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Abstract

We present a new approach to direct depth estimation
for Spatial Augmented Reality (SAR) applications using
event cameras. These dynamic vision sensors are a great
fit to be paired with laser projectors for depth estimation
in a structured light approach. Our key contributions in-
volve a conversion of the projector time map into a recti-
fied X-map, capturing x-axis correspondences for incom-
ing events and enabling direct disparity lookup without any
additional search. Compared to previous implementations,
this significantly simplifies depth estimation, making it more
efficient, while the accuracy is similar to the time map-
based process. Moreover, we compensate non-linear tem-
poral behavior of cheap laser projectors by a simple time
map calibration, resulting in improved performance and in-
creased depth estimation accuracy. Since depth estimation
is executed by two lookups only, it can be executed almost
instantly (less than 3 ms per frame with a Python implemen-
tation) for incoming events. This allows for real-time in-
teractivity and responsiveness, which makes our approach
especially suitable for SAR experiences where low latency,
high frame rates and direct feedback are crucial. We present
valuable insights gained into data transformed into X-maps
and evaluate our depth from disparity estimation against
the state of the art time map-based results. Additional re-
sults and code are available on the X-maps project page.

1. Introduction

Spatial Augmented Reality (SAR) has emerged as a
promising technology that seamlessly merges digital infor-
mation with the physical world. Also known as projection-
based augmented reality, SAR focuses on overlaying virtual
content onto the physical environment [20]. This offers the
potential to create immersive, interactive, and engaging ex-
periences across various domains: SAR is utilized in enter-

(a) (b) (c)

Figure 1. Through the use of X-maps, we can establish real-time
Spatial Augmented Reality (SAR) applications, using an event
camera and laser projector system. We calculate depth from the
projection with minimal computational effort at high frame rates.
Our demonstrator projects the color coded depth back into the
scene. Here, (a) is a static scene, (b) shows the projector and cam-
era looking onto the scene with the projection in the background,
and (c) is demonstrating depth estimation on moving objects.

tainment [2], industrial applications [1, 6], advertising [19],
cultural heritage [22], and healthcare [5].

Accurate estimation of depth in real-time is essential for
achieving compelling and responsive augmented reality ex-
periences. In this paper, we introduce a novel approach to
ultra low latency depth estimation for SAR applications by
leveraging event cameras and structured light projectors.

Event cameras are a groundbreaking technology that of-
fers significant advantages in terms of speed and robustness
compared to traditional frame-based cameras [7]. By mea-
suring changes in pixel intensity, event cameras can capture
motion and brightness variations with high temporal resolu-
tion and dynamic range. This makes them ideal candidates
for integration with structured light projectors in SAR sys-
tems.

Our approach builds on the findings of previous meth-
ods [12,15], which combine structured light technology and
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event cameras to address the inherent limitations of con-
ventional structured light systems. However, our method
does not require an external hardware synchronization de-
vice between projector and camera to identify individual
frame starts and ends, leading to a simpler setup and poten-
tially more cost-effective projector options. Furthermore,
the real-time capability of our system is a key enabler for
SAR applications. The ability to perform depth estimation
and reconstruction with minimal computational effort opens
up numerous use cases, such as reprojecting depth, project-
ing textures onto objects or planes, and even enabling partial
projection in challenging scenarios.

We make the following contributions:

1. We transform the projector time map into a rectified
X-map that captures the x-axis correspondences for in-
coming events, enabling the direct lookup of the dis-
parity.

2. To model the nonlinear temporal behavior of con-
sumer micro-electro-mechanical systems (MEMS)
laser scanners, we calibrate the time map and improve
depth estimation errors by pointing the projector-
event-camera-system at a planar surface.

3. As depth estimation is performed with low computa-
tional effort, our system is suitable for spatial aug-
mented reality applications that require high frame
rates and direct feedback. We demonstrate a proof of
concept that is, to our knowledge, the first real-time
event-based depth estimation system with integrated
content projection.

2. Related Work

Commercial structured light systems, such as the Mi-
crosoft Kinect [23] and Intel RealSense [4], have brought
depth sensing technology to mainstream applications like
gaming, robotics, and computer vision. These systems usu-
ally provide at most 30 frames per second (fps), which can
result in delayed or inaccurate depth information, hindering
real-time applications and smooth user experiences. Ad-
ditionally, the structured light projection used in these sys-
tems targets depth estimation and does not convey useful in-
formation or visuals, limiting their potential in applications
like Spatial Augmented Reality (SAR) that require informa-
tive projections. There are approaches, which use projected
content, captured by a frame-based camera, directly to in-
fer scene parameters, e.g. for object [8] or projection plane
tracking [11]. While they deliver very accurate mapping
results [8] and are capable of high frame rates [11], they as-
sume model knowledge to project on specific objects, but do
not estimate the depth for the entire projection area. It has
been shown that many classical image-based methods that

Figure 2. A time map of recorded events for a single frame pro-
jected by a laser projector onto a plane. Matching time entries of
the map along epipolar lines with an idealized projector time map
to compute scene disparity is computationally expensive [15].

do not pay separate attention to projection are distracted by
the projected content in the camera image [24].

Previously, several works have looked at combining
event camera sensors with laser projection. After the pio-
neering method by Brandli et al. [3] combined a dynamic
vision sensor with a laser line projector, methods that scan
the entire image quickly emerged. Motion Contrast 3D
(MC3D) [12] introduces the concept of merging single-shot
structured light techniques with event-based cameras and
addresses the trade-offs between resolution, robustness, and
speed in structured light systems. MC3D employs a projec-
tor that scans scenes using a single laser beam in a raster
pattern. At high sampling rates, MC3D’s correspondence
search amplifies noise in the event timestamps, resulting in
noisy and patchy stereo correspondences.

Building on MC3D’s groundwork, Event-based Struc-
tured Light (ESL) [15] introduces time maps to establish
the temporal projector-camera correspondences. A camera
time map is illustrated in Figure 2. After initializing depth
maps through an epipolar disparity search in rectified pro-
jector time maps, an extra processing step optimizes con-
sistency within a local window around each pixel. The op-
timization step reduces the influence of event jitter, but is
computationally very expensive. The performance is com-
pared to MC3D and Semi-Global Matching (SGM) [9] al-
gorithms: ESL surpasses both MC3D and SGM in static
scenes, demonstrating lower error values and superior noise
suppression against the baseline. Due to the complex corre-
spondence search and optimization process, is not real-time
capable.

Foveated rendering in VR headsets is adapted for depth
sensing in [17], where the authors develop a foveating
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Figure 3. When we plot incoming events of a projected frame
with their y coordinate over time, we can clearly separate them
into columns, grouped by their time stamps.

depth sensing demonstrator. Static scene parts are sparsely
scanned, while moving parts are densely scanned, and a
neural network completes depth from sparse samples. This
approach reduces the scanned area to approximately 10%,
decreasing power consumption and time stamp jitter in
event data, as fewer events need processing on the chip.

The authors of [10] combine an event camera with a DLP
projector and demonstrate that scan rates of up to 1000 fps
might be technically feasible. They project a fixed pattern,
similar to the pattern of a Kinect sensor, and do not utilize
the time domain of the projector (despite ON/OFF), so in-
ferring depth with other projected content is not possible
with their system, ruling out its use for spatial augmented
reality.

3. Direct Depth Lookup from Events
In this section, we introduce our approach to estimate

the scene depth from the projected image and the resulting
events in the camera.

Event camera sensors produce asynchronous events in-
dependently for every pixel [7]. The incoming event stream
delivers camera coordinates (x,y), a timestamp t and a po-
larity p for each event. Storing the time stamps of events
in an image the size of the camera’s resolution results in a
time map of (x, y) 7−→ t, displayed in Figure 2. A rec-
tified time map is used in ESL [15] to match the recorded
time in the camera’s time map to the ideal time in a syn-
thesized projector time map, by searching along epipolar
lines to minimize the difference in t. As we target real-time
AR applications, we want to avoid an exhaustive disparity
search. While it is feasible to do the initial disparity search
on a high-performing GPU, there is no clear path to speed
up the following per-pixel optimization process. We instead

Figure 4. This figure shows all events of a single column from
Figure 3. Even though we are projecting onto a plane, we can see
that events of the same temporal local group have jitter with 2-3
pixels on the x-axis. The jitter will lead to events overlaying with
those of the neighboring columns. Thus it is not possible to clearly
distinguish projected scan lines in the y/x view, while it is possible
in the y/t view in Figure 3.

propose a solution to directly retrieve the disparity, which is
possible with a simple and fast CPU implementation.

Like in ESL, we have tilted our projector 90 degrees, so
that the projector rows scan from the bottom to the top, and
the projector columns scan from left to right in the scene.
Thus, the larger time steps align with the axis of the dispar-
ity. Through the projector’s rotation, one projector scan row
now ideally forms an almost vertical line in the scene.

We can track the events these columns create in each pro-
jected frame, by plotting incoming events with their y coor-
dinate over the time, as in Figure 3. The timestamps within
a projector row do not contain significant information, as
there are too many sources of local signal distortions: read-
out noise, neighboring pixels getting triggered at the same
time from a single pulse of laser, projector/camera resolu-
tion mismatch. The results of these effect can be seen in
the single line plot in Figure 4, and the full frame time nor-
malized plot in Figure 6. A good discussion of the different
sources of noise within the camera timestamps can be found
in [17]. The authors discuss how transistor noise, parasitic
photo currents, and the arbitrated architecture of the sensor
lead to deviations from the ideal time stamp generation.

As the time stamp is not sufficiently precise locally, a di-
rect map from the time stamp alone into the projector’s view
is not possible. We could however determine the epipo-
lar line from our coordinates (x, y) and intersect this with
the projector row, determined from the time stamp. This
works under the assumption that the projector behaves lin-
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early over time. However, as we show in Figure 7, the pro-
jector may not scan at a constant speed.

We are thus looking for a method, where we can directly
compute the disparity (for real-time capability), and work
with projectors that show non-linear time behavior.

Our idea is to provide a lookup table for the disparity val-
ues to avoid the disparity search required when using time
maps. We store the projector x coordinates over y and the
time t:

(y, t) 7−→ x (1)

The time axis can be freely discretized. We choose to
make it the projected width w of the projector, which should
allow different scan lines to map to different time columns.
In practice, the projector resolution is often higher than that
of the camera sensor and covering about a third of the area,
thus the event camera will not see single projector rows.

3.1. Creating a reference X-map

As the lookup reference, we require a projector X-map.
We will construct this map from the projector time map,
which allows us to use calibrated time maps, correcting
non-linear temporal projector behavior (see Section 3.3).
We want the projector X-map to be filled completely within
the projector’s bounds, so we have values for all possi-
ble measurements from the camera; we do not know be-
forehand, which (y, t) combinations we might see. To re-
trieve matching x values from the time map for the projector
X-map, we use a search along the epipolar lines akin to the
disparity search from ESL, to be able to fill out our com-
plete rectified X-map. This needs to be done only once,
after calibrating the time map.

To fill the projector X-map (y, t) 7−→ x at rectified pro-
jector coordinate ypr

and time t, we find the rectified coor-
dinate xr that minimizes the difference between the value
retrieved from the calibrated time map m. We do not con-
sider x values that are further than two rows away, by com-
paring the time difference to projector width w:

x(ypr
, t) = min

xr

{
td = |t−m(xr, ypr )|, if td ≤ 2

w

inf, otherwise
(2)

3.2. Direct disparity lookup in X-maps

Given the dense rectified projector X-map, we can
lookup the disparity value for each incoming event. Event
coordinates (x, y) are rectified into xcr and ycr . The event
time t is scaled and discretized to the width of the X-map.

xpr = x(ycr , t) (3)

d = xpr
− xcr (4)

Figure 5. A rectified camera X-map for a single projected frame.
It shows the scene of Figure 1 (b). The X-map is the product of
flattening the spatio-temporal event cuboid of dimensions (x, y, t)
into a 2D image of (y, t) 7−→ x. The idea of the time map is sim-
ilar, but applies the concept to a different face of the cuboid (map-
ping (x, y) 7−→ t). The X-map forms the basis for our method.
As x values are the values encoded in the map, subtracting a rec-
tified camera X-map from an idealized projector X-map yields the
disparity value.

Events that have coordinates which map into an unde-
fined area of the X-map or which result in a disparity value
d < 0 are discarded. As both operations (rectification and
x value retrieval) are lookups, computation of the disparity
is very efficient. The camera matrices are known from the
calibration process, so we can now compute the depth and
3D coordinates for each event from our retrieved disparity
values. To illustrate the process, we have created a camera
X-map in Figure 5. As we can process each event individ-
ually, there is no need to construct a camera X-map for the
actual implementation.
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Figure 6. Column event time in a time map for a projected frame.
Incoming events were grouped by their time (splitting the event
stream into the columns seen in Figure 3). Per column, the time
stamp of each event was then normalized to the range [0, 1]. In
an ideal recording, we would expect a smooth gradient from the
bottom to the top of the image, as the projector is scanning each
line vertically. In practice, we have different effects of the read-
out mechanism of the camera adding up to heavy local time stamp
jitter.

3.3. Time map calibration

The ideal time map for the projector assumes a constant
laser speed across each pixel and an instantaneous jump be-
tween line ends. However, this fails to account for the pro-
jector’s non-linear scan time, jitter introduced by the camera
readout behavior, and deviations from the assumed raster
pattern. To generate a more accurate reference time map, a
calibration of the projector scanning behavior is necessary.
Our solution is to project a white image onto a stationary
plane parallel to the projector and camera image planes, ob-
taining a time map that directly corresponds to the actual
projector time map as seen by the camera.

To accommodate the camera’s different resolution, we
generate multiple time maps, normalize them to the range
(0, 1), and compute the pixel-wise average, filtering out
noise and jitter. Then, we create a binary map, identify the
projected frame’s corners, and calculate the projective trans-
formation from the irregular rectangle to a 2D map with the
projector’s width and height. The calibrated projector time
map, flattened to one dimension, reveals the non-linearity in
time, as the projector starts slower than the ideal curve but
finishes faster.

Since the projected frame is not aligned with the camera
lines and columns, most pixels in the resulting time map
are interpolated and warped. To enable differentiation be-
tween projector lines, we interpolate missing values linearly
between two actual lines. Despite these adjustments, time-
stamps do not increase monotonically, as seen in the ideal
time map or a perfectly accurate time map. The calibrated
time map can mitigate unexpected temporal behavior, even
without complete knowledge of the projector’s inner work-
ings.

4. Demonstrator setup
We build our demonstrator using the Nebra Anybeam

MEMS Laser Projector [18]. This projector features three
laser diodes scanning a resolution of 1280× 720 px, a fixed
refresh rate of 60Hz and it specifies a brightness of 30
ANSI lumens. The frame rate and resolution of the pro-
jector yield a rate of 1/(720× 60Hz) = 23.2 µs per vertical
projected line, which is well above the time stamp resolu-
tion of the event camera, but potentially shorter than the re-
fractory period (the duration after firing, until the pixel can
generate a new event).

For the event camera, a Prophesee Evaluation Kit 1
(EVK1) with a Gen 3.0 sensor is used. The dynamic vi-
sion sensor has a resolution of 640 × 480 px with a 15 µm
pixel pitch and provides contrast detections only. The sen-
sor has a dynamic range of greater than 120 dB, a typical
latency of 200 µs and timestamps the events with microsec-
ond precision

4.1. Camera-projector-calibration

Camera-projector systems can be calibrated with estab-
lished methods such as [13]. A camera calibration frame-
work tailored to event cameras is presented in [16], which
converts event streams into intensity images with [21], and
thus does not require a blinking LED screen.

For our demonstrator, we calibrated our system with a
custom calibration pipeline that first calibrates camera in-
trinsics with a checkerboard on a monitor alternating with
all-white at 30 Hz. Then, we used a white diffusion paper
glued to the same monitor to perform intrinsic projector and
extrinsic projector camera calibration. The diffusion paper
improved the monitor’s ability to reflect the image from the
projector, while maintaining the sharpness of the displayed
checkerboard. Our approach was usable for system calibra-
tion, but the reprojection errors did not improve over con-
ventional calibration methods, perhaps because of the error
introduced by the diffusion paper not sharing the exact same
plane as the monitor.

4.2. Frame triggers

The creation of time maps for event cameras involves
identifying the start and end times within the event stream
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corresponding to a projected frame. While some event cam-
eras offer external trigger connections, this method requires
additional hardware. It also removes the possibility to use
cheap consumer laser projectors, as they usually do not of-
fer trigger hardware. We analyze batches of events span-
ning more than 16ms, to ensure that at least one frame gap
is present at 60Hz. We have observed our projector to con-
tinually scan over the scene for around 13ms, followed by
a reset phase of around 3ms.

We look for sequences of events that have a small differ-
ence in time stamps ∆t between consecutive events (usu-
ally 0 µs or 1 µs while scanning). A frame is identified by
a sequence of events that spans at least half a frame length
(8ms), where no ∆t is larger than a threshold. For our pro-
jector, the threshold was chosen empirically at 40 µs, which
is around the time to scan two lines (see Section 4). Al-
though the dataset in ESL was recorded with a hardware
trigger, a similar trigger identification implementation is
present in the open source code for ESL [14].

4.3. Camera settings

We are interested only in positive events, as we have de-
signed our approach to work with events triggered by the
laser passing over camera pixels. Thus, we set the bias
that controls the threshold for negative changes diff off to
its minimum value, and filter out any remaining negative
events from the stream. We set the deadtime refr and the
high pass filter hpf to their lowest allowed values, so the
camera produces as many events from neighboring rows as
possible. When setting up a demonstrator under new light-
ing conditions, we set diff on to the minimum possible value
where we do not see any noise events outside the projected
image.

4.4. Event filtering

When creating time maps, only one value can be stored
at each coordinate. If there are multiple events for the same
(x, y) within one frame, the duplicates get filtered out im-
plicitly. As our method does not depend on creating a time
map, we may keep multiple events per coordinate, and pro-
cess them all. This is a trade-off: Keeping all events allows
the resulting point cloud to be more dense, but it will also
have visibly more noise in the depth, making thin structures
grow thicker. Nevertheless, we see the possibility of as-
signing a 3D point to each event as a great benefit of our
method. In testing, we found that more than 60 % of all
events may be dropped by the coordinate filter. In future
work, the higher information density by keeping those could
be used to optimize the quality of the measurements and to
model the behavior of the projector and camera more accu-
rately.

Figure 7. Comparison for a projection straight onto a plane, using
calibrated and uncalibrated projector time maps. Ideally, we would
see a depth map that shares the same values over the whole region.
Figure (a) depicts the estimated depth map without projector time
map calibration, displaying noticeable distortions in the upper cor-
ners of the simple plane shape. Figure (b) presents the depth map
generated from the same events, but with a pre-calibrated projector
time map applied. This demonstrates, how the time map calibra-
tion counteracts the temporal non-linearities of the projector well.

5. Evaluation and Discussion
5.1. Time map calibration

The evaluation of the time map calibration, as illustrated
in Figure 7, demonstrates that the calibration methodology
is fundamentally effective. The depth measurements pre-
sented in the figure validate the underlying principle of the
time map calibration process. To obtain a comprehensive
understanding of the performance, a thorough qualitative
evaluation is required in future studies. Additionally, in-
tegrating intrinsic temporal calibration of the projector as a
component of the calibration process could potentially en-
hance the precision and accuracy further, leading to an over-
all more effective system.

Two noteworthy observations have emerged from the
time map calibration experiments. First, the calibration ex-
hibited stability across various projector and camera lens
calibrations. The once-calibrated time map for our projec-
tor could be effectively reapplied months later, yielding ac-
curate results without requiring recalibration. Second, we
observed that different projectors exhibit varying degrees
of nonlinear temporal behavior. In the data recorded for the
ESL [15], the projector displayed a comparatively milder
nonlinear behavior, resulting in significantly flatter planes
even without time map calibration.

5.2. Comparison to the state of the art

We compare our method to the state of the art approach
ESL [15] and use the static scenes of the public dataset
provided by them. We do not know of a dataset to pro-
vide event data for projected images together with a ground
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Scene David Heart Book-Duck Plant City of Lights Cycle Room Desk-chair Desk-books

Metrics FR↑ RMSE↓ FR↑ RMSE↓ FR↑ RMSE↓ FR↑ RMSE↓ FR↑ RMSE↓ FR↑ RMSE↓ FR↑ RMSE↓ FR↑ RMSE↓ FR↑ RMSE↓

MC3D 0.06 1.28 0.06 1.33 0.08 2.32 0.06 4.19 0.06 7.47 0.04 6.46 0.07 4.86 0.07 2.98 0.09 1.77
MC3D-1s 0.44 0.76 0.45 0.74 0.54 1.01 0.39 3.31 0.41 4.36 0.29 3.58 0.31 10.33 0.38 4.39 0.6 2.48
ESL-init 0.98 0.21 0.98 0.2 0.91 0.3 0.88 0.44 0.86 0.69 0.9 0.56 0.81 0.53 0.93 0.26 0.98 0.19
X-maps (ours) 0.97 0.21 0.98 0.2 0.91 0.31 0.88 0.45 0.85 0.72 0.89 0.57 0.74 0.53 0.88 0.25 0.91 0.19

Table 1. Evaluation with static scenes: Fill rate (FR, depth map completion) and RMSE (cm) are measured with respect to a ground truth
(optimized ESL). If the best and second best approaches differ by only 0.01 cm or 0.01%, both are highlighted.

truth depth. In ESL, results from a time-averaged MC3D
calculation are used as a baseline to compare against. We
found that the refined ESL results (window size W = 7 and
denoised) capture the geometry more cleanly than MC3D.
Thus, we consider the ESL results as the best approxima-
tion of scene depth, and use them as the improved baseline.
The event camera and the laser projector were synchronized
via an external sync jack, so it is assumed that all triggers
are perfect. The frequency of the images is 60Hz. Our time
map calibration cannot be applied on the dataset, as it does
not contain an image of a flat surface. Thus, a linear tempo-
ral behaviour of the projector has to be assumed.

Evaluation metrics. We list the root mean square er-
ror (RMSE), the Euclidean distance between estimates and
baseline (in all valid regions in both images) in cm, and the
fill-rate (completeness). The fill-rate measures the percent-
age of ground truth points for which the distance to the es-
timation is smaller than a threshold. The threshold is 1% of
the average scene depth. The metrics are calculated for each
provided time map, and, additionally, the average value is
listed. Since the scenes are static, the average values differ
very little from individual frame measurements.

Quantitative results. Table 1 shows the quantitative re-
sults of the depth estimation. We compare against MC3D 1

and the initialization step of ESL (ESL-init), which uses
a row-wise disparity matching and no further optimiza-
tion. Our X-maps system provides results very similar to
ESL-init, with an RMSE difference of 0.7mm at maximum
and almost equal fill rate. This demonstrates that our fast
X-map lookup provides depth at the same quality as the
exhaustive disparity search. The small differences can be
explained by the different quantizations (in the x-axis for
the time map, and the t-axis for the X-map), the rejection
of values when creating the reference projector X-map (see
Section 3.1) and interpolation and border handling errors in
the remapping steps. In comparison to MC3D, we see that
X-maps provides depth maps with much higher fill rate and

1The MC3D and ESL (CPU) implementation we used in the evaluation
is part of the open source implementation of ESL [14]

Figure 8. Qualitative comparison of reconstructed point clouds us-
ing ESL with depth map optimization (W = 7) (left) and X-maps
(right). The smoothing of the ESL point cloud is computationally
expensive. Our point cloud contains slightly more noise, but can
be determined without computational effort and still captures geo-
metric details.

lower RMSE. MC3D is not able to capture full frames with
a frequency of 60Hz. If the MC3D measurements are av-
eraged over a period of 1 second (60 frames) in MC3D-1s,
the depth maps become more dense, but still differ a lot
from the smoothed ESL depth maps.

In this experiment, we use static scenes, but due to the
high temporal resolution of event cameras and the fact that
both ESL and our method do not use temporal filtering,
the results can be transferred to scenes with movements.
The increased accuracy in dynamic scenes and robustness
of event-based sensing compared to structured light sensors
such as RealSense [4] was performed in [15] and is also
applicable to our method.

Qualitative result and runtime evaluation. Figure 8
shows a point cloud comparison for the David scene. We
see that the point cloud acquired with our method can pre-
serve the geometric details of the scene very well. The
ESL point cloud is smoother, visible especially in flat re-
gions (e.g. the wall) and slightly better filled in some regions
(e.g. at the eyes), but the calculation is also computationally
very expensive and time consuming.
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Table 2 provides a detailed timing evaluation. We per-
form the tests on a system equipped with an AMD Ryzen
Threadripper PRO 5955WX CPU and an RTX 4090 GPU,
running Python 3.8. On a single CPU, one depth map cal-
culation with X-maps takes 2.67ms on average, while one
iteration of ESL (with window size W = 7 and denois-
ing) took over 100 seconds, making it over 10000× slower
than X-maps. A faster implementation of ESL is possi-
ble, but we believe that a GPU implementation is necessary
for row-by-row disparity search and depth optimization to
run in real-time. To demonstrate this, we create an opti-
mized CUDA implementation of ESL-init which required
18.99ms on GPU, still 7× slower than X-maps.

Method Runtime (abs.) Runtime (rel.)

ESL (CPU) 174.68 s (±26.97) > 10000×
ESL-init (CPU) 11.87 s (±2.13) > 1000×
ESL-init (CUDA) 18.99 ms (±0.88) 7.12×
X-maps (ours, CPU) 2.67 ms (±0.31) 1.0×

Table 2. Runtime comparison: For ESL-init, we additionally
measure the runtime of our own CUDA-based implementation.
We calculate the timing for each static scene and list the average
time and the standard deviation.

5.3. Spatial Augmented Reality Example

With our method, we have built a live demonstrator, that
computes the depth of the scene, and projects the depth val-
ues back into the scene in real-time (Figure 1). Our method
does not depend on a certain kind of pattern (like a noise or
binary pattern), and, crucially, supports projecting with all
available pixels of the projector. Thus, we can display any
image content onto the scene, while still estimating depth
information. It is also possible to project sparse images, as
our method computes depth for events, and is not depen-
dent on the image being filled. Note that if the scene gets
too sparse, the frame trigger algorithm described in Section
4.2 may stop working correctly. Very sparse scenes would
require a change in the algorithm that can work with the
projected scene as an input to find the frame beginning and
end.

In the future, we want to create more complex experi-
ences, by combining our depth estimation method with ob-
ject detection and tracking, so that we are able to overlay
real-world objects with information or patterns.

6. Conclusions, Limitations & Future Work
We have presented a method of directly computing the

depth of events, triggered by a small laser projector. After
transforming the projector time map into a rectified X-map,
the depth can directly be retrieved from a lookup table,
while accounting for non-linear temporal behavior of the

scanner. Thus, the method allows for the creation of high-
resolution point clouds at 60Hz, or higher. This enables
exciting use cases in spatial augmented reality. The projec-
tor is cheap, and little computational budget is required.

Our system is limited by the noise of the event camera
sensor and its readout characteristics, which introduces er-
rors in the timestamps. Improvements in sensor resolution,
noise reduction and readout speed will directly benefit our
approach, without needing any changes.

We have chosen not to apply further noise filtering to the
data in the image domain, keeping depth information from
all events in the resulting scene. This yields sharp borders at
depth discontinuities, no erroneous interpolation, and even
very small objects stay visible. We trade this off for a re-
duced smoothness in the depth map, which we consider
sufficient for spatial augmented reality use cases. We have
evaluated our results by showing that our approach provides
similar depth precision to earlier work on a public dataset.

In future work, it might be interesting to closer investi-
gate the row-wise behaviour of the laser scanner, in order to
provide a more exact time map calibration. Finally, in or-
der to allow projection onto arbitrary (potentially moving)
objects for different applications, the projection of partial
frames with any contour should be investigated.
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