. The best method would optimise human and
machine accuracy while minimising the number of events
and downscaling time. Amongst the spatial downscaling
methods, we observe once again that the techniques with the
best compromise seem to be Spatial Funnelling and SNN.
Mutual SNN is slightly better because it achieves an equiv-
alent human accuracy with a significantly lower number of
events, even though the downscaling time increments sig-
nificantly. Once again, log-luminance methods don’t pro-
vide satisfactory results; even if they have an almost negli-
gible number of events and are optically coherent with the
behaviour of an event camera (see [7]), the accuracy is not
good enough and the downscaling time is higher than ex-
pected.

Amongst the temporal structural downscaling methods,
the deterministic technique has a very similar accuracy to
stochastic, with a lot less time taken to downscale. Less
evident, in temporal funnelling, synchronous offers better
global results than the asynchronous technique, with a lower
downscaling time and number of events traded off for a de-
crease in human accuracy.

The broad standard deviation observed in Fig. 9 on the
human accuracy measured on five methods (spatial fun-
nelling, event count, SNN separate and mutual and espe-
cially synchronous temporal funnelling) can be explained
by the wide variation in human performance depending on
the intensity of reduction (see Fig. 6 and 7). This reinforces
the overall value of the asynchronous temporal funnelling
method, whose standard deviation is less extensive although
the performances are measured on significantly higher di-
viding factors.

4. Conclusion
We have presented a study on the downscaling of event

data for gesture classification using human participants.
Our study showed that a certain size threshold needs to be
maintained to ensure that human performance does not fall
below the chance level. This threshold is close to the factor
8 for spatial methods, 0.1 for temporal structural methods
and 0.5s for temporal funnelling methods. Furthermore, our
comparison of different downscaling methods revealed that
the quality of the data obtained from these methods is not
uniform. Finally, our results also highlight some discrep-
ancies between human and machine learning approaches to
gesture classification using event data. Human accuracy is
higher than machine accuracy in specific dividing factors
for the Synchronous Temporal Funnelling and Mutual and
Separate SNN techniques. This study sheds light on the po-
tential limitations of event data downscaling and provides
insights into the human perception of gesture classification
using event data. The findings of this study have implica-
tions for the design and implementation of embedded com-

puter vision systems that rely on event data, and may also
inform the development of more accurate machine learning
algorithms for gesture recognition.
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