
Fast Trajectory End-Point Prediction with Event Cameras
for Reactive Robot Control

Marco Monforte, Luna Gava, Massimiliano Iacono, Arren Glover, Chiara Bartolozzi
Event-Driven Perception for Robotics
Istituto Italiano di Tecnologia, Italy

{marco.monforte, luna.gava, massimiliano.iacono, arren.glover, chiara.bartolozzi}@iit.it

Abstract

Prediction can be crucial for tasks with tight time con-
straints if a robot has limited speed and power. A low-
latency, high-frequency perception system can reduce the
time needed to converge on the expectation of the future
state of the world, giving the robot additional time to act
- or to choose a safer action. In this paper, we exploit event
cameras for asynchronous motion-driven sampling, inher-
ent data compression, and sub-millisecond latency to re-
duce the convergence time of a data-driven trajectory pre-
diction algorithm. As a use-case, we use a Panda robotic
arm to intercept a ball bouncing on a table. To predict
the interception point as early as possible, and cope with
the intrinsic variability of trajectory length - that cannot
be defined a-priori for event cameras - we adopt a State-
ful Long Short-Term Memory network, that asynchronously
updates the prediction for each incoming point of the tra-
jectory and does not require a predefined, fixed length in-
put. We adopt a sim-to-real methodology in which the net-
work is first trained on simulated data and then fine-tuned
on real trajectories. Experimental results demonstrate that
the dense spatial sampling performed by event cameras sig-
nificantly increases the number of intercepted trajectories
compared to a fixed temporal sampling typical of traditional
“frame-based” cameras. Results motivate further explo-
ration of the use of event cameras for prediction in higher-
complexity robotic tasks.

1. Introduction
Human interaction with the environment strongly bene-

fits from predictive capabilities [1–3]. The robustness, re-
liability, and precision of robots can be improved by im-
plementing the ability to estimate the future state of the
environment and moving agents within it. When the task
has highly varying dynamics or short temporal duration, the
robot has a narrow time window to act. Low-latency pre-

(a)

(b)

Figure 1. The robotic arm intercepting a bouncing ball showing
(a) the experimental set-up, and (b) various sampling strategies
depending on sensor type and parameters. We compare 1. asyn-
chronous event-driven spatial sampling (the target position is sam-
pled every time it moves 2 pixels) with 2. synchronous fixed-rate
10 and 33 Hz.

diction leads to earlier action planning, improving the ca-
pabilities of affordable robots that do not have costly high-
precision motors and finely engineered actuators.

Perception plays an important role in early prediction.
We propose to exploit the high temporal resolution and
low latency featured by event cameras. Differently from
traditional cameras, they only transmit information in re-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4036

sponse to pixel-level changes - e.g. from the movement of
an object. Data is produced proportional to the stimulus
dynamics, rather than on a fixed independent clock. The
data is inherently sparse and asynchronous, promoting en-
ergy saving, avoiding data redundancy, and yielding sub-
millisecond latency [4]. The information encoding makes
event cameras highly suitable for high-speed dynamic ap-
plications, like tracking and prediction [5].

We investigate the advantages of event-driven, asyn-
chronous (spatial) sampling with respect to a standard
frame-based (temporal) sampling, for predicting a bounc-
ing ball’s spatio-temporal location (a similar task as [6]).
The proposed system predicts the final position of the ball in
space and time within a robot’s arm field of motion, which is
used for interception, as shown in Fig. 1a. Accurate visual
data early in the trajectory (e.g. within the first millisec-
onds) can lead to early estimation of the interception point,
and hence the sensor choice is important for such tasks.

Differently from the model-based approaches typically
used in the case of parabolic trajectories, where the physi-
cal model of the object trajectory is learnt [7–9] and its pa-
rameters are estimated [6], we use a model-free, data-driven
approach, based on Long Short-Term Memory (LSTM) [10]
state of the art recurrent neural networks, that were already
proven to outperform other regression methods [11], with
the aim of developing a framework that can be applied to
tasks that have complex environmental interactions.

To fully investigate the potential advantages of event
cameras, the LSTM must also be suited to effectively use
the form and type of data generated by event cameras. To
this aim, unlike in [11] where an Encoder-Decoder LSTM
architecture was used, we resort to a Stateful LSTM to learn
trajectory interception points. The advantage of the state-
ful architecture is that it does not have a fixed, a-priori de-
fined input length, but instead keeps memory of past infor-
mation indefinitely and continually improves its prediction
from each input. This suits the event-driven paradigm, for
which the number of data points cannot be defined in ad-
vance, as they depend on the speed and trajectory (e.g. the
number of bounces) of the target. We pre-train on simu-
lated trajectories and fine-tune the models with real-world
data. We compare event-driven asynchronous spatial sam-
pling, with fixed temporal sampling of the event steam, and
also with a traditional RGB camera pipeline, as shown in
Fig. 1b.

Finally, we consider two possible control strategies for
the robotic arm: the first is to move as soon as the predic-
tion converges, to minimize the velocity required to perform
the movement; the second is to wait as long as possible, ac-
cumulating information to reduce the prediction error and
move as fast as the robot can.

Our contributions are as follows:

• quantitatively compare event camera performance

against frame-based performance for the prediction
task, further validating event camera potential for com-
puter vision and robotic systems;

• perform real-time and online experiments with an
event camera and robot actuator in the loop to demon-
strate the advantage of the low-latency vision for
robots outside of drone experiments;

• propose the Stateful LSTM neural network for asyn-
chronous event-based prediction, highly suited to event
camera data;

• simulated trajectory datasets and code available to
the community1 for which, to the author’s knowledge
there is currently none.

We limit the scope of the experiments to a singular, spe-
cific, task, putting the focus on the comparison of event
cameras against traditional cameras in a real robot control
task. The task makes the following assumptions: (i) the ball
is the only object moving in the scene and the camera is sta-
tionary; (ii) the trajectory of the ball is planar and parallel to
the camera plane; and (iii) the robot has a single open-loop
attempt to hit the ball. For (i), additional moving objects
would increase the complexity of the tracker design, that is
nevertheless not the focus of this paper. For (ii), 3D tra-
jectories could be considered using a measurement of depth
(e.g. stereo) and augmenting the datasets with such trajec-
tories. Such an enhancement should be handled identically
in the event camera domain, as for traditional camera im-
plementation.

2. Related Work

Visual prediction with event cameras for robot control
has been studied for a variety of problems with different
proposed solutions. One of the classic scenarios showing
the potential of combining event-driven vision with robot
control is the robotic goalie of [12]. The goalie clearly
shows advantages of event-cameras for the simple track-
ing scenario and 1-DoF robotic actuator. More recently,
the catching of a ball in flight with a robotic arm has
been tackled using a stereo method to track its 3D posi-
tion and an Extended Kalman Filter (EKF) for predicting
future states through numerical integration for a finite hori-
zon [7, 8]. A combination of Support Vector Regression
and EKF tracks markers on an object and predicts up to 1 s
ahead at 200 Hz [9], enabling grasping of objects in flight.
A drawback of EKF methods, however, is that all the pre-
dicted steps from the current instant must be recomputed
every time a new measure arrives. In place of EKF or other

1https://github.com/event-driven-robotics/end-
point-prediction

4037

model-based methods, data-driven methods like neural net-
works have been used in [6,13]. Zhao et al. [13] address the
human-robot handover task, highlighting the importance of
a well-timed robot movement for a person to perceive it as
human-like. An LSTM network predicts the robot’s next
joints’ configuration in response to human motion. In [14] a
Variational Recurrent Neural Network (VRNN), combined
with a dynamic model of the task, is capable of predicting
the trajectory end-point of a ball bouncing on a table in the
2D frontal plane of a robot, which has to intercept it on the
vertical axis at the end of its visual space [6]. The whole
system is trained end-to-end in simulation and deployed in
the real world. The fast convergence of the online estimated
parameters allows probabilistic predictions even in case of
blind spots along the trajectory. A single experiment lasts
for 2−3 s, with the system running at 20 Hz and refining
the estimation frame after frame. All these works make use
of powerful, external, and energy-consuming devices - like
GPUs in [13], the VICON motion capture system in [8],
or the IDP Express RF2000F system and the ad-hoc finger
cameras in [7]. Problems arise with autonomous systems
having limited batteries, or in outdoor tasks where motion
capture cameras cannot be placed.

The role of perception on agents’ actions’ timing high-
lighted how the choice of the right sensing device becomes
crucial for the success of a task [15]. Event cameras can
leverage very high temporal resolution (for fast-moving tar-
gets), very high dynamic range (∼140 dB) [4], and yet with
low energy requirements. He et al. [16] propose a low la-
tency, high precision pipeline for dynamic object avoidance
with a quadrotor by fusing IMU data, depth, and events.
The object’s 3D trajectory is predicted by combining events
and depth information to obtain the object’s location in the
depth image, and then estimated with a second-order poly-
nomial. After an offline evaluation of the accuracy, on-
line experiments show the quadrotor avoiding the ball un-
der different scenarios. In [17] an event camera with an
Encoder-Decoder [18] LSTM network predicts a handover
task for an iCub robot. The pipeline predicts both spatial
and temporal future points, allowing the robot to know in
advance where to move, compensating for internal delays
in the perception-action loop. In [19] the authors propose
a grasping framework for eye-in-hand robotic manipulators
endowed with event cameras, using both model-based and
model-free multi-object grasping in clutter. While the for-
mer ensures higher precision, the latter is more general and
applicable to real-world scenarios. Wang et. al [20] imple-
mented a system for catching balls thrown by a tennis ball
launcher with a 1-degree-of-freedom linear actuator. The
proposed Binary Event History Image (BEHI) accumulates
information from events in images that are fed to an impact
prediction pipeline that controls the actuator motion timing.
The actuator catches balls up to a top speed of 13m/s with a

(a)

(b)

Figure 2. Pipeline of the (a) previous work [11] and (b) proposed
implementation. The previous work uses a many-to-many LSTM
which requires an input buffer and predicts a number of upcoming
points of the trajectory. The LSTM is reset between each network
inference. In the proposed work, the Stateful LSTM accepts a sin-
gle position and outputs a single interception position. The LSTM
memory is reset only after an entire trajectory. The proposed work
also includes on-line operation, with robot control and action de-
cision criteria.

success rate of 80%.

To date, however, there is still minimal investigation on
architectures suitable for event camera data for time-series
prediction and, as such, we propose a Stateful LSTM. In ad-
dition, the literature lacks experiments that directly compare
event cameras to traditional cameras in real experiments
with robotic actuators in the control loop, that concretely
demonstrate the advantages of event cameras, especially in
dynamic robot control scenarios. To investigate these gaps
and focus on the prediction task without other confounding
factors, we have proposed a set-up with reduced complex-
ity, assuming a two-dimensional scenario without clutter,
occlusions, or aliasing. The main objective is to validate
the prediction step and the role of sampling strategies.

3. Methodology

The architecture, shown in Fig. 2b, comprises an
ATIS [4] event camera placed near the robot, an asyn-
chronous event-driven tracker [11] that localizes the target
and tracks its centre of mass, a Stateful LSTM network [10]
queried for each new tracked position and predicting the tra-
jectory interception point in position and time, and a Franka
Emika Panda robot manipulator controlled for interception.

4038

3.1. ATIS and Asynchronous Ball Tracking

The ATIS [4] used has a resolution of 304×240 pixels.
When a pixel is triggered by a brightness change, it emits
an event e =< ti,xi,yi >, containing the timestamp ti and
the spatial coordinates < xi,yi >

2.
The event-driven tracker [11] continuously receives

events generated by the moving object as input. It
asynchronously outputs its centre of mass position <
xbi ,ybi , tbi > every time this moves, as shown in Fig. 3.
An initial check on the collected events’ distribution lo-
cates the object and initialises the tracker. Then, a buffer
of Ntrack events is filled by looking into a Region Of In-
terest (ROI) containing the object and used to compute its
centre of mass. The tracker updates the object position
only when the target moves, thereby maintaining the asyn-
chronous paradigm of the event camera.

A sub-sampling method outputs < xsi ,ysi , tsi > if the cur-
rent tracked position < xbi ,ybi , tbi > is a fixed distance from
the previous emitted position < xsi−1 ,ysi−1 , tsi−1 >. A spatial
sampling of D = 2 pixels is used to avoid quantization error
at the pixel level, without undermining the resolution of the
sampled trajectory nor the accuracy of the future prediction.
The spatial sub-sampling method is compared to temporal
sub-sampling in the experimental section.

3.2. Stateful LSTM

Long Short-Term Memory networks maintain a tempo-
ral correlation between consecutive queries using recurrent
connections and therefore are suited to process temporal tra-
jectories. The asynchronous nature of the tracker is handled
by also including the temporal information with each input.

Our previous implementation of LSTM for trajectory
prediction followed a standard many-to-many approach in
which a FIFO containing a fixed number (e.g. M = 20) of
trajectory points was input to the network, which produced
a dense prediction of the immediately following points of
the trajectory (e.g. L = 45). In this work, we proposed two
changes to the architecture to facilitate improved robot be-
haviour:

1. Prediction of the interception point of the trajec-
tory: The prediction of the immediately following part
of the trajectory is not informative of the point in space
that the robot should use to plan its trajectory to inter-
cept the target. The information would be available too
late. Prediction of the full trajectory from the initial, to
the interception point was less accurate compared with
the prediction of only the final point and it requires the
knowledge of the number of points in the trajectory in
advance, which is not fixed in event cameras.

2polarity is discarded

Figure 3. Superimposition of the events (in purple) generated by
a ball bouncing in front of the camera and the tracker output (in
blue) tracking the centre of mass.

2. Using a Stateful LSTM: Instead of using multiple in-
puts and resetting the network after each inference,
each tracker position is input individually (and asyn-
chronously), the memory is retained for the full tra-
jectory, and the network is only reset after a complete
trajectory. The Stateful LSTM is a more efficient im-
plementation that better handles variability in the input
length which comes with asynchronous data streams.

The architecture is comprised of 3 input neurons, <
x,y,∆t >, corresponding to the position and the temporal
difference from the previous tracker output. Inputs are nor-
malised between -1 and +1. There are 2 output neurons that
represent < ŷF , t̂F >: the predicted height and time of the
interception point. The interception point x̂F is fixed for our
task. The network is defined by a single layer of NH recur-
rent hidden neurons with a tanh activation function. ∆t is
used instead of an absolute t as the final prediction time, t̂F ,
is actually a ∆t since the first tracker position is input to the
network.

3.2.1 Training Data

An Unreal Engine environment (UE) was used to generate a
total of 5400 synthetic trajectories (4000 for training, 1000
for validation, and 400 for testing). Each trajectory was
comprised of a sequence of RGB frames generated by UE
at 500 Hz and then fed to E-SIM [21] to generate a stream of
events. Finally, the event tracker was run offline to generate
< x,y, t > spatial coordinates and timestamp of the ball’s
centre of mass. Synthetic trajectories were generated with
a variation in initial position, and initial velocity, as well as
ball bounce properties and air drag, as shown in Fig. 4

A second set of 310 real trajectories were gathered with
the setup shown in Fig. 1a, using the ATIS camera and
running the tracker offline to generate the ball trajectories.
Initial training was performed on the simulated data, and
fine-tuning was performed on the real data. The compar-
ative statistics between the real and simulated trajectories
are shown in Fig. 4, the simulated datasets covered a much

4039

(a) (b) (c)

Figure 4. Validation of simulated trajectories, the simulated (magenta) and real (cyan) datasets are: (a) superimposed over the image plane;
(b) showing the initial X and Y velocity components; and (c) showing the average velocity along the horizontal axis, representing the
energy loss due to bounces and air drag in the simulation environment.

greater variation in parameters than the real datasets, which
results in greater generalisation capability of the model.

3.3. Prediction convergence criteria and parameters

The Stateful LSTM provides a predicted output, <
ŷF , t̂F > for each asynchronous data input, < x,y,∆t >. With
only a few input samples the uncertainty on the predicted
point is high. We define a parameter γ to determine at run-
time when the prediction has converged and, therefore, the
first time at which action could be taken. This parameter is
based on the rate of change of the previous N estimates of
the final vertical position of the target yF :

γ(i) =
1
N

i

∑
j=i−N+1

|ŷF(j)− ŷF(j−1)|
t(j)− t(j−1)

(1)

where ti is the time at the i-th point, with i = N, . . . ,M, N
depending on the sampling strategy and M is the total num-
ber of samples for the current trajectory. In such a way, we
can define the convergence instant tconv as the first moment
such that γ(i) is below a user-defined threshold γ∗:

tconv = t1 ∈ T = {t(i)|γ(i)< γ
∗} (2)

with t1 being the first element of the set of time instants,
T , where the condition on γ is satisfied. Moreover, know-
ing the average robot velocity vrobot and its starting position
yrobot

start , we can compute the time needed to reach any point
in the task space. This value, along with the final time t̂F , is
used to compute the last moment the robot can wait before
moving t̂dec, to reach ŷF :

t̂dec(i) = t̂F(i)−
yrobot

start − ŷF(i)
vrobot (3)

Fig. 5 shows an example trajectory, the temporal window
in which the robot can move (between tconv and t̂dec), and γ .

To comply with constraints on robot joint acceleration
and velocity, and to estimate the usefulness of timely and
accurate prediction of the end-point of the trajectory, the
control is implemented in open loop, using only a single
value of < ŷF >. The robot can then either move as soon
as the prediction converges, at tconv, which gives the more
time to reach the target, and a slower movement can be per-
formed. Alternatively, motion can be performed at, t̂dec,
with a more accurate estimate of the interception point, ŷF ,
but must move at maximum speed.

4. Experiments and Results

Experiments are divided into offline (with the simulated
datasets) and online (with the tracker receiving live data
from the camera and the robot receiving live input from the
prediction network refined on the real dataset). The former
is used for a quantitative assessment of the system, using
the available ground truth; the latter to quantitatively assess
the overall system performance in the task.

In each experiment, the tracker receives asynchronous
raw events from the event camera. The target position esti-
mate is updated asynchronously and the output of the centre
of mass of the tracked target can be sent to the input of the
Stateful LSTM with different sampling strategies (with dif-
ferent LSTM models trained for each):

• Spatial sampling (dubbed events): output asyn-
chronously after the target centre of mass moves by
a fixed pixel distance. [11] informs a choice of 2 pixels
for these experiments.

• Temporal sampling (dubbed events10Hz and
events33Hz): the tracker output is sent at fixed
time intervals, similarly to traditional camera sam-
pling strategies.

4040

Figure 5. Single trial ground truth and prediction of the final y co-
ordinate of the ball over time: γ is the average rate of change of the
previous N predictions. The first time γ goes under a threshold de-
fines tconv, and the last moment the robot can wait to move defines
t̂dec (and is determined by the maximum robot’s acceleration and
distance to the estimated target end-point). The robot can act only
in the time window between these two instants and if γ is below
the threshold.

In addition, we use a RealSense D435i camera set to
33Hz and 60Hz as a frame-based comparison. A colour
segmentation algorithm from OpenCV [22] was used to per-
form robust tracking of the dark ball against the light back-
ground. The experiment was designed to enable a simple
tracking method in order to minimise latency and give as
much advantage to the traditional vision system for com-
parison.

Models were trained with hyper-parameter optimization,
using a Mean Squared Error (MSE) loss function. The
Adam optimization algorithm was used with standard pa-
rameters, except for the initial learning rate, which was set
to α = 0.01 and enabling the learning rate decay policy. A
single hidden layer with NH = 350 neurons was found to be
the appropriate network size for all three sampling strate-
gies.

The 7-DoF Panda robot performs the interception. In-
termediate points between the initial and final position are
generated with a quintic polynomial, to limit both the initial
velocity, final velocity, and acceleration. Under such limits,
the vertical range assumed for the task is 60 cm, viable in
1.1 s. The calibration procedure was a quadratic regression
to map pixel coordinates to the robot Cartesian position uses
10 iterations of 8 pairs acquisitions of (< xp,yp >, < yr >)
where p indicates pixel space and r indicates robot refer-

ence frame. A successful interception is considered when
the ball (of radius 2.5 cm) makes contact with the robot
gripper, which has a size of 2 cm. An error threshold of
γ̂F 3.5 cm was used based on these sizes.

Inference was performed on a Intel i7-9750H CPU.

4.1. Offline Experiments

Each of the three models trained on events (events,
events10Hz, and events33Hz) was evaluated on 400 offline
trajectories. For each testing execution, the model produced
the trajectory over time and the error in predicted position
ŷF and time t̂F for a fixed final xF were recorded, as shown
in Fig. 6.

On average events converged to the correct estimate
of the target final position earlier than events10Hz and
events33Hz - after approximately 8%, 12%, and 30% of the
trajectory was observed, respectively. However, there were
large variances for all sampling strategies, indicating trajec-
tory type affected the convergence time.

All sampling strategies predicted convergence time sim-
ilarly as there is a direct relationship between initial ball
speed and arrival time (while bounces cause non-linear rela-
tionships for ŷF). events33Hz had a significantly higher er-
ror over the full trajectory compared to the other two meth-
ods.

Considering the interception strategy defined in Sec-
tion 3.3 trajectory prediction can be analysed in terms of
interception success, comparing convergence time, and the
time taken for the robot to reach the interception position,
as shown in Fig. 7. Given the average velocity of the Panda
robot at tconv and setting the parameter N of equation 1 to
15 for events, 3 for events33Hz, and 1 for events10Hz, the
target can be intercepted by the robot only if tconv < tdec.
Fast convergence (i.e. a low tconv) places the prediction high
above the black line in Fig. 7. Late convergence (failure) is
indicated by samples below the black line: 10 for events, 19
for events33Hz, and 46 events10Hz.

4.2. Online experiments

Trained networks were refined on the 310 real trajecto-
ries with up to 500 additional epochs (managed by the learn-
ing rate decay policy), to remove sim-to-real inconsisten-
cies. The ball is launched by a human operator toward the
robot interceptor and the tracker detects when the ball enters
the field of view. Simultaneously the prediction model be-
gins to produce interception positions. The robot is moved
at tconv or t̂dec, as defined in the criteria in Section 3.3. 50
trials are performed using each of the 3 event-based mod-
els and the 2 frame-based models, for each of the motion
criteria resulting in a total of 500 trials.

Convergence of events is compared to frame60Hz in
Fig. 8a, indicating also if convergence did not occur.

4041

(a)

(b)

Figure 6. Run-time prediction average error (thick line) and stan-
dard deviation (band) of the target ending point: (a) Final height ŷF
and (b) final time instant t̂F prediction error over trajectory execu-
tion for the three sampling strategies. Trajectories are normalised
(trajectory %) for comparison as each trajectory has a different
number of samples.

Figure 7. The success of the task is closely linked to the prompt-
ness and accuracy of the prediction, through t̂conv, but also to the
robot velocity, through t̂dec. For a trial to be successful, t̂conv must
be earlier than t̂dec. This condition becomes harder to meet the
faster the trajectory and the lower the sampling rate.

• Slower trajectories (between 0.8 s and 1.1 s): a simi-
lar convergence occurs for both methods, with the gap
between tconv and t̂dec decreasing linearly.

• Fast trajectories (0.65 s and 0.8 s): the majority
of events converge successfully (non-failures and

(a)

(b)

Figure 8. (a) Temporal distance between tconv and tdec for the
motion-driven sampling strategy of the event camera and the 60 Hz
time-driven strategy of the RealSense. Values below 0 represent
predictions that either converged too late for the robot to move, or
did not converge at all (red marks). (b) Prediction error at tconv.

above the black line), while a significant number of
frame60Hz trials (31 trials) converge late (below the
black line) or not-at-all (8 trails).

• Fastest trajectories (less than 0.65 s): the majority
of events converge successfully while the majority of
frame60Hz do not converge.

In addition, the prediction error, shown in Fig. 8b, is on
average lower for the events approach. The result indi-
cates that for fast trajectories a temporal sampling strategy
does not collect enough data early enough for quick reac-
tion tasks, and the event-driven technologies instead have a
benefit.

The difference between moving the robot at tconv and t̂dec
is shown in Fig. 9, in which the interception is improved
by approximately 3.5 cm and 6 ms by waiting till t̂dec. The
same difference in terms of interception success is shown
in Fig. 10, in which, on average, the t̂dec (rightmost 5 bars)
achieves more successes. However, moving at t̂dec requires
maximum speed but moving at tconv can be performed at a
slower and safer velocity.

4042

Figure 9. Average error and standard deviation from tconv to t̂dec
for the event-driven model.

The events model achieves the most robot interception
successes using either strategy, with both events33Hz and
frames60Hz slightly less but comparable success rates, as
shown in Fig. 10.

The temporal-sampling method of event-based data,
Events10Hz, achieves significantly lower successes as,
while the neural network predicts correctly, the low sam-
pling rate can completely miss key features of the trajecto-
ries such as bounce inflection points. events33Hz achieves
a comparable success to events, however, if the velocity in-
creases further, also events33Hz should begin to fail more
often; while events is instead speed invariant.

In regards to traditional camera methods, the
frames33Hz approach achieved very few successes
due to tracker failure from image motion blur, as the ball
moved across multiple pixels during the aperture open pe-
riod. As the trajectory velocity increases, or as illumination
decreases, motion blur will also affect the frames60Hz;
giving an added advantage to event-based cameras.

The latency of the event-driven tracker and prediction
is on the order of < 5 ms an order of magnitude smaller
than the timescale required for the robot to reach the goal
position.

5. Conclusions
In this work, we investigated the advantages of using an

event camera for predicting the end-point of a target’s tra-
jectory to be intercepted with a robotic arm. To do so we
defined a singular task with a limited scope. However, we
also chose a data-driven method that could be adapted to
other tasks, as long as training data is available. To this
end, we also demonstrate the use of simulated data for pre-
training the network, which could also be generated for
other tasks. We demonstrate the use of a Stateful LSTM
for the prediction task, which is highly compatible with the
asynchronous event-driven tracking output. Compared to
other approaches [20], system inference runs smoothly and

Figure 10. Tracking and prediction performance translate into dif-
ferent numbers of successful trials. Overall, the events sampling
approach is the most accurate. Moving at tconv leads to lower ac-
curacy, resulting in a higher number of failures.

asynchronously without using a GPU. Data transfer to the
GPU often imposes a minimum bound on the processing
rate, leading to fixed-frequency processing.

Results indicated that the purely event-driven approach
led to faster convergence, and lower end-point error, of
the predicted interception positions, compared to fixed-rate
sampling of event-driven data, and (inherent fixed-rate sam-
pling when using) a traditional RGB camera. Faster conver-
gence resulted in a greater number of successes of real-time,
on-line, robot interception experiments. Motion blur caused
the traditional camera to fail when using a shutter speed as-
sociated with 30 Hz acquisition rate.

Additional benefits of the event-driven camera over tra-
ditional cameras for such a task include a lower data trans-
fer, as full frames are not acquired, but only changed pixel
positions. As such a lower latency can be achieved leading
to earlier real-time tracking and prediction. Further benefit
should also be observed in low-light conditions in which a
traditional camera requires a longer shutter time, and there-
fore more motion blur occurs. Additional experimentation
is required to quantitatively analyse and understand the ex-
tents of these benefits.

To take such a system into a real application, target
depth/position in 3D is probably required but should not in-
validate the results comparing frame-based and event-based
cameras that were investigated. Additionally, an improved
closed-loop control strategy could be implemented to con-
tinually move the robot arm to the best predicted position.

References
[1] M. Bar, “The Proactive Brain: Memory for Prediction,” Phil.

Trans. R. Soc. B, vol. 364, pp. 1235–1243, 2009.

[2] N. W. Roach, P. V. McGraw, and A. Johnston, “Visual Mo-
tion Induces a Forward Prediction of Spatial Pattern,” Cur-

4043

rent Biology, vol. 21, no. 9, pp. 740–745, 2011.

[3] D. L. Schacter, D. R. Addis, and R. L. Buckner, “Episodic
Simulation of Future Events,” Annals of the New York
Academy of Sciences, vol. 1124, no. 1, pp. 39–60, 2008.

[4] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143
dB dynamic range frame-free PWM image sensor with loss-
less pixel-level video compression and time-domain CDS,”
IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 259–275,
2011.

[5] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Dani-
ilidis, and D. Scaramuzza, “Event-based vision: A survey,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 44, no. 1, pp. 154–180, 2022.

[6] M. Asenov, M. Burke, D. Angelov, T. Davchev, K. Subr, and
S. Ramamoorthy, “Vid2Param: Modeling of Dynamics Pa-
rameters from Video,” IEEE Robot. Autom. Lett., 2020.

[7] M. Sato, A. Takahashi, and A. Namiki, “High-speed catch-
ing by multi-vision robot hand,” in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pp. 9131–9136, 2020.

[8] K. Dong, K. Pereida, F. Shkurti, and A. P. Schoellig, “Catch
the ball: Accurate high-speed motions for mobile manip-
ulators via inverse dynamics learning,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pp. 6718–6725, 2020.

[9] S. Kim, A. Shukla, and A. Billard, “Catching objects in
flight,” IEEE Trans. Robot., 2014.

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term Mem-
ory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[11] M. Monforte, A. Arriandiaga, A. Glover, and C. Bartolozzi,
“Exploiting event-driven cameras for spatio-temporal pre-
diction of fast-changing trajectories,” 2nd IEEE Interna-
tional Conference on Artificial Intelligence Circuits and Sys-
tems (AICAS2020), March 2020.

[12] T. Delbruck and M. Lang, “Robotic goalie with 3 ms reac-
tion time at 4% CPU load using event-based dynamic vision
sensor,” Front. Neurosci., 2013.

[13] X. Zhao, S. Chumkamon, S. Duan, J. Rojas, and J. Pan, “Col-
laborative Human-Robot Motion Generation Using LSTM-
RNN,” in IEEE-RAS Int. Conf. Humanoid Robot., 2019.

[14] J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, and
Y. Bengio, “A recurrent latent variable model for sequen-
tial data,” in Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems - Volume
2, NIPS’15, (Cambridge, MA, USA), p. 2980–2988, MIT
Press, 2015.

[15] D. Falanga, S. Kim, and D. Scaramuzza, “How Fast Is
Too Fast? the Role of Perception Latency in High-Speed
Sense and Avoid,” IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 1884–1891, 2019.

[16] B. He, H. Li, S. Wu, D. Wang, Z. Zhang, Q. Dong, C. Xu,
and F. Gao, “Fast-dynamic-vision: Detection and tracking

dynamic objects with event and depth sensing,” in 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3071–3078, 2021.

[17] M. Monforte, A. Arriandiaga, A. Glover, and C. Bartolozzi,
“Where and when: Event-based spatiotemporal trajectory
prediction from the icub’s point-of-view,” in 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pp. 9521–9527, 2020.

[18] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to se-
quence learning with neural networks,” in Adv. Neural Inf.
Process. Syst., vol. 4, pp. 3104–3112, 2014.

[19] X. Huang, M. Halwani, R. Muthusamy, A. Ayyad, D. Swart,
L. Seneviratne, D. Gan, and Y. Zweiri, “Real-time grasping
strategies using event camera,” Journal of Intelligent Manu-
facturing, vol. 33, pp. 593–615, 2022.

[20] Z. Wang, F. C. Ojeda, A. Bisulco, D. Lee, C. J. Tay-
lor, K. Daniilidis, M. A. Hsieh, D. D. Lee, and V. Isler,
“Ev-catcher: High-speed object catching using low-latency
event-based neural networks,” IEEE Robotics and Automa-
tion Letters, vol. 7, pp. 8737–8744, Oct 2022.

[21] H. Rebecq, D. Gehrig, and D. Scaramuzza, “ESIM: an
open event camera simulator,” Conf. on Robotics Learning
(CoRL), Oct. 2018.

[22] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of
Software Tools, 2000.

4044

