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In this document, we describe our novel dataset and provide an additional detailed explanation of our mathematical approach
in the paper “Density Invariant Contrast Maximization for Neuromorphic Earth Observations”.

I. ISS DATASET

The ISS-based event camera setup consists of two DAVIS cameras, each with a resolution of 240x180 pixels, located at
the Columbus module. One camera, referred to as the “Ram camera,” points forward toward the Earth’s limb in the direction
of the ISS’s travel. The other camera, known as the “Nadir camera,” points down towards the Earth at a 20-degree angle to
starboard to observe lightning and the Earth’s surface directly from above the upper atmosphere. The camera field-of-view
(FOV) is depicted in Figure 1(a) with yellow shades representing both the Nadir and Ram FOV and the blue shade representing
the ISS center FOV at its midpoint. Figure 1(b) illustrates the FOV for both cameras from the Nadir and Ram perspectives,
showcasing the Ram’s zooming ability and the Nadir’s translation motion. The Ram is primarily used to observe sprites and
lightning from different angles, while the Nadir captures lightning and Earth’s surface. We carefully selected ten recordings
from the Nadir camera dataset, considering a variety of conditions such as weather, location, time, and noise. Table I provides
additional details about each recording. We focused on recordings that exhibit rich textures and clear outlines of the Earth,
disregarding recordings over the ocean, as they only generate noise without features or clear outlines, rendering them unusable.

Fig. 1: The FOV of the event camera on the ISS. a: The yellow shade represents the FOV of two event cameras, in this work,
we use the event camera pointed toward earth or NADIR. b: An example of what a normal camera see through the RAM and
NADIR FOV. c: A heatmap of the recording locations which are selected for this paper.

TABLE I: General characteristics of the ISS event dataset.

Geo Location Date (UTC) ∆t (s) Location◦ # Events Earth Side
El Salvador 2022-01-21 20:58:34 60 15.45 -82.11 11,550,402 Day
Panama 2022-01-24 20:12:11 30 16.81 -86.61 13,876,281 Day
Brittany 2022-01-25 21:21:18 60 44.41 5.33 841,024 Night
Mexico 2022-01-25 20:58:52 90 23.16 -98.83 1,020,556 Day
Spain 2023-01-13 03:17:57 30 -0.958 36.535 3,928,491 Night
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TABLE I: General characteristics of the ISS event dataset.

Geo Location Date (UTC) ∆t (s) Location◦ # Events Earth Side
Washington 2022-02-01 20:15:58 30 43.79 -100.18 3,280,126 -
Houston 2022-02-17 20:28:02 59 20.75 -84.59 4,996,157 Night
Sumatra 2022-02-17 21:20:49 180 -48.63 13.163 1,073,675 Night
Egypt 2022-02-03 17:28:03 180 32.94 30.96 6,426,732 -
United Kingdom 2023-01-19 20:25:10 60 8.157 51.637 3,712,626 -

Below are some snapshots of each data we used in this work (Table II) with the output maps (Figure 2) which are similar
to the ones presented in the paper but with a larger size:

Fig. 2: Motion-compensated Maps showing details for each recording.

II. FURTHER EXPLANATIONS ON THE ONE-DIMENSIONAL CASE

In Section 2.1, we introduced the one-dimensional correction and explained the mathematical details of the continuous noise
variance for condition 1. In this section, we shall explain the details of condition 2 (figure 3).

Condition 2 starts when s ≥ 1. It is also a piecewise linear function made of three segments, however, its height is influenced
by the change of the candidate speed s when it becomes larger than the pixel width. In this case, the height of the polyhedron
reduces as s increases. It is described as follows:

f(p) =


cp
s 0 ≤ p ≤ 1
c
s 1 ≤ p ≤ s
s−p+1

s2 s ≤ p ≤ 1 + s

(1)

Applying the formulas for the mean and variance given for s ≥ 1:
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TABLE II: Frames for each dataset in sequential order.

f =
c

s+ 1
and varf (s) = c2

s(2− s)

3 (s+ 1)
2 (2)

f for both conditions (s ≤ 1 and s ≥ 1) yield the same value, showing that the consistency of the geometrical shape is
preserved even at a large speed candidate. In this case, we also want varf to be zero. We thus introduced α as a multiplicative
correction function for the same non-constant segments.



λ(p) = α(p) · f(p) (3)

α(p) =


s
p 0 ≤ p ≤ 1

s 1 ≤ p ≤ s
s2

−p+s+1 s ≤ p ≤ 1 + s

(4)

Fig. 3: The changes in the geometry of the Line of Warped Events f across different s.

Fig. 4: Plot of the variance of f combining varf (s) for s ≤ 1 and s ≥ 1.

This shows that the piecewise functions for condition 1 and 2 correctly model the changes in the geometry of the proposed
solid rectangle.

III. FURTHER EXPLANATIONS ON THE TWO-DIMENSIONAL CASE

In Section 2.2, we introduced the two-dimensional correction function for sx ≥ 1 and sy ≥ 1. In this section, we shall
describe the entire two-dimensional space for conditions where sx ≤ 1 and sy ≤ 1.

Similarly to the one-dimensional case, once the candidate speed is greater than the width or the height of the sensor, the
height of the trapezoid will start to reduce with respect to the speed parameters. As shown in figure 5, the geometry in every
condition exhibits several symmetries and can be solved by considering only two sets of conditions for conditions 2 and 3.

Therefore, we define the height function f for both for sx ≥ 1 and sy ≥ 1 as follows:

f(px, py) =


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(5)

Due to the consistent symmetry, calculating the mean of f yields a similar value to condition 1:

f =
c

sx + sy + 1
(6)



Fig. 5: An illustration of the height of the sheared rectangular cuboid (accumulated warped events) as a function of sx and sy
(black geometric figures) and the corresponding variance (red and white background). The problem exhibits several symmetries
and can be solved by considering only two sets of conditions (condition 2 and condition 3 are symmetrical about the axis
y = x).

varf (sx, sy) =
c2

(
4s2xsy + 4s2x − 2sxs

2
y − 3sxsy − 2sx + s2y + sy

)
6s3x (sx + sy + 1)

2 (7)

To cancel out the effect of noise variance, we introduce α that is specific to f with the same properties as the previously
introduced α. That’s to be multiplicative and flatten f to ensure that the variance of the corrected height function is zero.

α(px, py) =
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(8)

In figure 6, we compared the output variance using the analytical formula as a function of the candidate speed and the
discrete simulated noise. Both show an exact match.



Fig. 6: Comparison of the variance results between both analytical and discrete variance equation. The discrete analytical
variance was performed by simulating dense noise events of dimension 50 × 50 pixels, while the analytical variance was
calculated using varf (sx, sy).


