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Abstract

Event cameras are promising novel vision sensors with
higher dynamic range and higher temporal resolution com-
pared to frame-based cameras. In contrast to images,
single-frame detectors without memory perform poorly on
event data. We analyze the distribution of event counts in
the 2D bounding boxes in the 1 Mpx Dataset to find that
the distribution is skewed towards few events, rendering it
impossible to detect objects based only on current informa-
tion. Memory layers like LSTM can alleviate this problem,
but increase training time and inference costs. To bring the
advantages of single-frame detectors to event camera data,
we propose a data filtering mechanism and a novel bound-
ing box memory. The filtering mechanism excludes labels
with low event count during training, which improves per-
formance on unfiltered test data. The bounding box mem-
ory memorizes bounding boxes until an event threshold is
reached, which improves performance, has a low memory
and latency footprint, and can be integrated into any object
detector without retraining. Improvements are shown on a
simulated dataset based on moving MNIST digits, as well
as the 1 Mpx Dataset, the largest event camera object de-
tection dataset to date, illustrating that our method scales
to large datasets and works in a complex real-world setting.

1. Introduction

Autonomous driving is a topic of broad and current in-
terest in computer vision. One of the key ingredients is a
fast and accurate vision system to detect traffic participants
like cars or pedestrians. Akin to human drivers, who al-
most exclusively use their visual system, it is believed that
an autonomous driving agent should also be able to fulfill
this task using only cameras. As a result, a lot of research
and engineering time is invested to design and train bet-
ter neural networks for frame-based camera input. How-
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Figure 1. a) Four event volumes accumulated over a span of 33ms
showing a car that stops due to traffic. While the car can be clearly
identified in the first two frames, it is unidentifiable in the third
frame and hard to identify in the fourth. In the 1 Mpx Dataset,
all of these are labeled as ’car’, because labeling is done with a
frame-based camera. b) Event count vs time for the object in a)

ever, frame-based cameras themselves already exhibit cer-
tain limitations. The low dynamic range leads to a perfor-
mance degradation at night or in mixed-light scenarios like
tunnels or alleys, while the fixed frame rate and absolute in-
tensity measurements lead to motion blur and saturation. A
high frame rate additionally leads to a lot of redundant data
and a higher energy consumption.

Event cameras have been invented almost 15 years ago
[21] to be more similar to the sensory organ of the vi-
sual system, and their working principle improves signifi-
cantly on the short-comings of traditional cameras. Each
pixel measures changes in logarithmic light intensity and
outputs a binary event when the intensity changed over
a certain threshold compared to the intensity at the last
event. Measuring relative logarithmic light intensity leads
to a higher dynamic range and independence of global il-
lumination [26]. Recording only intensity changes is data-
efficient with peak bandwidth reductions of up to a factor
of 1000 [29]. Independent updates of each pixel without
global integration result in a high temporal resolution that
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eliminates motion blur.
Multiple iterations of event cameras have been devel-

oped over the past decade [3, 7, 13, 17, 18, 21, 30–32], with
the most recent generation exhibiting Megapixel resolution
at low power (32 to 400mW), low latency (8 to 150µs) and
high dynamic range (100 to 124 dB) [3, 7, 31]. For compar-
ison, frame-based cameras have a latency of about 8000µs
at a dynamic range of about 60 dB while consuming about
1000mW.

Although event cameras are superior in these aspects,
they have not been used extensively in research or industry.
This is arguably due to a lack of real-world datasets,
which prohibits showing the advantage of event cameras
in complex settings and impedes the development of
algorithms for complex tasks. Recently, this changed with
the release of multiple large-scale automotive datasets like
DDD20 [14], DSEC [10], GEN1 [4] and the 1 Megapixel
Automotive Detection Dataset [26]. Only a few publi-
cations made use of these large-scale datasets so far. In
particular for the 1 Mpx Dataset, only results on a subset
of the data have been published so far [20]. One potential
issue is the considerable amount of compute that is needed
to train large sequence models on vision data.

In this paper, we scrutinize the object detection capabil-
ities of single-shot neural networks on event camera data
and therefore focus on the 1 Megapixel Automotive Detec-
tion Dataset, or 1 Mpx Dataset for short [26]. In particu-
lar, we analyze the performance of a single-frame single-
shot architecture, the most popular form of object detec-
tion network for image-like data. Single-frame denotes that
each prediction only depends on a single frame (in con-
trast, to e.g. predictions based on a video sequence) and
single-shot indicates the single-shot detector (SSD) archi-
tecture [24]. This type of detector is simple to train and fast
during inference, making it a preferred choice. In compar-
ison, the accompanying article to the 1 Mpx Dataset pro-
poses a single-shot ANN architecture called RED (Recur-
rent Event-camera Detector). To integrate the temporal in-
formation over time, the internal state at multiple abstrac-
tion levels in the network is propagated through time with
a convolutional Long Short-Term Memory network (Conv-
LSTM). This is more time- and memory-consuming than a
single-frame detector, but increases detection performance
in their experiments.

To equip a single-frame detector with similar capabili-
ties, we identify and alleviate a specific problem that does
not occur in frame-based data: The dependency of a repre-
sentation of an object on the relative movements between
camera and object. An example for this can be seen in
Fig. 1. An event camera records a car that stops due to a
traffic light. There is less and less relative movement be-
tween the car and camera, and therefore the car is less and

less visible over time. However, the goal of the object de-
tector is to detect the car at any time, because although the
car vanishes in the event stream, it does not vanish in the
real world. Therefore, it is imperative that an event camera
object detector is able to detect objects even if they are not
visible from recent events. To this end, we have the follow-
ing contributions

• We identify that the distribution of events in 1 Mpx
Dataset is skewed towards few events per label, rendering
it impossible for single-frame detectors to perform well

• We simulate a toy dataset to investigate the effect of ob-
jects with a low event count in a dataset

• We propose a dataset filtering mechanism to improve per-
formance of a single-frame detector during inference

• We propose a new, efficient memory that does not need
to be trained and can be used with any object detector for
event cameras

• We show that our filtering mechanism and memory im-
prove the performance of a single-frame detector on the
toy dataset and the 1 Mpx Dataset

2. Related Work
Event camera object detection Approaches for object
detection on event streams can be divided into two streams.
The first adapts existing ANNs for image data based on as-
sumptions of the characteristics of event streams. In [28],
a recurrent U-Net is proposed that can reconstruct a video
from an event stream and the resulting frames can be fed
into a frame-based object detector. An adapted version of
SSD [24] is proposed in [26], which uses convolutional
LSTM layers (ConvLSTM) in the neck of the detection net-
work to propagate information about past detection to the
current prediction. In [6], a frame-based detector is used
on accumulated events and fused with the predictions of a
frame-based detector on frames that are synchronized with
the events. The authors of [23] use an SSD architecture as
well, but propose a novel event representation called Tem-
poral Active Focus, that aims to make the representation
motion-independent. To model global and local dependen-
cies, [19] use a transfomer network that aggregates features
over multiple event tensors. Similarly, [11] propose a recur-
rent vision transformer that is optimized for event streams.
In [9], the authors propose a graph neural network that pro-
cesses a graph representation of the event stream and scale
it up to more complex tasks by reducing computation.

A second approach to process event streams is the use of
spiking neural networks (SNNs). Their promise is to pro-
cess event data more efficiently, because neurons only com-
municate via binary signals and filter noise via a threshold-
ing mechanism. Examples include [15], who adapt a YOLO
network to a spiking neural network and [16] who propose
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a Hybrid SNN-ANN architecture with an SNN feature ex-
tractor and an ANN head for object detection. To train a
spiking neural network, typically many time steps have to
be processed, which rendered it impossible to scale them
up to larger datasets. From the above methods, only the
method accompanying the 1 Mpx Dataset [26] trains and
evaluates on the full dataset.

Datasets The largest object detection dataset for event
camera data is the 1 Mpx Dataset. It provides multiple
hours of high resolution event camera data together with
2D bounding boxes at a labeling rate of 60Hz of an event
camera mounted in a car driving in and around Paris. We
discuss this dataset extensively in Sec. 3.1. The same au-
thors previously released a similar dataset, GEN1 [4], with
the main difference that the label frequency and resolution
are lower (304 × 240 at 4Hz). Because a high resolution
is important for object detection to identify small objects,
and because we want to train a realtime detector, we ex-
clude this dataset from our analysis. Similar to the 1 Mpx
Dataset, DSEC [10] provides a diverse set of driving sce-
narios. In addition to two high resolution event streams, the
dataset also includes stereo frames, LIDAR and GPS, but
no 2D bounding boxes. The biggest event camera dataset to
date (51 hours), DDD20 [14], is recorded with a lower reso-
lution event camera and also does not contain 2D bounding
boxes.

3. Object Detection on Event Camera Data

Our goal in this paper is to understand the challenges of
using event cameras in the complex real-world setting of
2D bounding box detection. To this end, we analyze the
1 Mpx Dataset with the surprising finding that a signifi-
cant amount of objects is represented by only few events
(Sec. 3.1). We are particularly interested to find out how
a typical single-frame single-shot detector commonly used
for images fares in this setting. We present our base archi-
tecture in Sec. 3.2 and compare it to RED [26], the archi-
tecture proposed in conjunction with the 1 Mpx Dataset. To
equip our single-frame architecture with similar capabili-
ties than a recurrent architecture, we propose a data filter-
ing mechanism in Sec. 3.3 and a bounding box memory in
Sec. 3.4. To understand the implications of each proposed
method, we create a toy dataset of moving MNIST digits
(frames and events), called Random-Movements-MNIST,
or RM-MNIST, for short (Sec. 3.5). After showing that
both methods improve results on RM-MNIST, data filter-
ing and memory are applied to a bigger network trained on
the 1 Mpx Dataset (Sec. 3.6), improving our single-frame
architecture there as well.

3.1. The 1 Megapixel Automotive Detection Dataset

The 1 Megapixel Automotive Detection Dataset [26] is
a large-scale, real-world event camera dataset for 2D object
detection. Data is collected with a calibrated setup consist-
ing of an event- and a frame-based camera mounted in a
car. A commercial object detector is used on the frames
to generate the labels for three categories: car, pedestrian
and two-wheeler. With a sensor size of 1280x720 pixels
and 25.8 million labels collected over 15.6 h of driving it is
both the most high resolution and diverse dataset for event
camera data to date. The fact that it is divided into about
700 sequences of approximately 60 seconds makes it pos-
sible to investigate the temporal behavior of event data for
the first time.

Missing from the dataset are the RGB frames for label-
ing, night scenes and annotations, e.g. for different scene
types (city, highway, ...) or weather conditions. Further-
more, due to the automatic labeling procedure, the labels
are only as good as the frame-based object detector they
used.

The authors filter out boxes with a diagonal smaller than
60 pixels and according to the data loading code provided
with their paper [27], also boxes where at least one side
is smaller than 20 pixels (both in the original 1280x720
resolution, i.e. before rescaling). We take this filtered
version as the basis for our analysis and experiments.

To illustrate a potential failure case of the labeling
strategy using frames, we cropped a single car from one
of the training sequences and show it in Fig. 1a. While
the car can be clearly identified in the first two frames
(orange and green), it is not possible to see in frame three
(turquoise) and hard to see in frame four (blue). This is of
course related to the number of events in the specified time
window. Switching to a fixed number of events to generate
voxels instead of a fixed time window seems to resolve this
problem, but the problem with this approach is that it is not
known a priori where the objects are located on the sensor.
Therefore, it is only possible to set a global threshold on the
number of events. This however leads to the same problems
as a fixed time window when more than one object is in
the frame or when the sensor itself moves. Slow-moving
objects and objects moving in the direction of the camera
trajectory will still have a low number of events.

It can be seen in Fig. 1b that this is not a short stand-still
for one or two frames, but over three seconds with almost no
events, equaling 180 almost empty bounding boxes. To fig-
ure out if this is a general trend in the dataset, we look at the
distribution of event counts and areas in the whole dataset in
Fig. 2. The 2D distribution of normalized box area vs event
count is shown in Fig. 2a. To normalize, we divide the area
by 1280·720 = 921600 pixels squared. A logarithmic color
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Figure 2. Distribution of events in bounding boxes and bounding box areas. a) Normalized bounding box area vs event count. The
distribution is broad over the whole spectrum, with a concentration at small boxes. b) Number of objects that are below 100 events for
at least δt seconds. c) Histograms over event counts, areas, and normalized event counts. d) Cumulative distribution of event counts per
label. A significant amount of labels has almost no events.

code shows small amounts in blue and large amounts in yel-
low. We can see that the majority of bounding boxes is in
the lower left corner, i.e. small boxes with only few events.
In the area range from 0-0.25 however, the distribution has
a long tail and there exist a significant amount of boxes at
almost every hexagonal bin, from 0 up to 300 000Events,
where we capped the bins. Interestingly, the event count
does not grow with the area of the bounding box, but in-
stead for larger bounding boxes in the range from 0.25-0.75,
the distribution is most dense between 0 and 75 000Events.
Unsurprisingly, only few bounding boxes fill the whole sen-
sor area, and therefore the number of events is scarce in this
region.

We are particularly interested to find out, if the dataset
contains a lot of cases that are similar to what we have
shown in Fig. 1. Therefore, we use the object tracking
information in the dataset to analyze the event count over
time for each object. Concretely, we define a threshold of
100Events and measure the average time the event count of
an object is below this threshold δt. The number of objects
over δt is shown in Fig. 2b and it can be seen that a signifi-
cant amount of objects is affected. Most of them (100 000)
are not visible for about 100ms, or about 6 frames (regard-
ing the 60Hz labeling frequency), but there are also about
10 000 objects not visible for over one second (at least 60
frames). Not accomodating this information during training

and inference will impact model performance.

In Fig. 2c we show histograms for event count, nor-
malized area and event count divided by normalized area.
This last measure is particularly interesting, as it is a scale-
independent measure for the event count of an object. As
can be seen in the leftmost histogram, the event count
linearly declines on a log-scale (i.e. it declines exponen-
tially). Still, the distribution is very broad, ranging from
0 to 500 000Events. The area shows a similar distribution
with a small bump at around 0.75. Only few samples ex-
ist with a size larger than 0.85. The right-most histogram
shows the distribution of events per (non-normalized) area,
i.e. a value of 1 means that on average there is one event
per pixel in the bounding box. As large changes in the input
can lead to more than one event per pixel in the given time
frame, this does not necessarily mean that the event volume
is saturated, in practice even objects with 4 events per pixel
can still be identified most of the time. The data has a sim-
ilar, but much broader distribution. Two peaks are visible
on the left and right edges, where the right peak just comes
from clipping the data. The left peak indicates that there is
a significant amount of bounding boxes without any events
in it.

The cumulative number of samples (in percent) over the
event count is shown in Fig. 2d. One sixth of the provided
labels have no events at all, and almost every fourth label
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has fewer than 75 events. We therefore believe that this has
to be considered explicitly when optimizing. In Sec. 3.3
we explain our filtering strategy and how it helps the opti-
mization process. In Sec. 3.4 we introduce a novel memory
mechanism for 2D bounding boxes that does not have to be
optimized and can be used with off-the-shelf object detec-
tors for event camera data.

3.2. Object detection network

Single-frame single-shot detectors are the most common
architecture for image data. We want to build on their suc-
cess and find a suitable architecture for event streams, which
is able to handle few events as discussed in Sec. 3.1. RED
[26], which was proposed in conjunction with the 1 Mpx
Dataset includes ConvLSTM layers in the network neck,
which potentially helps in the cases of few events. How-
ever, it is unclear how long the network can remember ob-
jects and we have already seen that a significant amount of
cases require remembering objects over multiple seconds.
In addition, introducing recurrence makes networks more
sophisticated to train, they need more memory during run-
time and have an increased latency and energy consump-
tion. Therefore, we present a single-frame detector, that
we will equip with additional functionality to handle few
events.

Events are transformed to an event volume of shape
(bins, 2, 720, 1280) in fixed time steps of 16.67ms, which
matches the frame rate of ground truth labels of 60Hz. Us-
ing a fixed time step instead of a fixed event count, as it is
done in [28], ensures that the predictions are always in sync
with the ground truth labels and also makes it easier to build
downstream tasks on the basis of predicted labels. As the
temporal information can be controlled by the number of
bins of the event volume, the effect of motion blur for fast
moving objects is reduced, compared to other representa-
tions (histogram, timesurface, frame-like). Similar to [26],
we downscale the input shape of (720, 1280) by two and
rescale the event volumes to a square shape of (360, 360)
pixels.

Multiple heads with pre-defined prior boxes are used
to predict bounding boxes at different scales. The focal
loss [22] is used for classes, smooth L1-loss to regress the
locations. During training, prior boxes are set to match a
ground truth box, if IoU >= 0.5, and background if they
do not match any ground truth bounding box. During infer-
ence, non-maximum suppression (NMS) is used to merge
close predictions. To evaluate the performance of, we use
CoCo mean average precision (mAP) [12].

3.3. Filtering labels

We have seen in Sec. 3.1 that the 1 Mpx Dataset dataset
has a lot of labels with only few events. This can have mul-
tiple effects on the training and validation of object detec-

tors. To make use of these labels during training, a mecha-
nism is needed that does not only utilize the current events
but also information from the past. The authors of [26]
use ConvLSTM layers to propagate the internal state over
time, which solves this problem but leads to a larger storage
footprint during training and validation and longer training
times because the network has to be unrolled during train-
ing and the error signal has to be backpropagated through
time. As shown in Fig. 1b and Fig. 2b, the time to unroll
has to be considerably long (more than 180 steps) to cover
extreme cases where an object is not visible for multiple
seconds. Our goal is to perform object detection on sin-
gle event volumes, and therefore we treat labels with a low
event count as bad labels and filter them out. This can be
viewed as label cleaning, which is a key step to increase
performance [8, 33].

During validation, the labels with low event count can-
not be detected with a single-frame detector. Therefore,
we test them under three scenarios: First, we filter train-
ing, validation and test data to more accurately evaluate the
actual performance on single frames, where we expect the
single-frame detectors to perform as well as detectors with
memory. Second, we filter only training data but test on un-
filtered data to evaluate the gain of reducing these ’noisy’
labels. Third, we add a memory mechanism to the first or
second scenario to evaluate the gain in performance with
memory.

But how many events make an object? By filtering at
different event thresholds, we are going to determine the
best trade-off between discarding labels and filtering noise
(see Sec. 3.6).

3.4. The bounding box memory

As we have seen in Sec. 3.1, a significant amount of la-
bels has only few events. To detect objects under this condi-
tion during inference, it is absolutely necessary to memorize
the past, because the information of the present is not suf-
ficient to detect the object. [26] propose ConvLSTM layers
in the detector neck, which boost the detection performance
significantly. We want to propose a simpler mechanism, that
does not need to be trained, has a low memory footprint and
can be used with any event camera object detector. The
key idea is, that after a successful detection from a single-
frame detector, the object cannot have moved out of the 2D
bounding box without generating events. By remembering
the locations of detected objects, we do not need to detect
the objects again until a significant amount of events occurs
in that region.

In the following, we describe the process in more de-
tail. To start, all predicted bounding boxes above the confi-
dence threshold Tc are put into the memory. At each time
step, bounding boxes are removed from memory if the event
count N crossed a threshold Te and there is a box in the pre-
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N < Te
A = max(IoU(box,

predictions))
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A < Ta
Add box to
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forget box

Yes

1. Delete predictions with event count < Tp
2. Update predictions and memory using flow chart
3. Add predictions with score >Ts to memory

Figure 3. Memory update process. Boxes are memorized as long
as the event count in that area is below a threshold.

dicted boxes that overlaps with the given box from memory
by at least Ta (see Fig. 3). All remaining bounding boxes are
added to the predicted boxes. Checking the overlap Ta en-
ables to correct for missed detections. To update the mem-
ory, predicted boxes are filtered by confidence and event
count, and only boxes with N > Tp are put into memory.
This ensures that predictions from only a small number of
events are discarded, because they are unlikely to be cor-
rect. As the scene changes while the event camera itself is
moving, boxes in memory are deleted regularly without any
explicit intervention.

Our memory can be implemented efficiently even for a
large number of predictions by using Integral Images, intro-
duced in the Viola-Jones detector [34]. The Integral Image
allows calculating event counts for all predictions quickly
and to create it, the event volume at the current time step has
to only be summed in the channel dimension to get a gray
scale image equivalent. We measure an overhead of about
2.12ms per call with Python cProfile [5] on a CPU when
using our implementation of this memory mechanism. We
see a maximum of about 50 bounding boxes stored in mem-
ory at a time, equalling 0.8 kByte.

Due to its simplicity, this memory has multiple failure
cases. Foremost, it is dependent on the performance of the
object detector. False positives could be remembered for
a long time because boxes are only deleted from memory
when the threshold Te is crossed. The object could move
very slightly, which we could account for by estimating the
optical flow from the events but estimating the optical flow
is non-trivial [1,2,35,36]. Occluding objects and egomotion
generate events which clears the memory, although some
objects might not have moved. Despite its simplicity, we
will see in Sec. 3.5, that this memory is highly effective on
a simulated dataset.

3.5. RM-MNIST

So far, we have observed that there is a skew towards
objects with few events in the 1 Mpx Dataset (Sec. 3.1)
and proposed methods to improve training and inference
(Secs. 3.3 and 3.4). We investigate the effectiveness of these
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Figure 4. RM-MNIST. Top: Example sequence. Stationary ob-
jects vanish under event representation. Bottom: Cumulative
event counts per object. Objects stand still 50% of the time.
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Figure 5. RM-MNIST results. no filter: single-frame baseline. fil-
ter train: Boxes without events are filtered from the train dataset.
filter + memory: The memory is added, improving mAP signif-
icantly. filter train and test: Stationary objects are also filtered
from the test dataset; Results are the same for frames and events,
showing that only stationary objects cause the difference in mAP.
Mean and error of the mean over two experiments are reported.

methods first on a smaller dataset where almost 50% of la-
bels are empty.

We simulate the frame- and event-based Random-
Movements-MNIST, or RM-MNIST dataset, with the
MNIST digits 3 and 6 moving in random directions on a
white background. Directions and speeds are drawn at ran-
dom, but digits always move in a straight line. As digits
randomly stop, no events are generated during these times.
We simulate 50 train, 6 validation and 10 test sequences of
5 seconds each at a resolution of 1280x720 pixels using the
Event Camera Simulator [25]. Frames are rendered at 1Hz
to ensure that the simulation is accurate. Frames and labels
are saved at 60Hz to match the rate of the 1 Mpx Dataset.

In Fig. 4 an exemplary sequence is shown. As the num-
ber comes to a stand-still, it is not visible anymore in the
event representation, but can be clearly identified in the
frames. As we simulate the dataset such that all digits stop
at some point, almost 50% of labels do not contain any
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events (Fig. 4). If the object is moving on the other hand, a
lot of events are generated because of the high contrast be-
tween the black digit and white background. When filtering,
we select all objects with non-zero event count. In Fig. 5,
we compare the performance on the unfiltered dataset (’no
filter’) to the performance when filtering the train set (’filter
train’), filtering the train set and using the memory intro-
duced in Sec. 3.4 and filtering train and test set (’filter train
and test’). When using the memory, we tune the thresholds
on the validation set. All results are reported on the test set.

For all experiments, we train the same network on frames
and events to compare the performance. An ideal event
object detector should match the performance of a frame-
based detector. As expected, we see a large difference
in mAP between frames and events of 0.59 on the full
dataset, because the labels with zero event counts are not
detected. When filtering only the training data, we achieve
an absolute mAP increase of 0.04. This shows that learn-
ing improves when filtering out the non-informative labels,
even in this simple case. Adding our memory improves
results drastically and is almost as good as the frame de-
tector (0.824± 0.053 vs 0.842± 0.026). As a control ex-
periment, we also test the performance when filtering train
and test set. As expected, both frame and event detectors
achieve a similar mAP.

To compare the performance of our memory to an archi-
tecture with learnable memory, we trained a network similar
to the one in [26]. We add a block of three ConvLSTM lay-
ers after the backbone. An SSD head is connected to the
last ConvLSTM layer with the same configuration as our
SSD network. To learn temporal dependencies, we unroll
the network for four time steps during training. As we have
to pass a vector of size (batch, 10, 360, 360) to each in-
put, we cannot unroll for more than four time steps due to
the GPU memory, although it would help the training pro-
cess. As with the other experiment, we first evaluate on the
frames and measure (0.769± 0.026)mAP, comparable to
our single-frame detector. When using events, the perfor-
mance drops to (0.263± 0.061)mAP, i.e. the detector does
not manage to learn to memorize the location in the absence
of events. This could be due to the fact that the times, where
the object stands still can span several seconds. To see how
these results translate to the 1 Mpx Dataset, see Sec. 3.6.

3.6. Results on the 1 Mpx Dataset

We have seen in the previous sections, that it is possible
to build a highly effective memory for bounding boxes and
that filtering objects with a low event count out of the train-
ing data improves mean average precision. In this section,
we want to see how the results from RM-MNIST translate
to the large, real-world 1 Mpx Dataset.

Our network is similar to the one described in Sec. 3.5,
but we replace the ResNet-18 backbone with a ResNeXt-50

architecture mAP

single-frame (SF) 0.180 03± 0.000 38
SF + dataset filtering (DF) 0.204 45± 0.000 85
SF + DF + memory 0.213 95± 0.000 78
SF + ConvLSTM 0.1604± 0.0042
RED [26] 0.45

Table 1. Results on the 1 Mpx Dataset. Our dataset filtering and
memory improve over single-frame and ConvLSTM, but do not
surpass RED. Mean and error of the mean over 2 runs.

backbone. The ResNeXt architecture improves on the orig-
inal ResNet by splitting each residual block into multiple,
independent blocks that can learn different transformations.
We believe that this architecture is particularly suited for the
event volume representation, as different transformations in
one block can learn to focus on different time slices and
therefore the time information can be kept in the channels
even in deeper parts of the network. The whole test set is
used to generate the final results.

Results are shown in Fig. 6 and Tab. 1. We plot a few
samples with different event counts from the validation set
to understand how to choose the event count threshold for
the training filter. We see that for all three classes, labels
with fewer than 100 events are unidentifiable. In the 200-
500 events regime, outlines can already be identified but no
details. For more than 1000 events, some details can be
identified, especially in the pedestrian class. Objects with
more than 5000 events are as detailed as an image.

In a first experiment, we train and test on a filtered ver-
sion, shown in Fig. 6b on the upper half. Already filtering
out all labels with 0 events increases results by 0.045, with
minor improvements when filtering at 10 or 100 events. Fil-
tering 1000 or 10 000 events further increases mAP on the
filtered test set. As filtering at these high event counts in-
evitably leads also to filtering small bounding boxes, the
increase in mAP compared to smaller thresholds can there-
fore not only be attributed to the increased identifiability of
the objects, but also to the objects being larger on average,
and therefore easier to detect.

Based on the visual inspection in Fig. 6a and the results
when training on filtered versions with different thresholds
in Fig. 6b, we chose 100 events as our threshold for further
experiments. When training on the dataset with samples
with less than 100 events filtered out, but testing on the un-
filtered test set, we see an increase of 0.024mAP. Adding
the memory presented in Sec. 3.4 additionally increases
mAP by 0.010. The thresholds we chose are Tp = 0.02,
Te = 0.05, and we deactivate the IoU threshold (set to -1),
which we found by random search on 50% of the valida-
tion set. The increase in mAP is not as high as it was on
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Figure 6. Results on 1 Mpx Dataset. a) Samples for the three classes car, two-wheeler and pedestrian for different event counts in the
validation set. Labels below 100 events are not identifiable. There is no difference in detail for objects above 5000 events. b) mAP for
different training configurations. The top half shows performance when filtering train and test with a certain event count threshold. Jumps
in mAP are at 0, 1000 and 10 000 events. mAP increases when training on a filtered version with all labels below 100 events removed.
Adding the memory further increases mAP.

the RM-MNIST dataset. We discuss different failure cases
of our memory in the appendix, with the conclusion that a
main driving factor is the performance of the single-frame
detector: If the detector produces a lot of false positives,
the memory tends to increase the effect by memorizing the
false positives over multiple time steps.

The best result in [26] is 0.43mAP, approximately two
times our best result. On the other hand, their single-
frame detector Events-RetinaNet is on par with our single-
frame detector without memory and filtering (0.18mAP vs
(0.180 03± 0.000 38)mAP). This begs the question, if the
difference comes only from the memory mechanism (Conv-
LSTM vs our algorithm). To this end, we also train a net-
work with three ConvLSTM layers after our ResNeXt-50
backbone to get (0.1604± 0.0042)mAP, even worse than
the results of the single-shot detector. This could be due
to our small rollout size of four time steps which leads to
worse predictions from non-zero initial states.

4. Conclusion

In this paper we have identified a problem when frame
information is used to create labels for event camera data,
at the example of the 1 Mpx Dataset. Labelled objects can
appear with only few events, because the object and/or the
event camera are not moving. After a careful analysis of the
event distribution of the large, real-world 1 Mpx Dataset, we
simulate a frame- and event-based dataset (RM-MNIST), to

investigate the effect of empty labels during training and
validation. Our findings show that filtering labels during
training improves performance. During validation, a novel
bounding box memory mechanism is used to remember
bounding boxes of empty labels over a theoretically infi-
nite amount of time, boosting validation mAP. For long se-
quences without events, this memory improves significantly
over a ConvLSTM network with built-in memory.

These insights are translated to the 1 Mpx Dataset, where
we filter labels at different event thresholds to answer the
question how many events make an object: Approximately
100 events. Filtering samples below 100 events increases
mAP on the non-filtered test set. Adding our novel bound-
ing box memory further increases mAP, although not as sig-
nificantly as for RM-MNIST. A ConvLSTM SSD network
similar to RED that we train ourselves is worse than our
single-frame architecture. By releasing our code upon pub-
lication, we invite other researchers to try to improve upon
the single-frame or the ConvLSTM approach to set a new
state-of-the-art on the 1 Mpx Dataset.
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