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Abstract

The stomatopod (mantis shrimp) visual system has re-
cently provided a blueprint for the design of paradigm-
shifting polarization and multispectral imaging sensors, en-
abling solutions to challenging medical and remote sensing
problems. However, these bioinspired frame-based cameras
lack the high dynamic range and asynchronous polarization
vision capabilities of the stomatopod visual system, limit-
ing temporal resolution to ∼12 ms and dynamic range to
∼72 dB. Here we present a novel stomatopod-inspired po-
larization camera which mimics the sustained and transient
biological visual pathways to save power and sample data
beyond the maximum Nyquist frame rate. This bio-inspired
sensor simultaneously captures both synchronous intensity
frames and asynchronous polarization brightness change
information with submillisecond latencies over a million-
fold range of illumination. Our PDAVIS camera is com-
prised of 346x260 pixels, organized in 2-by-2 macropixels,
which filter the incoming light with four linear polariza-
tion filters offset by 45°. Polarization information is recon-
structed using both low-cost and low-latency event-based
algorithms and more accurate but slower deep neural net-
works. Our sensor is used to image high dynamic range po-
larization scenes that vary at high speeds and to observe the
dynamical properties of single collagen fibers in a bovine
tendon under rapid cyclical loads.

Video: https://youtu.be/mFuCeTMWEqY

1. Introduction

Visual information is encoded in light by intensity, color,
and polarization [1]. This information is sensed by bio-
logical eyes [1]–[3] and artificial cameras [4]–[10] which

each have been optimized by evolution driven by maxi-
mum fitness. Eyes have evolved to support visually guided
behavior for the benefit of survival, while digital cameras
have mainly evolved to supply consumer demand for high-
resolution photography. These different evolutionary paths
have created very different visual systems. Existing spec-
tral and polarization digital cameras use synchronous and
generally redundant frames with linear photo response [5],
[9], [11]–[14]. By contrast, eyes are asynchronous, have a
compressed nonlinear response, and their output is sparse
and highly informative [1].

The mantis shrimp visual system (Fig. 1a) is considered
one of the most sophisticated visual systems in nature. It is
sensitive to more than 12 spectral, 4 linear, and 2 circular
polarization channels [1], [2]. Its photosensitive microvilli
have a logarithmic high dynamic range (HDR) response to
incident light. Sensitivity to linearly polarized light is in
part expressed in the dorsal and ventral parts of the om-
matidia, where individual photoreceptors are comprised of
orthogonal sets of microvilli sensitive to orthogonal polar-
ization states. The dorsal/ventral views largely overlap, and
since the dorsal and ventral microvilli are offset by 45°,
four linear polarization states offset by 45° are captured by
the eye. The logarithmic photo responses of the microvilli
enable high dynamic range polarization sensing capabili-
ties, while their asynchronous response to temporally vary-
ing brightness greatly reduces the visual information that is
transmitted to their brain for further processing. It is be-
lieved that mantis shrimp use polarization to discriminate
short-range prey [1], to select a mating partner [15] and to
orient during short-range navigation using celestial polar-
ization patterns [16].

Our work capitalizes on the development of bioinspired
neuromorphic vision sensors, which have enabled higher
dynamic range and lower latency machine vision [17], [18].

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 1. Overview of our bio-inspired Polarization Dynamic and Active pixel VIsion Sensor (PDAVIS). (a) Polarization vision in
the mantis shrimp eye (left) is in part enabled by two sets of orthogonal microvilli located in the dorsal and ventral hemisphere (center),
capturing total of 4 linear polarization states offset by 45 degrees (right). This polarization sensitivity paired with logarithmic photorecep-
tors that output only brightness change enable the mantis shrimp to be effective predator in the shallow coral reefs [1]. (b) The PDAVIS
polarization event camera (left), effectively mimics the mantis shrimp eye by integrating an array of pixelated polarization filters offset
by 45 degrees (center, angle indicated by false colors) with a vision sensor that provides both sustained pathway frames and transient
pathway log-scale brightness change events (right) (see Sup. Mat. 1). (c) A rectangular rotating linear polarizer (left) generates a stream of
brightness change events from the four subpixels in the PDAVIS macropixels that see the polarizer (center). A temporal filter approximates
the temporal derivative from the four individual pixels and then computes the Angle of Polarization (AoP). The result is a stream of AoP
events with low latency (right). (see 3.2). (d) A polarization filter wheel is rotated in front of PDAVIS, which produces frames and events
(left) represented in false colors shown in (c). A DNN (center-left) reconstructs DoLP (center-right) and AoP (right) from the brightness
change events at a higher rate than the cameras maximum frame rate (see 3.4).

Inspired by the ommatidia of mantis shrimp, individual
PDAVIS subpixel circuits [17] are each overlaid with one
of four pixelated linear polarization filters (Fig. 1b). The
PDAVIS takes inspiration from biology by saving energy
by partitioning the perception of fine detail and fast motion
into sustained and transient pathways [1]. It provides a rel-
atively low frequency synchronous readout of frames like
conventional cameras (the “sustained” pathway), and it con-
currently outputs a high frequency stream of asynchronous
brightness change events (the “transient” pathway). Each
event represents a signed log intensity change. Pixels that
see more brightness change generate more events, and the
events have sub-millisecond temporal resolution driven by
the dynamics of the scene. The events enable reconstruct-
ing the absolute intensity between the synchronous frame
intensity samples.

2. Related Work
Current polarization imaging sensors are categorized

into several types, including division of time, division of
amplitude, division of aperture, and Division of Focal Plane
(DoFP) polarimeters [19]–[21]. One of the earliest methods
of polarization imaging used CMOS or CCD imaging sen-
sors with electrically or mechanically controlled polariza-
tion filters, known as division of time polarimeters. These
systems sampled the environment with at least three po-
larization filters. However, they have several drawbacks,
such as reducing the frame rate by a factor of three, high
power consumption, and errors due to motion during sam-

pling. Motion blur effects have been partially addressed by
combining event-based cameras with rotating polarization
filters to enable 3d shape reconstruction [22].

DoFP polarimeters use imaging and micropolarization
filters on the same substrate to sample the environment with
spatially distributed micropolarization filters. Birefringent
materials and thin film polarizers have been used to incor-
porate pixel-pitch-matched polarization filters at the focal
plane [5], [23]–[26]. The monolithic integration of pixe-
lated filters and imaging elements have produced compact,
low power, snap-shot polarimeters that have enabled many
challenging applications [5], [14]. Despite vigorous re-
search in single-chip polarization cameras, the current state-
of-the-art polarization sensors are frame-based, which have
limited dynamic range and frame rates.

3. Reconstructing Polarization Information
3.1. Conventional Polarization Imaging

Polarization is commonly described using the Stokes pa-
rameters: (S0, S1, S2) defined [27]:

S0(t) = I0(t) + I90(t) (1)

S1(t) = I0(t)− I90(t) (2)

S2(t) = I45(t)− I135(t) (3)

where Ii stands for the light intensity transmitted by the lin-
ear polarizer filter with angle i. A fourth Stokes param-
eter (S3) describes the circular polarization properties of
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the light field, which is not detected by the PDAVIS sen-
sor. The Degree of Linear Polarization (DoLP), which de-
scribed how much light is polarized, and the AoP, which
describes the dominant axis of light’s oscillation, can then
be estimated from the Stokes parameters:

DoLP(t) =

√
S1(t)2 + S2(t)2

S0(t)
(4)

AoP(t) =
1

2
arctan

(
S2(t)

S1(t)

)
(5)

3.2. Reconstructing AoP from PDAVIS events only

We can reconstruct the change in absolute log inten-
sity dL from an arbitrary starting point by simply integrat-
ing the events over time, as first studied experimentally
by Brandli, Muller, and Delbruck [28]. Pixel nonideali-
ties cause this estimate to drift. The events method regards
the events as providing high frequency information about
the log intensity change[29]. Above a corner frequency
f3dB = 2πω = 1/(2πτ), the events directly update the fil-
tered log intensity estimate, which decays to zero with time
constant τ between events. Since the AoP depends only on
ratios of differences of Ii values, the absolute intensity fac-
tors out, so we can compute AoP from the reconstructed Ii
values.

For every incoming event, the events method asyn-
chronously updates the related reconstructed log intensity
change dL = d log(F ) as the asynchronous first-order Infi-
nite Impulse Response (IIR) filter (6):

α← e−∆t/τ

dL← αdL+ p
(6)

where ∆t is the time elapsed since last event from the sub-
pixel, τ is the filter time constant, and p = [+θon,−θoff]
is the signed event threshold, which we estimate from the
known bias currents using the formulas from Nozaki and
Delbruck [30] and then fine tune to match the low frequency
frame-based data.

From the dL values, we can compute AoP by exponen-
tiation of dL to obtain the subpixel Ii value, and use the re-
sulting Ii values in (5). In practice, we use the dL values di-
rectly, since generally |dL| < 1 and thus exp(dL) ≈ 1+dL.
The 1 would be the same for all terms in (5) and would thus
cancel, leaving the dL value.

The dL in (6) is the highpass-filtered log intensity, cor-
responding to the Laplace domain transfer function (7):

HdL(s) ≡
dL(s)∑
p(s)

=
τs

1 + τs
(7)

where s is the complex frequency, and
∑

p is the staircase

sum of Dirac delta brightness changes since filter startup.
There are two exactly equivalent descriptions of this fil-

ter: dL is a highpass-filtered log intensity, and it is also
a lowpass-filtered derivative of log intensity. Thus, for
frequencies well below the f3dB corner frequency dL ≈
τdL/dt, i.e., dL can be considered as a lowpass filtered
derivative of L, which filters out derivatives above f3dB. For
frequencies well above f3dB, dL is equal to L minus its DC
value averaged over the exponential time window τ . If we
can assume that this offset is equivalent for each subpixel,
then it cancels out in S1 and S2, which are used to compute
the AoP. For the events results in 2 we used f3dB = 0.5 Hz.

Effect of high pass filter on AoP: For input frequencies
well above f3dB, using the dL values in (5) results in the
AoP if we make the reasonable assumption that all Ix have
the same mean value. For frequencies below f3dB, where
dL ≈ τdL/dt, the following computation shows that using
dL in the AoP equation (5) results in the AoP, but with a
phase shift of π/4. First, we use the modulated intensit to
compute the derivative of Ii, where i is one of the polarizer
angles:

∂Ii(t)

∂t
= −2ItDoLP(t)

∂θ(t)

∂t
sin [θ(t)− i] cos [θ(t)− i]

(8)
Since we only care about measuring a varying AoP, we

have assumed that DoLP and It are constant. Now we can
plug (8) into (5):

1

2
arctan

(
∂S2/∂t

∂S1/∂t

)
=

=
1

2
arctan

(
∂I45/∂t− ∂I135/∂t

∂I0/∂t− ∂I90/∂t

)
=
1

2
arctan

(
2 sin(θ − π

4 ) cos(θ −
π
4 )

2 sin(θ) cos(θ)

)
=
1

2
arctan

(
1

− tan(2θ)

)
=θ(t) mod π +

π

4

=AoP(t) mod π +
π

4
(9)

According to (9), using the temporal derivatives of inten-
sities in (5) results in the AoP with a (constant π/4) offset.

In practice, we used signal periodicity to estimate the
AoP phase in Fig. 2. Most of our experiments used a stimu-
lus frequency above f3dB, so the output of the AoP from the
events method corresponds to the actual AoP without this
offset. For example, Fig. 2c shows the reconstructed AoP
sawtooth at 30 RPM, corresponding to an AoP frequency of
1Hz, which is double the f3dB = 0.5 Hz corner frequency.
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The AoP values are updated as soon as each event is re-
ceived, creating polarization events as illustrated in Fig. 1c.
These asynchronous updates could drive a quick event-
driven processing pipeline that exploits the precise timing
of events. Source code for this algorithm is available 1.

3.3. Complementary Filter: Reconstructing AoP
and DoLP by fusing frames and events

The Complementary Filter (CF) of Scheerlinck [29] is
complementary because it considers Active Pixel Sensor
(APS) frames as providing reliable low frequency inten-
sity (albeit with limited Dynamic Range (DR)), while the
Dynamic Vision Sensor (DVS) events provide reliable high
frequency information about brightness (changes). The CF
method fuses the high pass filtered log intensity of the
events method with low pass filtered frames. At the CF
crossover frequency ω = 1/τ = 2πf3dB, the frame and
event estimates of log intensity are weighted equally. For
lower frequencies, the frame intensities are weighted more,
and for higher frequencies, the event-based estimations are
weighted more.

The CF also has a computational cost of about 10 opera-
tions per DVS event or APS sample, making it attractive for
real-time applications.

At each subpixel, the CF updates its log intensity recon-
struction L each time the pixel measures either intensity or
generates a DVS event. The CF outputs the log intensity
L from the most recent log intensity sample or DVS event.
For each pixel’s APS intensity sample or DVS event, the
asynchronous first-order IIR filter CF update is

α← e−∆t/τ

L← αL+ p︸ ︷︷ ︸
DVS

+(1− α)Laps︸ ︷︷ ︸
APS

(10)

where ∆t is the time since last update, τ = 1/(2πf3dB)
is the filter time constant, p = [+θon,−θoff] is the event’s
log intensity change, and Laps is the log intensity sample.
(If the update is for an event, Laps = 0, or if the update is
for a frame, p = 0.) Since ∆t ≪ τ (i.e., the update rate
is much higher than the time constant), α ≈ 1 − ∆t/τ ∼
1. Removing the APS input from Eq. 10 gives the events
method presented in the previous section (Eq. 6).

In the Laplace domain, the CF filter has form (11):

L(s) =
τs

1 + τs

∑
p(s) +

1

1 + τs
LAPS(s). (11)

For our experiments, we used CF f3dB = 1.6 Hz. The
AoP and DoLP are periodically computed using the sub-
pixel L values.

1https://github.com/joubertdamien/poladvs

Adaptive gain tuning: The CF method includes a down-
weighting of the APS samples when Laps approach their
limits, i.e., are under or overexposed [29, Sec. 4.1]. We
used this feature to improve the DR of the reconstruction.
We set adaptive gain tuning λ = 0.1 and used the limits
L1, L2 = log(10, 200).

Filter startup: To avoid the CF filter startup transient,
we initialize the filter output state to the first LAPS frame as
soon as it is available.

Source code for the original CF implementation, our im-
plementation of CF, and for computing PDAVIS polariza-
tion information are available2.

3.4. Polarization FireNet: Reconstructing AoP and
DoLP from events

The DNN method applied to the PDAVIS data is based
on deep learning and infers the intensity sensed by each sub-
pixel using only the brightness change events. It is based on
the work of [31], [32], which showed that it is possible to
train a deep recurrent neural network to reconstruct video
purely from DVS brightness change events, as long as there
is motion in the scene. The reconstructed offset level is cho-
sen by the DNN based on the statistics of its training data
samples since the DVS output transmits no offset informa-
tion, but the reconstruction is locally more accurate in com-
parison to the CF method.

We used the pretrained FireNet [31] neural network. For
the polarization reconstruction, the events are first separated
into 4 channels, each corresponding to one pixel of 2-by-2
macropixels. Each channel represents one of four differ-
ent polarization angles (see Sec. Sup. Mat. 1 and Fig. 1).
The events are then accumulated into 3D tensors with the
same predetermined exposure time window for each chan-
nel, which is different from the original FireNet which used
constant event-count exposures. This binning requires that
the necessary sample rate must be known a priori to obtain
a precise reconstruction of the polarization information. To
synchronize the four channels, we used a fixed time window
in opposition to a fixed event count, because each channel
codes for different and sometimes even orthogonal angles
of polarization, hence emitting a different number of events.
For example, in the DR measurement, the time window is
set to 10 ms.

Once we receive the stack of frames from the FireNet,
calibration is applied. For the data collected using only a
linear polarizer (Fig. 2), we subtract an offset calculated by
the minimum value of each of the 4 channels before cal-
culating AoP. For the DoLP calculation, a gain table of

2
https://github.com/cedric-scheerlinck/dvs_image_reconstruction,

https://github.com/SensorsINI/jaer/blob/master/src/ch/unizh/ini/jaer/projects/

davis/frames/DavisComplementaryFilter.java,

https://github.com/SensorsINI/jaer/blob/master/src/au/edu/wsu/

PolarizationComplementaryFilter.java,

https://github.com/joubertdamien/pyComplementaryFilter
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the digital numbers paired with its respective multipliers is
made for each RPM from one AoP cycle. This table gives
us the non linear mapping from logarithmic to linear re-
sponse for each of the four channels that is used on a second
data set to calculate the corrected DoLP. As for the DoLP
calculation of the data collected from the linear polarizer
and quarter wave plate (Fig. 3), the 4 channels only have an
offset and normalization of the max data point applied be-
fore DoLP calculation. Then, the FireNet outputs intensity
frames from the event tensors, which we use to compute the
angle and degree of polarization using Eqs. (5) and (4).

Our source code for FireNet reconstruction is available
on GitHub3.

4. Experimental Validation
First, we assessed the ability to reconstruct the time-

varying AoP of fully linearly polarized light (with DoLP=1)
by rotating a linear polarizer at constant speeds (Fig. 2, Sup.
Mat. 1, Supplementary Figs. S2, Video). At low rotation
speeds of less than 60 RPM, the AoP reconstruction error
from both sensors is less than 5°, with the Sony sensor hav-
ing the lowest reconstruction error. The reconstructed DoLP

3https://github.com/tylerchen007/firenet-pdavis

is nearly 1 from both sensors, as expected. Since Sony’s
polarization sensor is fabricated in an optimized semicon-
ductor fab, the mismatches in both the optical properties
of the pixelated polarization filters and electrical properties
of the photodiodes and read-out circuits are minimal, re-
sulting in high accuracy in the reconstructed polarization
information for slow rotation rate. Our PDAVIS prototype
has larger mismatches between the optical properties of the
pixelated filters as well as read-out electronics resulting in
larger error at low frequency, which can be mitigated by
calibration [23]. However, when the linear polarizer is ro-
tated above ∼100 RPM, the Sony and PDAVIS frames start
aliasing and motion blurring (Fig. 2c), which decreases the
estimated DoLP and increases the AoP error. The PDAVIS
events maintain precise timing information and the recon-
structions using events have AoP and DoLP error less than
10° all the way to 1000 RPM.

The second experiment (Fig. 3, Video) assessed the abil-
ity to measure time-varying DoLP while DoLP and AoP
both vary with time. We combined a rotating linear polar-
izer with a fixed QWP. Fig. 3a shows how much the DoLP
error increases as a function of the speed of the QWP, com-
pared to 30 RPM. For visual comparison, each method is
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Figure 2. Comparison of frame-based and event-based AoP and DoLP reconstruction accuracy at various rotational speeds. Input
is image of fully linearly polarized light from a rotating linear polarizer. a Mean absolute error (MAE) of AoP reconstruction for the
various methods averaged over 12x12 Region of Interest (ROI) centered on the polarizer. (see Sup. Mat. 3). PDAVIS and Sony frame
rates are shown in plots and both exposure durations were fixed to 20 ms. The frames methods use only synchronous intensity frames.
The CF method fuses 20 FPS frames and events using a method adapted from [29]. The events method is illustrated in Fig. 1c. The Deep
Neural Network (DNN) method uses only events together with the convolutional recurrent neural network [31]. b DoLP reconstructions.
Both CF or DNN methods show that using events allows reconstructing DoLP well beyond the limiting Nyquist frequency of the frame
sampling. Inset plots the event rate per pixel within the polarizer ROI versus RPM; the event rate outside ROI is < 1Hz after denoising.
c Reconstruction of the AoP from a 100 pixel ROI using various methods. The frame based Sony and PDAVIS reconstructions are severely
aliased at 1000 RPM. which is not true for any of the PDAVIS methods using events.
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Plate (QWP). Each cycle of QWP rotation produces four cycles of DoLP. a Growth of the mean absolute error of DoLP reconstruction
with RPM. The Sony has only synchronous intensity frames (see 3.1). The CF method fuses PDAVIS frames and events (see 3.3). The
DNN method uses only events (see 3.4). b Reconstruction of the absolute DoLP from a 100 pixel ROI using various methods. The frame
based Sony reconstruction is most accurate at low frequency but is severely aliased at 1000 RPM, which is not true for any of the PDAVIS
methods using events. c Statistics of events. Upper plot is event rate versus QWP RPM. Insets show actual ON and OFF events from a
subpixel in response to the sinusoidal intensity variation. Lower plot shows histograms of the time between two consecutive events for the
two rotational speeds of the QWP.

defined to have zero “change of error” at the lowest fre-
quency. Fig. 3b shows the absolute DoLP measured by each
method for 30 and 1000 RPM. At low RPM, the Sony cam-
era makes the most accurate estimate of DoLP. When the
QWP is rotated at higher speeds, the frames from both cam-
eras become aliased and motion blurred, resulting in a large
error increase of over 50% in the Sony DoLP; at 1000 RPM,
the Sony frames are hopelessly blurred and aliased (Fig. 3b,
Sony (frames)). However, the CF method fuses the PDAVIS
events with its 20 FPS frames, clearly improving the re-
construction in comparison with the 50 FPS Sony (Fig. 3b,
PDAVIS CF). Finally, using only the PDAVIS events with
the DNN method keeps the growth in reconstruction er-
ror below 8% all the way to 1000 RPM (Fig. 3b, PDAVIS
DNN). Fig. 3c shows the statistics of the events. At
30 RPM, the distribution of interevent time intervals (lower
histogram) shows that the events are widely spaced because
the brightness changes are slow. At 1000 RPM, the distri-
bution moves to much shorter event intervals, down to less
than 1 ms. The event rate (Fig. 3c upper plot) is directly
proportional to RPM. The insets of the event rate plot show
events from one pixel; the structure of ON and OFF events
is similar for 30 RPM and 1000 RPM, but speeds up by a
factor of 30. This low latency asynchronous PDAVIS output
allows the measurement of fast brightness changes, which

occur much more rapidly than the fixed frame rate; the
PDAVIS events sample as needed, up to more than 1 kHz
in this experiment.

The third experiment (Fig. 4a, Video) compares the
PDAVIS and Sony dynamic range. We imaged set of po-
larization filters offset by 30°rotating at 200 RPM (5 rev/s)
under high contrast 2000:1 lighting, such as commonly en-
countered in remote sensing of natural environments. The
Sony camera exposure is set to 20 ms to capture the darker
part of the scene without underexposing it, which overex-
poses and saturates the brighter part, preventing AoP mea-
surement. The large motion blur is visible in the I0 image
and incorrect AoP in the blurred regions. The PDAVIS can
measure the AoP in both lighting conditions. Even though
the PDAVIS frame is also motion blurred, all event-based
methods produce sharp images.

The fourth experiment (Fig. 4b, Video) shows a poten-
tial medical imaging application of the PDAVIS. We im-
aged the dynamics of a bovine tendon subjected to cyclical
stress, such that its birefringent properties are time vary-
ing. Bovine flexor tendon was sliced using a vibratome to
produce 300-micron thick slices. A single sliced tendon
is mounted on a 6-Degree of Freedom (DOF) computer-
controlled actuator and sensor stage. The end pieces of the
tendon are clamepd with sandpaper to the sensor stage. An
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200 RPM. The I0 images show reconstructed monochromatic intensity from pixels with 0 degree pixelated polarization filters of Fig. 1. The
weakly-polarized regions in the AoP images are masked out using the measured DoLP. b Imaging a tendon that is periodically stretched
at 1 Hz and 10 Hz. The images (upper half) show a single frame (left), an event time window (center) and the corresponding DoLP re-
construction result (right) using the DNN method. The event time window is rendered from a fixed time interval where ON (white) and
OFF (black) events are accumulated to the starting gray image. The DNN input is 3D event tensors (the frames are not used) that have a
duration of 50 ms or 10 ms, resulting in output at 20 or 100 FPS for 1 Hz and 10 Hz respectively. The traces (lower half) compare the DNN
and frame-based reconstructed DoLP, averaged over the ROI indicated in the DoLP image (upper right). With 1 Hz stretching (left), both
methods yield similar results. With 10 Hz stretching (right), the DNN reconstructs the DoLP while the 20 FPS frame-based reconstruction
is severely aliased.

LED light source combined with a linear polarization fil-
ter (Gray Polarizing Film 38-491, Edmund Optics) and an
achromatic QWP (AWQP3, Bolder Vision Optik, Boulder,
Colorado) were placed under the bovine flexor tendon. This
optical setup generates circularly polarized light which is
used to illuminate the tendon. The light that is transmit-
ted through the tissue is imaged with either the PDAVIS or
Sony polarization sensor. Both sensors were equipped with
x10 optical lens with a numerical aperture of 0.25 (f/2) and
placed directly above the tissue.

The tendon is cyclically loaded between 2% and 3%
strain at rates of 1, 5, and 10 Hz for 30 seconds. During
the cyclical loading of the tissue, the birefringent properties

of the individual collagen fibers are modulated as a func-
tion of the applied strain. As circularly polarized light is
transmitted through the tissue under cyclical load, the light
passing through the collagen fibers will scatter (i.e., depo-
larized light) and become elliptically polarized. The ellip-
ticity of the polarized light is directly proportional to the
strain applied to the collagen fibers. Hence, the degree of
linear polarization provides a measurement of the ellipticity
of the circularly polarized light and an indirect measure of
the applied strain on the tendon.

Using high optical magnification, we can observe strain
patterns over time of the individual collagen fibers that com-
prise the tendon. Due to the high optical magnification and

3969



rapid movement of the collagen fibers, preventing aliasing
would require a frame rate that is a large multiple of the
cycle rate. By contrast, DNN reconstruction of the DoLP
(using only events) provides measurement of the dynamic
properties of the individual collagen fibers at higher fre-
quency than the maximum frame rate.

5. PDAVIS and Sony camera specifications
Table 1 compares the design and measured specifica-

tions of the PDAVIS with a state-of-the-art Commodity Off-
The-Shelf (COTS) frame-based polarization camera (FLIR
BFS-U3-51S5), which uses the Sony IMX250 camera chip.
Details of our measurements of dynamic range and extinc-
tion ratio of PDAVIS precede this section.

The Sony polarization sensor has higher resolution,
smaller pixel size, and higher extinction ratio. Our bioin-
spired sensor is fabricated at several different locations: the
event-based sensor is fabricated in a 180nm CIS process
provided by TowerJazz Semiconductors; pixelated polariza-
tion filters are fabricated in Moxtek cleanroom facilities; the
filters and image sensor are integrated at University of Illi-
nois. Due to the complex fabrication steps, the image sensor
pixel pitch is larger and the extinction ratios are lower than
Sony’s sensor. The PDAVIS offers much higher temporal
resolution (≈100 us versus 12 ms) and its DVS output has
superior DR compared to Sony polarization camera (120dB
vs 72dB).

Table 1. Specification and comparison

PDAVIS (this work) COTS Sony IMX-250
Tech. Feature size 180nm 90/40nm stacked
Pixel size 18.5µm 3.45µm
Array size 346x260 2448x2048
Output APS+DVS+IMU APS
Power (camera) est. 3 W 3 W
ER at 500nm 40 350
Max APS frame rate 53 Hza 75 Hz
APS DR 52dB [17] 72 dB
Max DVS event rate 10 MHz -
DVS DR 120dB [17] -
DVS Min latency 3us@1klux [17] -
Min DVS thresholdb ±14% -
DVS threshold mismatchc 3.5% [17] -
a with exposure 80 us.
b At room temperature, with mean background leak activity rate of 0.7 Hz

with background intensity from APS exposure of 26 DN/ms.
c Pixel to pixel 1-σ mismatch of the threshold in temporal contrast.

6. Discussion
Airborne, underwater, and space-based applications can

require high temporal resolution and HDR, together with
spectral and polarization sensitivity. All of these require-
ments increase the data rate, but the bioinspired sparse
data streams and local gain control of event cameras en-
ables near-sensor processing with low latency and a small

computational footprint together with HDR. To compare
PDAVIS with state-of-the-art polarization sensors, we de-
veloped novel event-driven reconstruction algorithms and
compared their angle and degree of polarization reconstruc-
tion abilities to the frame-based camera reconstruction. The
pure event-driven algorithm is the most economical, but it
cannot reconstruct the degree of linear polarization, which
requires an estimate of the absolute intensity which the
event stream does not provide. The CF helps to overcome
this limitation by fusing the event stream with periodically
captured frames while only slightly increasing the compu-
tational cost. The DNN provides the most accurate recon-
struction, but requires a power hungry and expensive GPU
for real time operation, which may not be affordable in a
remote environment close to the sensor or with minimum
latency. A limitation of the PDAVIS is with dense scenes,
which can saturate the event output capacity, causing event
loss. In these situations, a conventional frame-based po-
larization camera could be better suited. By adopting a
bioinspired combination of sustained and transient pathway,
the PDAVIS bridges a gap between the limited temporal
and dynamic range of conventional frame-based polariza-
tion cameras and complex solid state imagers[33] or streak
cameras[34] that can record short sequences at > 107 FPS.
This gap is normally filled by high frame rate cameras that
consume a lot of power and demand bright lighting for the
short exposure times. The PDAVIS enables continuous AoP
and DoLP measurement with high contrast illumination at
frequencies several times the Nyquist rate of frame-based
image sensors. The PDAVIS event output triggers data ac-
quisition and processing only when needed making it ide-
ally matched with the increasing development of activation-
sparsity aware neural accelerators[35]–[37].
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