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Abstract

The field of neuromorphic vision is developing rapidly,
and event cameras are finding their way into more and more
applications. However, the data stream from these sensors
is characterised by significant noise. In this paper, we pro-
pose a method for event data that is capable of removing
approximately 99% of noise while preserving the major-
ity of the valid signal. We have proposed four algorithms
based on the matrix of infinite impulse response (IIR) fil-
ters method. We compared them on several event datasets
that were further modified by adding artificially generated
noise and noise recorded with dynamic vision sensor. The
proposed methods use about 30KB of memory for a sensor
with a resolution of 1280 × 720 and is therefore well suited
for implementation in embedded devices.

1. Introduction
The field of computer vision has been developing rapidly

for a long time. One of the areas that has become partic-
ularly popular in recent years is neuromorphic vision. Dy-
namic vision sensors respond to changes in pixel brightness,
rather than registering the absolute value of the intensity and
colour of the light falling on the matrix pixels. Cameras op-
erating in this way have a number of advantages over tra-
ditional solutions (hereafter referred to as frame cameras).
The first is high temporal resolution. Changes are mon-
itored at a frequency of up to 1MHz (depending on the
sensor model). This makes it possible to monitor very fast
movements with very small motion blur (depends on the il-
lumination of the observed scene [9]), which is a common
problem with frame cameras. The second benefit is low la-
tency. Thanks to the independent operation of the pixels,
there is no need to wait for the entire image to be processed.
This allows to achieve real-world latencies in the order of
about one to a few ms [9]. The third is low power consump-
tion, as only brightness change information is transmitted,
eliminating data redundancy. The power consumption of
the sensor itself is up to a few hundred mW [5]. A final
advantage is the high dynamic range. In the case of event

Figure 1. A simplified diagram of the proposed method and an
example of input and output data, aggregated for 20ms.

cameras, this can even exceed 120 dB. This is considerably
more than even high-quality conventional cameras, which
have a dynamic range of around 60 dB. This allows oper-
ation in both very dark and very bright environments (even
within the same scene).

The use of event cameras also presents challenges with
a new type of vision information. The data obtained is a
sparse point cloud in three-dimensional space (pixel coor-
dinates, time of occurrence and polarity). Therefore, well-
known image processing algorithms developed over several
decades cannot be directly applied to such data. Informa-
tion about the intensity and colour of the light falling on a
given pixel is also not available. Only information about the
increase or decrease in brightness of a given receptor on the
matrix is obtained. Due to the non-ideality of the sensors,
photon shot noise and noise from the analogue part of the
pixel array, these sensors are very prone to noise. These ap-
pear as events that are not related to the movement of the
scene or changes in illumination. They resemble impulse
noise, which is very easy to see in the output data. It is
worth noting that the presence of noise in the processed data
is a potential source of reduced algorithm performance.

Figure 1 shows a simplified schematic of the proposed
method, with example input and output data. The events
have been accumulated over a period of 20ms. A large re-
duction in non-motion related noise is evident.

In this paper we propose 4 algorithms for event data fil-
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tering based on the solution presented in the paper [12]. The
aim of the research described in this article was to develop
an algorithm that requires a small amount of memory and
at the same time has a high interference filtering efficiency,
with as few correct events removed as possible. In order to
reduce the number of valid events removed, the proposed al-
gorithms should reduce the negative effects associated with
the transition of observed objects between neighbouring re-
gions, which was present in the original algorithm. This
type of solution is well suited for implementation in systems
with a small amount of memory, or when excessive mem-
ory usage negatively affects performance (e.g. the proces-
sor is equipped with small cache resources). The proposed
methods have a high filtering efficiency for uncorrelated in-
terference, comparable to popular filtering algorithms, such
as the nearest neighbour method (NNb).

The rest of the article is structured as follows. Chapter 2
describes the research published so far on event sensor data
filtering. Section 3 presents the basic filtering algorithm de-
veloped in previous research. The proposed filtering meth-
ods are then discussed in section 4. Their evaluation and
comparison is presented in section 5. The article concludes
with a summary and possible further development of the
ongoing research in section 6.

2. Previous work
The topic of video filtering of event data has been ad-

dressed many times in the scientific literature due to its great
practical importance. This subsection presents an analysis
and comparison of different approaches to this problem.

A 2008 paper [4] presented one of the first event stream
filtering methods. It consisted of removing events for which
no activity was recorded in their surroundings within a
given time window. This allowed the removal of single,
isolated events. The requirement was to store a timestamp
map with a size equal to the sensor resolution multiplied by
2. In this paper, a sensor with a resolution of 128 × 128 was
used.

The filtering of event data with greyscale information is
presented in the article [10]. An asynchronous time-based
image sensor (ATIS) with a resolution of 304 × 240 was
used. Such sensors report events when the brightness of the
pixels changes, but when an event is detected for a partic-
ular pixel, a reading of the incident light intensity is initi-
ated. As a result, the greyscale value of the reporting pixel
is also available for each event. Asynchronous linear and
non-linear filtering techniques have been proposed. These
include the Gaussian blur filter, the bilateral filter and the
Canny edge detector.

A framework for removing uncorrelated noise on an
FPGA platform was presented in the paper [13]. Times-
tamps corresponding to the processed events were stored
in a register matrix. For each input event, the previously

stored timestamp was read from the matrix. The difference
between the input one and the read one was then calculated.
If this was greater than a preset threshold, the event was
erased. A new timestamp was written to the same location
in the array. In the work in question, this had a size of 128 ×
128. The work also considered writing the received times-
tamp to neighbouring pixels.

In the paper [14], a background activity filter was pro-
posed to pass on space-time correlated events for further
processing. The aim was to reduce communication and
computational overhead while increasing the rate of correct
information content. A 128 × 128 matrix chip with 20 × 20
µm2 cells was designed. Each cell combines subsampling
in the spatial domain with a time window based on current
integration.

The paper [3] compares eight filtering algorithms. Three
methods calculate the difference in timestamps between the
pixel being processed and the last event in its vicinity. The
fourth requires that at least two other events belong to the
neighbourhood of the processed event within the given time
window. Otherwise it will be deleted. The next one deletes
the data if its polarity is the same as the previous event re-
ported by the pixel. The next two methods erase the data
if not enough time has elapsed since the previous event re-
ported by the pixel in question. The last method calculates
the average time between events reported by all pixels.

The article [1] introduces the LDSI algorithm (Less Data
Same Information). Its aim is to reduce the amount of data
processed without removing relevant information. It used
impulse cells, inspired by the action of biological neurons,
to process data in four layers. Successive events increased
the potential of the corresponding neurons and their neigh-
bours in the third layer.

In the paper [11], a spatiotemporal filter with O(N) mem-
ory complexity was presented. In this method, instead of
using one memory cell for each pixel, it was proposed to
use two cells for each row and column, which allowed a
significant reduction in memory usage. An implementation
in an FPGA chip is also presented.

An implementation of a filtering algorithm using a pulse
neural network in the IBM TrueNorth Neurosynaptic Sys-
tem neuromorphic processor is presented in the paper [17].
A variation of the integrate-and-fire neuron model was used.
The network has two layers. The first introduces a break
period. It reduces the maximum response frequency of the
neurons to remove high frequency noise from a single pixel.
The second layer is a neural implementation of the NNb
method. It checks whether other events have been gener-
ated in the vicinity of the event being processed.

In the paper [2], a method for event stream filtering and
compression based on two switched time windows was pre-
sented. These windows operate alternately in two phases.
In the first, events are input into one window and the data
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from the other window are processed and cleaned. In this
way, an image representing the sensor data is created. In
the second phase, the operation of the windows is reversed.
The data from the first window is read and cleaned, and the
data is written to the second window. However, as a result
of the algorithm, the time stamps of individual events are
removed and are not passed to the filter output.

A pedestrian detection system is presented in [16]. In its
first part, a point process filter is proposed to filter out noise
in the event data. It uses an adaptive time window. It al-
lowed to increase the classification accuracy. In the second
part, a binary neural network was used for classification.
The proposed filtering method outputs a two-dimensional
image in which the recorded events are marked. They are
aggregated within a given time window (3ms). In the gen-
erated image, the logical product of adjacent pixels is per-
formed (separately in the horizontal and vertical directions).

The authors of the paper [7] proposed a hashing-based
filtering algorithm that does not require the storage of 32-
bit timestamps, thus achieving low memory requirements.
It was also implemented on an FPGA chip.

An impulse neural network was also presented in the pa-
per [18]. It had an adaptive time window length. A leaky
integrate-and-fire (LIF) neuron model was used. According
to the authors, the proposed method performs better than
the classical filtering method with a time window.

Filtering inspired by the action of the human retina has
been proposed in [8]. A retinal model based on Gaussian
difference filters inspired by the fovea of the optic nerve
was used. A sensor with a resolution of 128 × 128 was
used in this work.

An adaptive background activity filtering method for
event data was presented in [15]. The authors used an opti-
cal flow and a non-parametric KNN (K-nearest neighbour)
regression algorithm. In the first stage of the algorithm, re-
dundant events are removed using a technique based on a
dynamic timestamp. In the second stage, background activ-
ity noise is removed using the adaptive KNN algorithm.

The paper [6] proposes 3 algorithms for filtering event
data. The first calculates the distance to previous events
stored in the first-in-first-out memory. The second checks
whether a certain number of other events have been regis-
tered in the vicinity of the processed event within a given
time window. The last is based on a simple neural network
that processes the age of events from the analysed neigh-
bourhood.

The literature review confirms the importance and pop-
ularity of event data filtering. Newer and newer algorithms
are proposed to remove distortions.

3. Basic version of the algorithm
In the paper [12], a filtering method based on an infinite

impulse response filter array was proposed. The proposed

(a) (b) (c)

Figure 2. Example of a filter result from the paper [12] for a test
sequence. In figure 2a the deleted events are shown in red and the
passed events are shown in green. 2b shows only filtered events.
2c shows a close-up on the events removed due to the object’s
transition between neighbouring regions.

filtering method is able to remove more than 99% of the un-
correlated noise. The operation of the algorithm is based on
dividing the event camera matrix into regions. Each event
is passed to a filter corresponding to the area of the event
being processed. Each domain contains a timestamp. An
event is removed if the difference between the internal area
marker and the timestamp of the processed event is greater
than a preset threshold. The filtering algorithms proposed
in this paper are an extension of this method.

Its greatest feature was the complete independence of
operation of the areas into which the sensor matrix was di-
vided. This could be seen by observing the performance of
the algorithm for objects moving within the field of view
of the event sensor. Correct events were removed when an
object moved between adjacent areas. This is because the
area in question had not previously received any events, so
its timestamp is too small for a new event to pass through.
Figure 2a shows the result of filtering for a test sequence
containing a recording of falling corn kernels. Events with
a period of 10ms are marked in the figure. The red colour
indicates the events removed by the above filter, while the
green colour indicates those passed to its output. The filter
parameters were as follows: filter length – 400 µs, area size
– 16 × 16, update factor – 0.25.

Figure 2b shows only events filtered out by the same fil-
ter. At the bottom of the graph, groups of rejected events
are visible. They form below the lines that mark the edges
between neighbouring regions. A close-up of these groups
is shown in figure 2c. This is due to the phenomenon men-
tioned earlier - the timestamp of the new region is too small
for new events to pass through for further processing.

4. Interpolation-based algorithm
The aim of this research was to reduce the effect de-

scribed in section 3 by using the parameters of neighbour-
ing areas. The possibility of using algorithms to interpolate
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the timestamps of neighbouring areas to smooth the effect
of objects passing between neighbouring areas was investi-
gated. Several possibilities for combining these data were
considered and their effectiveness analysed. The proposed
methods used: timestamps of neighbouring areas, distances
of events from neighbouring areas, frequencies of events
in neighbouring areas. Four algorithms were tested on the
data: maximum timestamps, bilinear interpolation, bilinear
interpolation with frequency weights, and distance-based
interpolation with frequency weights. A common part of all
these algorithms is the estimation of the parameters of the
areas into which the event sensor matrix has been divided.

The parameters of the algorithms developed are: sen-
sor resolution, filter length – the threshold that determines
which events to filter out, scale – the size of the areas into
which the matrix is divided, update rate – the rate at which
the parameters of the areas are updated. The transmitted
events are processed one by one. Each event is first checked
to see if it should be filtered out or sent for further process-
ing. Then the parameters of the area to which the processed
event belongs are updated.

The first parameter to be determined is the area’s times-
tamp, which is the filtered timestamps of events in the area.
Filtering makes it possible to retain some information about
previous events in a given environment. As opposed to stor-
ing only the timestamp of the most recent event, this filter-
ing makes it possible to achieve much greater resistance to
high-intensity disturbances. The formula for calculating the
timestamp is given in the equation (1).

Tsn+1 = Tsn · (1− u) + Tse · u (1)

where: Tsn is the current timestamp of the region, Tsn+1

is the new timestamp of the region, u is the update factor,
Tse is the timestamp of the processed event.

Another parameter to be determined was the event inter-
val for the area under consideration. This should provide in-
formation on the frequency of events. The more frequently
events occurred in an area, the greater its importance in in-
terpolation. The formula describing the process of updating
the event interval was presented in the equation (2).

In+1 = In · (1− u) + (Tse − Tsn) · u (2)

where: In is the current interval of the area, In+1 is the new
interval of the area.

For each event processed, information was also stored
in the area activity table. This was then used at defined
intervals to globally modify all parameters that had not been
updated at that time. This was done to reduce the number of
discarded events when there had been no events for a long
time in the area being analysed. It also made it possible to
reduce the interval values for the same areas, so that their
timestamps had less impact on the result of filtering with

(a) (b)

Figure 3. The 3a shows the division of the matrix depending on
the number of neighbouring regions for the event being processed,
and the 3b shows an example situation for the filtering algorithm.

methods that take into account the frequency of events. This
is done according to the formulas (1) and (2), but the current
time (timestamp of the last processed event) is used instead
of the timestamp of the processed event.

Depending on the position of the event to be processed
on the matrix and the size of the regions into which it has
been divided, a different number of neighbouring regions
can be used for interpolation. This is illustrated in the figure
3a. The dashed line shows the boundaries of the areas into
which the sensor matrix has been divided. In the blue part,
four neighbours are used for the interpolation. In the green
and yellow parts two neighbours are used, horizontally and
vertically respective. In the red part no interpolation is nec-
essary. The interpolation algorithm therefore works slightly
differently in each of these areas.

The operation of the four neighbourhood parameter in-
terpolation methods analysed is described below. The
source code for these methods in MATLAB can be found
in the github repository1.

Figure 3b shows an example. The pixel for which the
event was recorded is shown in red. The dashed lines mark
the centres of the areas. The four adjacent areas are also
visible. The parameters of these regions and the quantities
calculated by the proposed methods are also marked.

Timestamps maximum (TM)

The first method of combining data is to perform a sim-
ple max operation. This is described by the equation (3).

T = max(T11, T12, T21, T22) (3)

It uses the timestamp of each adjacent area. It is denoted
by T11, T12, T21 and T22. The maximum of these four plus
the length of the filter is compared to the timestamp of the
event being processed. If it is greater, the event is sent to
the output.

1https : / / github . com / vision - agh / DVS _
FilterInterpolation
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Bilinear interpolation (BI)

The second method involves bilinear interpolation of
area timestamps depending on the position of the pixel re-
porting the processed event. This is described by the equa-
tions (4) and (5).

T1 =
T11dx2 + T12dx1

scale
T2 =

T21dx2 + T22dx1

scale
(4)

T =
T1dy2 + T2dy1

scale
(5)

It also uses the timestamp of each neighbouring area. These
are combined, taking into account the vertical and horizon-
tal distance of the reporting pixel from the centres of the
neighbouring areas. The result plus the length of the filter
is the threshold for deciding whether an event is rejected or
passed on for further processing.

Bilinear interpolation with frequency weights (BIF)

The next method is similar to the one previously dis-
cussed in the 4 subsection. However, it takes into account
an additional parameter that gives an indirect indication of
the number of events reported in neighbouring areas. This
parameter is the average time between successive events.
This is described by the equations (6).

T1 =
T11I12dx2 + T12I11dx1

I12dx2 + I11dx1

T2 =
T21I22dx2 + T22I21dx1

I22dx2 + I21dx1

T =
T1I21I22dy2 + T2I11I12dy1

I21I22dy2 + I11I12dy1

(6)

The more events reported for an area, the more weight it has
in the threshold calculation. The calculation of the number
of reported events is done by estimating the time between
events for each area. As with the previous methods, the
result plus the length of the filter is the threshold that deter-
mines whether an event is rejected.

Distance-based interpolation with frequency
weights (DIF)

The last method calculates the threshold by taking into
account the distance of the reporting pixel from the centres
of the neighbouring areas and, as in the previous method,
the frequency of events. It uses the timestamp of each
neighbouring area and its estimated interval between con-
secutive events. The assumption is that the weight of neigh-
bouring areas should be proportional to the event frequency
and inversely proportional to their distance from the event.
Proportionality to frequency also implies inverse propor-
tionality to the interval between events, and this quantity
is calculated directly. This is described by the equations (7)
and (8).

C11 =
1

I11d11
C12 =

1

I12d12

C21 =
1

I21d21
C22 =

1

I22d22

(7)

T =
T11C11 + T12C12 + T21C21 + T22C22

C11 + C12 + C21 + C22
(8)

The result of the above equation plus the length of the
filter is the threshold that determines whether an event is
rejected.

5. Evaluation
This chapter compares the proposed methods for com-

bining neighbourhood parameters to filter event data. Sev-
eral test datasets were used for this purpose.

Artificial noise

The original data was modified by adding artificial
events to simulate interference in the event camera data
stream. The artificial noises were randomly generated
events that did not take into account movement in the scene.
They were then added to the test sequence with an indica-
tion that they were artificial data. In the original data, some
of the events were also noise, but it was decided to make this
additional modification in order to test the effectiveness of
the algorithms for noise of different intensities. It also made
it easier to assess how much of the noise was removed by
the proposed methods and how much of the original signal
is was preserved. The first step in the analysis carried out
was to assess the amount of noise in the recorded camera
data sequences for a static scene. This can vary depending
on the conditions of the observed scene (e.g. lighting) or
the performance of the sensor. To do this, histograms of the
number of events in successive time intervals were calcu-
lated. An example of a histogram for a single sequence is
shown in Figure 4.

This makes it easy to distinguish the time intervals in
which a falling object was recorded in the camera’s field
of view. The number of events is then significantly higher.
To estimate the average number of events for a static scene,
the highest and lowest bars were removed and the average
value of the histogram patches for the remaining bars was
calculated. In the example given, the 16 highest and 16 low-
est values were removed and the result was 16297. Given
that each interval was 0.2 s long, it can be estimated that
the average noise rate for a static scene in this case was
around 0.09Hz/pix. The estimate also shows that at least
19.87% of the recorded events were disturbances. It should
be noted that this is only the average amount of noise that is
not related to motion in the scene. Ideally, the events should
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Figure 4. Example histogram of events for one of the falling corn
sequences. Each bar represents the number of events in a 0.2 s
time interval.

only occur in the vicinity of the falling object (assuming
this is the only moving object and the lighting conditions
do not change). However, there are usually a large number
of events in the event stream that are not related to object
movement or changes in brightness. This can be seen in
Figure 1 in the pre-filtration events (left).

The proposed filtering methods were used to filter sev-
eral event camera datasets. The result of the filtering was
evaluated in two ways. The first way was to add artificially
generated noise of varying intensity to the processed data
and check the statistical results of the filtering. The quan-
tities evaluated were the percentage of generated noise re-
moved and the percentage of original events remaining after
filtering. It should be noted, however, that some of the arti-
ficial noise may have fitted so well into the original data that
it is not possible to distinguish them from the real events. It
is therefore not possible to remove them all. As discussed
above, the original data also contains noise. The filtering al-
gorithm should also be able to remove this as best it can. It
is therefore expected that at least some of the original events
will be removed. In addition, based on the estimation of the
minimum proportion of distortions in the test set presented
earlier, it is possible to assume a minimum proportion of the
recorded events that should be removed during filtering.

The second way was to visually assess the result of the
algorithm. This involved checking the transition times of
moving objects between adjacent areas to see if events were
incorrectly removed. Three recordings of falling objects
were used for the tests. The first two contained events
recorded for falling grains of maize. These lasted 10 sec-
onds. The third contained a recording of falling nuts last-
ing 6 seconds. Each of these recordings was analysed at
different artificial noise intensities and for different filter
lengths. For each set, the minimum interference estimation
presented earlier was performed. The results of this estima-
tion are given in the table 1. The proportion of all events
that are the result of the estimation performed is given, as
well as the estimated number of interferences during one

Dataset % noises Noise rate[Hz/pix]
I 19.87 0.09
II 18.47 0.08
III 54.05 0.12

Table 1. Estimation of the amount of noise in the datasets used

Figure 5. The amount of unremoved artificially generated artefacts
by the methods analysed.

Figure 6. Number of original events left by the analysed methods
under analysis.

second of sensor operation.
The performance of the proposed methods has been

compared for the same filter length and different artificial
noise intensities. The results for a test set are shown in the
graphs 5 and 6. The first shows the % of artificial noise that
has not been removed. The second shows the % of the origi-
nal noise that has been passed to the output. The red dashed
line shows the estimate of the maximum number of original
non-interference events based on the estimation described
above. For all methods based on IIR filtering, the same pa-
rameters of the considered methods were used: filter length
- 1000 µs, area size - 16 × 16, update factor - 0.25.

Probably the most commonly used event data filtering
algorithm, the NNb, has also been added to the comparison.
This method checks whether at least one other event has
been recorded in the vicinity of the processed pixel within
the given time window. A time window of 2500 µs was
used, and the size of the neighbourhood was 3 × 3. Its
length was chosen so as not to remove too much of the cor-
rect data.
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From these graphs, several conclusions can be drawn
about the algorithms analysed. Firstly, the TM method
passes the largest number of disturbances to the filter out-
put. From a comparison with the estimation performed ear-
lier, it can be seen that even for a small amount of artificial
interference, this method removes a relatively small propor-
tion of the interference. For a larger amount of noise, it
removes even less than the estimation performed. The ef-
ficiency of the IIR and BI methods also decreases signifi-
cantly as the amount of noise increases.

Secondly, BI removes most of the artificial noise, but the
difference is quite small at around 0.2%. However, it also
removes a very large proportion of the original data. This is
significantly larger than the estimated minimum noise con-
tent. It can therefore be concluded that a very large propor-
tion of the correct data is also removed. It is also worth not-
ing that the unfiltered part of the artificial noise increases
more rapidly with the amount of noise than for the other
methods. An undesirable feature of this algorithm is that
its effectiveness varies greatly with changes in noise inten-
sity. In practical applications, this situation can occur very
frequently (e.g. due to changes in lighting). The other pro-
posed algorithms, in particular DIF and BIF, are very robust
to noise variations.

Thirdly, the results of the two methods using weights
based on event frequency are very similar. They remove
the vast majority of the artificial noise and retain a fair pro-
portion of the original events (including the estimated min-
imum number of noisy events). However, the first graph
analysed shows that the BIF starts to lose efficiency sooner
as the amount of noise increases.

Finally, the proposed methods have similar filtering ef-
ficiencies to the NNb method. However, it can be seen
that the effectiveness of both frequency weighting methods
scales better as the amount of interference increases. The
NNb passes most of the artificially generated interference.
This is due to the fact that as the interference intensity in-
creases, the probability of two such events being very close
together (both in time and space) increases, resulting in one
of the events being passed to the filter output. The proposed
methods are more robust in such situations.

The final element of the evaluation was to check whether
the proposed algorithms achieve the stated goal of a small
fraction of events removed when a moving object passes
between adjacent areas. For this purpose, a performance
comparison was made similar to the result of the original
filtering algorithm 2b presented earlier. These are shown
in figure 7. They show the result of each of the methods
analysed. The same parameters were used for each of them:
filter length - 400 µs, domain size - 16 × 16, update factor
- 0.25. They were taken on the same moment of the same
test dataset. Several conclusions can be drawn.

Firstly, Method II removes a very large proportion of cor-

(a) (b) (c) (d)

Figure 7. Filtered events for the falling corn record. 7a refers to
TM, 7b to BI, 7c to BIF, and 7d to DIF.

rect events. This shows that BI has a negative impact on the
efficiency of the algorithm. This is due to the fact that ac-
tive and inactive areas affect events in the area between their
centres in the same way. As a result, events that would have
been passed to the output in the original version of the algo-
rithm may be removed after using this method. The use of
this method is therefore counterproductive.

Secondly, the result of method I shows the fewest events.
It fulfils the stated requirement, i.e. it does not remove
events when objects pass between neighbouring areas. On
the other hand, it also marks far fewer elements that should
be marked as noise. This means that it removes the least
number of noisy events of the proposed methods. It is there-
fore less effective than the other proposed methods in terms
of noise removal.

Thirdly, both method III and method IV achieve the
stated objective of no removed interference when a moving
object passes between adjacent areas. The result of these
methods is very similar and each produces similar results.
They do a good job of removing interference without re-
moving too many valid events. For method III there are 580
events highlighted in the window shown, while for method
IV there are 581. The events removed are not exactly the
same. If you look closely at the images 7c and 7d you can
see differences, but they are very small. Therefore, it can
be concluded that both methods do a good job of removing
noise and do not remove an excessive number of relevant
events.

A requirement for the proposed filtering methods was
also a low memory requirement. Therefore, it was calcu-
lated how much of the coefficients the proposed methods
need to store in memory for a sensor with a resolution of
1280 × 720. Methods I and II require 14.85KB of data
to be stored in memory, while methods III and IV require
29.7KB. In comparison, methods that require a timestamp
to be stored for each pixel require approximately 3.67MB
of data to be stored in memory.

Recorded noise

The methodology for evaluation with recorded noise data
was inspired by paper [6]. The authors proposed to record
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noise data from a DVS sensor, and then insert in into a clean
event stream. This methodology make it easy to distinguish
the noise and signal data at the output of the evaluated filter.
Moreover, they have also proposed a way to evaluate filer
efficiency without using a single discrimination threshold.
Instead, they have used a Receiver Operating Characteristic
(ROC). It plots True Positive Rate (TPR) and False Posi-
tive Rate (FPR) across different discrimination thresholds.
A measure of filtration quality is the area under the curve
(AUC) calculated for the ROC plot. A higher AUC value
indicates better filtration quality.

In order to apply the methodology described, several
sequences containing only noise were recorded using the
event camera Prophesee EVK1 - Gen4 HD. This involved
positioning the camera so that there were no moving ob-
jects within its field of view and no changes in illumination.
Several sets of data were then recorded for different levels
of illumination. To further increase the range of recorded
noise, the camera operating parameters responsible for sen-
sitivity to changes in incident light intensity were changed.
To test the effectiveness of the filtration in different envi-
ronments and situations, it was decided to record a few test
sequences. Finally, four test sequences were used. The first
was a previously used sequence of falling maize grains. It is
designed to simulate a situation where the system’s objec-
tive is to count falling objects. Due to the small size of the
objects and their high speed, this collection is very sparse.
The second sequence contains a recording of people danc-
ing in an enclosed space. It simulates the situation when a
stationary camera observes a scene with a lot of movement.
The third sequence contains footage of people in a closed
room using a moving event camera. The fourth sequence
contains data recorded while the camera is moving in an
urban environment.

These were filtered to remove as much noise as possi-
ble. The previously recorded noise was then added to the
filtered data. This produced a set of sequences containing
known noise and the actual data. The generated sequences
were then filtered using the proposed filtering methods. The
AUC coefficients for these methods and the different test se-
quences are shown in the Table 2. In the results shown, the
recorded noise with the intensity of around 1.82Hz/pix,
was used. From the results presented, it can be noticed
that the proposed methods perform very well in situations
where a stationary camera captures motion in the observed
scene. They perform significantly less well when process-
ing events from a moving sensor.

6. Conclusion
The aim of the work was to propose a method of event

data filtering that would have high performance but would
not require a large amount of data to be stored in memory.
We proposed 4 methods for event data filtering based on

Algorithm I II III IV
NNb 0.958 0.924 0.867 0.779
IIR 0.995 0.956 0.899 0.838
BI 0.998 0.963 0.906 0.848

BIF 0.999 0.961 0.903 0.841
TM 0.998 0.950 0.881 0.816
DIF 0.999 0.960 0.901 0.842

Table 2. AUC values for the proposed filtration methods and dif-
ferent test scenarios

the method described in the paper [12]. It requires a small
amount of memory, but a significant proportion of valid
events are removed when an object moving in the camera’s
field of view passes between adjacent areas into which the
matrix has been divided. The proposed algorithms consisted
of interpolating data from adjacent areas so that the passage
of objects between the areas would not result in the dele-
tion of correct events. The first method consisted of find-
ing the maximum of the timestamps of adjacent regions, the
second of their bilinear interpolation, the third additionally
took into account the weights of these areas based on the
event frequency, and the last calculated the event distance to
the centres of the neighbouring areas and the weights based
on the event frequency. Their description is given in chap-
ter 4. Chapter 5 compares their performance and memory
requirements for a 1280 × 720 resolution sensor.

Based on the results presented, the DIF algorithm seems
to perform best. However, its advantage over the BIF is
small. From the evaluation carried out, it can also be con-
cluded that the desired objective, i.e. high filtering effi-
ciency with low memory requirements, has been achieved.
In order to evaluate this, a comparison was also made be-
tween the proposed methods and probably the most com-
monly used method for filtering event data, i.e. NNb. The
proposed methods perform better when a stationary cam-
era observes moving objects than when the sensor itself is
moving.

As part of further work, it is planned to implement the
selected algorithm in an FPGA chip. This will allow a sig-
nificant acceleration of the calculations performed. This im-
plementation will be possible due to the low memory con-
sumption of the proposed method.
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