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Abstract

The event sensor acquires large amounts of data as
events are triggered at microsecond time resolution. In this
paper, a novel entropy coding-based method is proposed
for encoding asynchronous event sequences. The proposed
method employs the event coding framework, where: (i) the
input sequence is rearranged as a set of same-timestamp
subsequences, where each subsequence is represented of a
set of data structures (DSs); and (ii) each DS is encoded
by a specific version of the triple threshold partition (TTP)
algorithm, where a bitstream collects the binary represen-
tation of a set of data elements. A first contribution consists
in improving the low-complexity algorithm, LLC-ARES, by
modifying the TTP algorithm to employ entropy coding-
based techniques to efficient encode the set of data ele-
ments. An adaptive Markov model encodes each data el-
ement by modelling its symbol probability distribution. Six
different types of data elements are distinguished, each hav-
ing a different support symbol alphabet. Another contri-
bution consists in exploring novel prediction strategies, for
the unsorted spatial dimension, and parameter initializa-
tion, for the new error distributions. The experimental eval-
uation demonstrates that the proposed method achieves an
improved average coding performance of 28.03%, 35.27%,
and 64.54% compared with the state-of-the-art data com-
pression codecs Bzip2, LZMA, and ZLIB, respectively, and
21.4% compared with LLC-ARES.

1. Introduction
Recently, the neuromorphic engineering domain pro-

posed a new type of sensor, bio-inspired by the human
brain, called the event sensor [15]. In contrast to the con-
ventional camera, where the incoming light intensity is cap-
tured by a video sequence, the event camera outputs a se-
quence of asynchronous events triggered at specific pixel
position, at up to one microsecond times resolution, and
only to report either an increase or a decrease of the in-
coming light intensity. Since the event camera captures

only the dynamic information and removes the unnecessary
static information, it is now widely used in computer vision
where the RGB and event-based solutions already provide
the state-of-the-art performance for many applications, such
as feature detection and tracking [35], optical flow estima-
tion [23, 24, 31], object segmentation [29, 32], stereo depth
estimation [27, 30], and many others. For a comprehensive
literature review see [10]. Due to the high temporal res-
olution, the event camera generates large amounts of data
as high bit-rate levels are achieved using the raw represen-
tation of 8 bytes per event. Hence, efficient event coding
solutions are required to reduce the high bitrate levels.

The event data compression domain is understudied as
recently more efficient high resolution event sensors, e.g.,
Prophesee’s Gen4 [9], Samsung’s dynamic vision sensor
(DVS) [25], are available to consumers. Several solutions
are proposed to compress the asynchronous event sequences
without any information loss. In [4], the codec is remov-
ing the redundancy of the spatial and temporal informa-
tion using three strategies: adaptive macro-cube partition-
ing structure, the address-prior mode, and time-prior mode.
In [7], the authors propose to further extend the lossless
codec by using octree-based cube partition and a flexible
inter-cube prediction. This strategy was evaluated on low-
resolution event datasets and coding performance compari-
son is not possible as the used dataset is partly made avail-
able only for academic purpose and on a case-by-case ba-
sis. In [21], the Low-complexity Lossless Compression of
AsynchRonous Event Sequence (LLC-ARES) method was
proposed by first rearranging the input event sequence using
the Same-Timestamp (ST) representation and then employ-
ing the triple threshold partition (TTP) algorithm to gener-
ate a set of data elements, which are represented using a re-
duced number of bits and simply collected in a bitstream as
LLC-ARES is designed to be suitable for hardware imple-
mentation into event signal-processing (ESP) chips. Here,
the proposed method employs the event coding framework
[21] and improves LLC-ARES by modifying the TTP-based
algorithm to employ entropy coding-based techniques to en-
code the set of data elements, therefore, the codec is suitable
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for hardware implementation into system-on-a-chip (SoC).
Another approach consist in employing different strate-

gies, such as [2, 16, 33], to generate a sequence of syn-
chronous Event Frames (EFs), so that the event data can be
consumed as “intensity-like” frames/images. In [13], a time
aggregation-based lossless video encoding method based on
an event-accumulation process is used to create two event
frames of positive and negative polarity counts, which are
further encoded using HEVC [26]. In [19], a context-based
lossless compression method is proposed to encode (sum-
accumulation) EFs sequences, where the event spatial in-
formation and the event polarity information are encoded
separately by employing two different algorithms. In [20],
a low-complexity lossless compression method is proposed
to encode the EFs sequences using run-length encoding and
Elias coding [8] so that the proposed solution is suitable for
hardware implementation into ESP chips. In [17], the asyn-
chronous event sequences are treated as a point cloud rep-
resentation, so the proposed method employs a point cloud
compression based strategy.

Traditional data compression strategies can also be em-
ployed to encode the event data. In [12], the authors stud-
ied the performance of data compression codecs and show
that the dictionary-based methods usually offer the best
performance, e.g., the Zeta Library (ZLIB) [6], the Lem-
pel–Ziv–Markov chain algorithm (LZMA) [18] (used by
7-Zip), and the Bzip2 algorithm [22] (based on the well-
known Burrows–Wheeler transform [5]).

In the lossy event data compression domain some type
of information loss was accepted with the goal of achiev-
ing very low bitrates. In [34], the authors propose a macro
cuboids partition of the raw event data and they employ a
novel spike coding framework, inspired from video cod-
ing, to encode spike segments. In [3], the authors propose
a lossy coding method based on a quad tree segmentation
map derived from the adjacent intensity images, which re-
quires access to the a hybrid event sensor that comprises of
a pair of a DVS sensor and an active pixel sensor (APS).

The goal of this work is to propose a novel lossless com-
pression method for asynchronous event sequences. The
novel contributions of this work are summarized as follows:
(1) a novel entropy coding-based codec is proposed for raw
event data; (2) the TTP algorithm [21] was modified to ad-
ditionally employ entropy coding-based techniques by al-
locating a set of corresponding adaptive Markov models
(AMM) to encode each generated data element instead of
representing it on a number of bits; (3) novel prediction
strategies are proposed for the unsorted spatial dimension;
(4) a novel parameter initialization procedure is introduced
to model the new prediction error distribution.

The remainder of the paper is structured as follows.
Sec. 2 details the proposed method. Sec. 3 presents the ex-
perimental evaluation. Sec. 4 draws the conclusions.
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Figure 1. The event coding framework [21] was modified to em-
ploy the proposed method and encode the input event sequence,
ST , under the Same-Timestamp (ST) representation.

2. Proposed Method
A novel entropy coding-based lossless compression

method is proposed to encode the raw data captured by a
DVS sensor and stored as asynchronous event sequences.
Fig. 1 show the event coding framework [21], where the
representation of the input asynchronous event sequence is
changed from Event-by-Event (EE) to ST, i.e., as a set of
same-timestamp subsequences, where each subsequence is
represented of a set of data structures (DSs), see Sec. 2.1.
Each ST DS is then encoded by employing a specific ver-
sion of the TTP algorithm, where a decision tree is used to
divide the input range into several coding ranges arranged
at concentric distances from a prediction, see Sec. 2.2.
The TTP-based algorithms generate a set of data elements,
which are represented using a reduced number of bits and
then simply collected in a bitstream.

In this work, the event coding framework is modified
to employ the proposed method, called Entropy coding-
based Lossless Compression of ARES (ELC-ARES), de-
scribed in Sec. 2.3. ELC-ARES encoded each DS in the
ST representation by employing a modified TTP variation
designed using more efficient entropy coding techniques.
New prediction strategies are also explored, see Sec. 2.4.
A new threshold parameter initialization is proposed, see
Sec. 2.5. The detailed algorithmic implementation is pre-
sented in Sec. 2.6.

2.1. Same-Timestamp Representation

For a W ×H resolution camera, an asynchronous event,
ei = (xi, yi, pi, ti), collects the spatial, (xi, yi), ∀xi ∈
[1, H], yi ∈ [1,W ], polarity, pi ∈ {−1, 1}, and times-
tamp, ti, information. An event sequence, ST = {ei}Ne

i=1,
stores all Ne events triggered during T timestamps using
the EE representation as a sequence eNe = e1e2 . . . eNe .
The ST representation rearranges ST as a set of ST sub-
sequences, ST = {Sk}T −1

k=0 , where each ST subsequence,

Sk = {(xk
i , y

k
i , p

k
i )}

Nk
e

i=1, collects all the Nk
e events that

were triggered at the same timestamp tk. Each Sk is firstly
ordered in the ascending order of the largest spatial infor-
mation dimension, e.g., yik, and then of the remaining di-
mension (xi

k) if ϵyk
i
= yki − yki−1 = 0. ELC-ARES encodes

ST as a set of T subsequence (Sk), each represented using

four DSs: Nk
e , {yki }

Nk
e

i=1, {xk
i }

Nk
e

i=1, and {pki }
Nk

e
i=1, see Fig. 1.
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Figure 2. Each TTP algorithm variation is modified to employ-
ing entropy coding-based techniques. The red rectangles mark the
additional blocks introduced by the proposed method.

2.2. Triple Threshold Partition Algorithm

The TTP algorithm divides the input data range into sev-
eral coding ranges arranged at concentric distances from an
initial prediction. The binary representation of the residual
error is partitioned into smaller intervals based on a decision
tree designed using the triple threshold ∆ = (δ1, δ2, δ3).

Type DS Model ID A

Decision
Tree

{xk
i }

Nk
e

i=1

DTxb0, DTxb1, DTxb2

A2
DTxbs, DTxbx1

{yki }
Nk

e
i=1 DTyb0, DTyb1, DTyb2

Nk
e DTeb0, DTeb1, DTebs

Encode x {xk
i }

Nk
e

i=1

Exδ11, Exδ12, Exδ13 Aδ1

Exδ21, Exδ22 Aδ2

Exδ31, Exδ32 Aδ3

Encode y {yki }
Nk

e
i=1

Eyδ11, Eyδ12 Aδ1

Eyδ21, Eyδ22, Eyδ23 Aδ2

Eyδ31, Eyδ32, Eyδ33 Aδ3

Encode e Nk
e

Eeδ1 Aδ1

Eeδ2 Aδ2

Polarity {pi}
Nk

e
i=1 P1 A2

Binary
{xk

i }
Nk

e
i=1 BxL,BR4, BR5 A2

{yki }
Nk

e
i=1 ByL,BR5

Table 1. The list of AMMs employed by ELC-ARES.

To encode each Sk, three TTP versions were proposed
based on the type of encoded ST DS: TTPe to encode Nk

e ,

TTPy to encode {yki }
Nk

e
i=1, and TTPx to encode {xk

i }
Nk

e
i=1.

Fig. 2a depicts the TTPx version, where five ranges (R1-
R5) are created based on an input prediction x̂, see Sec. 2.4,
and a search range [1, H]. LLC-ARES directly writes into
the compressed file the following DSs: (a) the decision tree
using up to four bits (b0b1bs, b0b1b2bs, b0bd1, or b0); and (b1)
the binary representation of the residual error, ϵx = x − x̂,
using nδk bits for R1-R3; (b2) the true value x− 1 using n1

bits for R4; (b3) H − x using n2 bits for R5. Fig. 2b de-
picts the TTPy version where, similarly, four ranges (R1-
R3, R5) are created using the input prediction ŷ and the
search range [1,W ], while Fig. 2c depicts the TTPe version
where three ranges (R1-R2, R5) are created using the input
prediction N̂e. In contrast, ELC-ARES modifies each TTP
version to encode all the corresponding DSs using more ef-
ficient entropy coding techniques, mark in Fig. 1 using red
rectangles and described in-detail in Sec. 2.3 below.

2.3. Proposed Entropy Coding-based Solution

Given xn = x0x1 . . . xn−1, a sequence of n elements
xj selected from the an alphabet Aκ = {s0, s1, . . . , sκ−1}
of κ symbols, and Cκ = [c0 c1 . . . cκ−1], where ci is the
frequency of symbol si. The sequence xn is encoded using
the probability distribution Pn = [p0 p1 . . . pκ−1], where
pi =

ci
n . The first element, x0, is first encoded using an uni-

form distribution P0 = [ 1κ
1
κ . . . 1

κ ] and then P0 is updated
to P1 using a probability estimator. Similarly, a next ele-
ment xn is first encoded using Pn and then Pn is updated to
Pn+1. Here, the Laplace estimator [14] computes the prob-
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ability that the next element xn is symbol si as follows:

pi(xn = si) =
nsi + 1

n+ κ
,∀i = 0, 1, . . . , κ− 1. (1)

An order−N AMM uses κN contexts of previous N sym-
bols, where xn is encoded given an alphabet Aκ. In this
work, only the order−0 AMM is used as our test show
inconsistent coding gains when searching for the optimal
model order while using an increased complexity.

ELC-ARES encodes Sk by employing model P1 for

{pki }
Nk

e
i=1, and several models for the data elements gener-

ated by TTPe, TTPy, and TTPx for Nk
e , {yki }

Nk
e

i=1, and

{xk
i }

Nk
e

i=1, respectively. Six AMM types are distinguished.
(1) Decision Tree (DT ), for encoding the decision tree

of: TTPx (DTx), see Fig. 2a; TTPy (DTy), see Fig. 2b;
and TTPe (DTe), see Fig. 2c. E.g., the modified TTPx

algorithm encodes the following data elements: bi,∀i =
0, 1, 2, 3 to signal R1-R3; bd1 to signal R4-R5; and bs to sig-
nal sgn(ϵx). All DT models use alphabet A2 = {0, 1}.

(2) Encode x (Ex), for encoding |ϵx| = |x − x̂| us-
ing: range R1, where model Exδ1ℓ (where ℓ depends on δi
value) encodes xn = |ϵx| using Aδ1 = {0, 1, . . . , δ1 − 1};
range R2, where model Exδ2ℓ encodes xn = |ϵx| − δ1
using Aδ2 ; and range R3, where model Exδ3ℓ encodes
xn = |ϵx| − δ1 − δ2 using Aδ3 , see Fig. 2a.

(3) Encode y (Ey), for encoding |ϵy| = |y − ŷ| similarly
as Ex, i.e., by using one of R1, R3, and R3 ranges of TTPy

with Eyδ1ℓ, Eyδ2ℓ, and Eyδ3ℓ, respectively, see Fig. 2b.
(4) Encode e (Ee), for encoding |ϵe| = |Nk

e − N̂k
e | simi-

larly as Ex, i.e., by using one of R1 and R2 ranges of TTPe

with model Eeδ1 and Eeδ2, respectively, see Fig. 2c.
(5) Polarity (P ), for encoding pki ,∀i = 1, 2, . . . , Nk

e us-
ing the model P1, having A2 = {−1, 1}.

(6) Binary (B), for the binary representation of: (6.i)
(x − 1)(10) = bn1−1 . . . b1b0(2) in R4 (of TTPx) by en-
coding xn = bn1−1 using model BR4 and xn+i = bi,∀i =
0, 1, . . . , n1 − 2 using model BxL; (6.ii) (H − x)(10) =

bn2−1 . . . b1b0(2) in R5 (of TTPx) by encoding xn = bn2−1

using model BR5 and xn+i = bi,∀i = 0, 1, . . . , n2 − 2 us-
ing model BxL; (6.iii) (W − y)(10) = bn2−1 . . . b1b0(2) in
R5 (of TTPy) by encoding xn = bn2−1 using model BR5
and xn+i = bi,∀i = 0, 1, . . . , n2 − 2 using model ByL.

Tab. 1 lists all the order−0 AMMs introduced by ELC-
ARES, i.e., 33 models, together with their ID and alphabet
size. Sets of 11, 2, 1, and 4 models are introduced for the
DT, Ee, P, and B types, respectively, for encoding the DSs
generated by TTPx, TTPy, and TTPe. While sets of 7 and
8 models are introduced for the Ex and Ey types, respec-
tively, to cover all different values of that may be possible
when updating ∆, see Sec. 2.5.

In R6 of TTPe, large |ϵe| are codified by employing
Elias Gamma Coding (EGC) [8] for xγ = |ϵe| − ∆e − 2,

see Fig. 2c. The modified TTPe employs the modified EGC
where the generated bitstream is further encoded using two
AMMs: BR4 for the unary representation of xγ number of
bits; BR5 for the remaining xγ binary digits, see Sec. 2.6.

2.4. Exploring New Prediction Strategies

In LLC-ARES, prediction ŷki is fixed to yki−1 due to the
ST representation, while N̂k

e depends on the scene motion.
Let us denote w5 the LLC-ARES prediction strategy, where
the median function is applied either on a small prediction
window of size 5 or a larger prediction window of size 15.

In this paper, an improved prediction, x̂k
i , is computed

using different strategies using {xk
j }

i−1
j=1. Firstly, let us de-

note w50 as the improved and more complex prediction
strategy where the median function is applied on a very
large prediction window of size 50, i.e., for i > 2, x̂k

i =
med({xk

i−j}j=1:50,i>j). Secondly, let us denote Px1 the
prediction strategy where TTP is in charge of handling large
prediction errors (using R4-R6) and computation complex-
ity is minimized as x̂k

i = xk
1 , i.e., the position of the first

event trigger at tk.

2.5. New Threshold Initialization

Let us denote T345 the LLC-ARES threshold initializa-
tion of ∆k+1

H , see Eq. (2). Since Px1 computes a worst
prediction than w5 or w50, a new threshold initialization,
denote T455, is introduced so that much large residual er-
rors are allocated to ranges R1-R3, see Eq. (3).

∆k+1
H,T345 =


∆e1 = (23, 24, 25) if k = 0;

(25, 25, 26) if k > 0 & ϵk < 8;

(24, 24, 25) otherwise.
(2)

∆k+1
H,T455 =


∆e1 = (24, 25, 25) if k = 0;

(26, 26, 26) if k > 0 & ϵk < 8;

(25, 25, 25) otherwise.
(3)

T345 may set ∆k+1
H as follows: δ1 as 23, 24, or 25 for

models Exδ11, Exδ12, or Exδ13, respectively; δ2 as 24, or
25 for models Exδ21 or Exδ22, respectively; and δ3 as 25,
or 26 for models Exδ31 or Exδ32, respectively.

T455 may set ∆k+1
H as follows: δ1 as 24, 25, or 26 for

models Exδ11, Exδ12, or Exδ13, respectively; δ2 as 25 or
26 for models Exδ21 or Exδ22, respectively; and δ3 as 25

or 26 for models Exδ31 or Exδ32, respectively.
∆W may be set as follows: δ1 as 21 or 22 for models

Eyδ11 or Eyδ12, respectively; δ2 as 21, 22, or 23 for mod-
els Eyδ21, Eyδ22, or Eyδ23, respectively; and δ3 as 22, 23,
or 24 for models Eyδ31, Eyδ32, or Eyδ32, respectively.
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Algorithm 1: ELC-ARES Encoder of Sk

Input: Nk
e , {yki }

Nk
e

i=1, {x
k
i }

Nk
e

i=1, {p
k
i }

Nk
e

i=1), {N
j
e}k−1

j=k−3, H,W,Px

(prediction strategy), and Tx (initialization);
1 Initialize all models listed in Tab. 1;
2 N̂k

e ← Predict Nk
e using {Nj

e}k−1
j=k−3;

3 Encode Nk
e using Alg. E1 (Nk

e , N̂
k
e ,∆e);

4 if Nk
e > 0 then

5 Encode yk1 using Alg. E4 (yk1 , ŷ
k
r , ϵyk

1
, [1, W ],∆e1);

6 Encode xk
1 using Alg. E4 (xk

1 , x̂
k
r , ϵyk

1
, [1, H],∆e1);

7 Encode pn = pk1 using model P1; Update P1;
8 for i = 2, 3, . . . , Nk

e do
9 Encode yki by Alg. E3 (yki , y

k
i−1, [y

k
i−1, W ],∆k

W );
10 x̂k

i ← Predict xk
i using Px({xk

j }j=1,2,...,i−1);
11 Encode xk

i using Alg. E4 (xk
i , x̂

k
i , ϵyk

i
, [1, H],∆k

H);

12 Encode pn = pki using model P1; Update P1;

13 ∆k+1
H ← Update ∆k

H using ϵk = yk
Nk

e
− yk1 and Tx;

14 ∆k+1
W ← Update ∆k

W using ϵk = yk
Nk

e
− yk1 ;

Algorithm 2: ELC-ARES Decode of Sk

Input: {Nj
e}k−1

j=k−3, H,W,Px, Tx;

Output: Nk
e , {yki }

Nk
e

i=1, {x
k
i }

Nk
e

i=1, {p
k
i }

Nk
e

i=1;
1 Initialize all models listed in Tab. 1;
2 N̂k

e ← Predict Nk
e using {Nj

e}k−1
j=k−3;

3 Nk
e ← Decode using Alg. D2 (N̂k

e ,∆e);
4 if Nk

e > 0 then
5 yk1 ← Decode using Alg. D1 (ŷkr , ϵyk

1
, [1, W ],∆e1);

6 xk
1 ← Decode using Alg. D1 (x̂k

r , ϵyk
1
, [1, H],∆e1);

7 pk1 ← Decode using model P1; Update P1;
8 for i = 2, 3, . . . , Nk

e do
9 yki ← Decode by Alg. D4 (yki−1, [y

k
i−1, W ],∆k

W );
10 Predict xk

i using Px({xk
j }j=1,2,...,i−1);

11 xk
i ← Decode using Alg. D1 (x̂k

i , ϵyk
i
, [1, H],∆k

H);

12 pki ← Decode using model P1; Update P1;

13 ∆k+1
H ← Update ∆k

H using ϵk = yk
Nk

e
− yk1 and Tx;

14 ∆k+1
W ← Update ∆k

W using ϵk = yk
Nk

e
− yk1 ;

15 Return Sk(Nk
e , {yki }

Nk
e

i=1, {x
k
i }

Nk
e

i=1, {p
k
i }

Nk
e

i=1);

2.6. Algorithmic Implementation

2.6.1 ELC-ARES Encoder

Alg. 1 presents the pseudocode of ELC-ARES encoder for
subsequence Sk of timestamp tk, see Fig. 1. Sk is stored
under ST representation as the set of following DSs: Nk

e ,

{yki }
Nk

e
i=1, {xk

i }
Nk

e
i=1, and {pki }

Nk
e

i=1.

Almost every line of the LLC-ARES encoder was mod-
ified in the ELC-ARES encoder by: (i) modifying the TTP
algorithm to employ entropy coding-based techniques, see
Sec. 2.3; (ii) employing a new prediction strategy, see
Sec. 2.4; (iii) employing a new ∆k+1

H initialization, see

Sec. 2.5. For pseudocode of Algs. E1-E4 is presented in the
supplementary material file. Algs. E1, E2, and E4 present
the modified TTPe (see Fig. 2c), TTPy (Fig. 2b), and
TTPx (see Fig. 2a) encoder, respectively, while Alg. E2
presents the modified EGC encoder.

2.6.2 ELC-ARES Decoder

Alg. 2 presents the pseudocode of ELC-ARES Decoder for

subsequence Sk as the set of following DSs: Nk
e , {yki }

Nk
e

i=1,

{xk
i }

Nk
e

i=1, and {pki }
Nk

e
i=1. Similarly, almost every line of the

LLC-ARES decoder was modified in the ELC-ARES de-
coder. For pseudocode of Algs. D1-D4 is presented in the
supplementary material file. Algs. D1, D2, and D4 present
the modified TTPx (see Fig. 2a), TTPe (see Fig. 2c), and
TTPy (Fig. 2c) decoder, while Algs. D4 presents the pseu-
docode of the modified EGC decoder, employed in Alg. D2.

3. Experimental Evaluation

3.1. Experimental Setup

The experimental evaluation is performed on DSEC [1,
11] training data, containing 82 sequences of W × H =
640 × 480 pixel resolution, where only the first 100 s or
each sequence are retained. Here, the sequences are sorted
in ascending order of event acquisition density, see Fig. 3.

The raw data size is computed as 8 bytes per event (64
bpev). The results are reported using: (a) Relative compres-
sion (RC), ratio between compressed size and compressed
anchor size; (b) Compression ratio (CR), ratio between raw
data size and compressed size; (c) Bit rate (BR) (bpev),
number of bits needed to encode one event; (d) Event den-
sity (Mevps), number of events encoded per second; (e)
Runtime (µspev), average time needed to encode one event.

ELC-ARES is written in C, and its performance is com-
pared with the following state-of-the-art codecs: (a) ZLIB
[6] (version 1.2.3 available online [28]); (b) LZMA [18]; (c)
Bzip2 (version 1.0.5 available online [22]); and (d) LLC-
ARES [21] (designed for ESP integration). The ST repre-
sentation provides an improved performance of up to 96%
compared with the EE order, see [21]. Hence, in this paper,
data is always stored using the ST representation.

3.2. Ablation study

LLC-ARES is designed to employ the w5 prediction
strategy and the T345 initialization. Here, ELC-ARES is
designed to employ the Px1 prediction strategy and the
T455 initialization. An ablation study is introduced to
analyse the performance of the proposed prediction strate-
gies and threshold initializations using the following ver-
sions: (1) ELC-ARES-v1, employs the same configura-
tion as LLC-ARES; (2) ELC-ARES-v2, employs w50 and
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Figure 3. Compression results of ELC-ARES versions. Sequences
are sorted in ascending order of event acquisition density.

Codec Px Tx CR RCLLC RCELC

LLC-ARES w5 T345 4.371 1 0.824
ELC-ARES-v1 w5 T345 5.256 1.202 0.991
ELC-ARES-v2 w50 T455 5.261 1.204 0.992
ELC-ARES-v3 w50 T345 5.282 1.208 0.996
ELC-ARES-v4 Px1 T345 5.286 1.209 0.996
ELC-ARES Px1 T455 5.306 1.214 1

Table 2. Average performance of ELC-ARES versions over DSEC

Codec ZLIB LZMA Bzip2 LLC-ARES ELC-ARES

CR 3.225 3.922 4.144 4.371 5.306
BR 20.32 16.80 15.91 14.82 12.58

Table 3. Average coding performance over DSEC

T345; (3) ELC-ARES-v3, employs w50 and T455; and (4)
ELC-ARES-v4, employs Px1 and T455.

Fig. 3 presents the RCELC results over DSEC to com-
pare the performance of each ELC-ARES version relative
to the proposed ELC-ARES algorithm, which is set as an-
chor codec. Tab. 2 shows the average results in terms of
CR, RCELC (relative to ELC-ARES), and RCLLC (rela-
tive to LLC-ARES). One can note that the entropy cod-
ing techniques provide an average improvement of 20.2%
compared with LLC-ARES. ELC-ARES provides 21.4%
improvement compared with LLC-ARES (or equivalent the
LLC-ARES performance is only 82.4% of the LLC-ARES
performance). The event coding framework-based codecs
provides an improved performance regardless of the predic-
tion quality as the extreme prediction cases are efficiently
detected and treated separability.

3.3. Lossless compression results

Fig. 4 shows the compression results over DSEC,
where Fig. 4a shows CR results and Fig. 4b the BR re-
sults. Note that ELC-ARES provides the best perfor-
mance for any event sequence acquisition density. Tab. 3
shows the average coding performance over DSEC. Note
that, compared with the state-of-the-art codecs, LLC-
ARES, Bzip2, LZMA, and ZLIB, the proposed codec,
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Figure 4. Lossless compression results over DSEC.
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Figure 5. Runtime results over DSEC.

ELC-ARES, provides an average CR improvement of
21.4%, 28.03%, 35.27%, and 64.54%, respectively, and an
average BR improvement of 17.8%, 26.5%, 33.6%, and
61.56%, respectively.

3.4. Runtime results

Fig. 5 shows the average runtime performance over
DSEC, where Fig. 5a shows the encoding event density
results, and Fig. 5b shows the encoding runtime results.
The proposed method provides the best performance for
the medium and high event density sequences, while only
Bzip2 provides a similar performance for low event den-
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Codec ZLIB LZMA Bzip2 ELC-ARES

Event density 1.392 0.275 2.453 3.109
Runtime 44.70 227.27 25.74 20.23

Table 4. Average runtime performance over DSEC.

sity sequences. Tab. 4 shows the average coding per-
formance over DSEC. Compared with the state-of-the-art
lossless compression codecs, suitable for SoC integration,
Bzip2, LZMA, and ZLIB, the proposed method, ELC-
ARES, provides an average encoding runtime improvement
of 123.42%, 1031.73%, and 26.77%, respectively.

LLC-ARES provides an encoding runtime smaller with
46% compared with ELC-ARES. Its runtime results are
not included in the comparison as it employs only low-
complexity techniques to be suitable for ESP integration,
while all other codecs are designed for SoC integration.

4. Conclusions
The paper proposed a novel entropy coding-based

method for encoding raw event data. ELC-ARES employs
the event coding framework to rearranged the sequence and
the TTP algorithm to generate a set of data element. The
LLC-ARES performance was improved by modifying the
TTP algorithm to employing entropy coding-based tech-
niques to encode the set of data elements using a large set of
order−0 AMMs. Novel prediction strategies were explored.
A new threshold initialization was introduced. The experi-
mental evaluation demonstrates that ELC-ARES provides a
21.4% improvement compared with LLC-ARES, and more
than 28.03% compared with state-of-the-art data compres-
sion codecs. The paper explored the prospect of designing
novel lossless compression codecs for asynchronous event
sequences using traditional entropy coding techniques.
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