
Supplementary material
HUGNet: Hemi-Spherical Update Graph Neural Network

applied to low-latency event-based optical flow

Thomas Dalgaty1 * Thomas Mesquida1 Damien Joubert2 † Amos Sironi2 Pascal Vivet1 Christoph Posch2

1 Université Grenoble-Alpes, CEA-List, Grenoble, France, 2 Prophesee, Paris, France
thomas.dalgaty@cea.fr thomas.mesquida@cea.fr cposch@prophesee.ai

1. The Rock Scenes dataset

The Rock Scene (RS) dataset was generated to bench-
mark the different methods with a lightweight yet complex
dataset. Classic rock album covers move in front of a back-
ground scene, either natural (leaves, trees etc.) or artificial
(buildings, stained glass, etc.). Both the cover and back-
ground move independently and undergo sharp, uncorre-
lated direction changes. An example of the frames, and the
generated events, is shown in Fig.1(a). This 2D dataset is
simple to generate and does not require complex render-
ing engines. The motion of both the cover and the back-
ground are uniformly sampled between 100 and 1000 px/s,
and the acceleration is not continuous between two motions.
The resulting distribution of x and y speeds are plotted in
Fig.1(c) and three examples of object trajectories for three
different sequences are traced in Fig.1(d). The RGB images
are converted into the Lab color space and the event simu-
lator, similar to [4] or [5], uses the luminance channel. The
sensitivities of the 100×100 pixels are set to 0.5 on average
with a standard deviation equal to 0.03. The mean latency
is set to 300 µs and the jitter to 100 µs. Both pixel non-
idealities such as refractory period or cut-off frequency are
enabled in the tool. The events are then filtered using an
algorithm keeping the second event with the same polarity
after a polarity change [2]. This is illustrated in Fig.1(b)
where red events are filtered out since they are generated
within 10ms of the previous blue event of the same polar-
ity. The threshold of the filter, which is the maximum delay
between the first and second event after a polarity change,
is set to 10ms. For Rock scenes, this approach reduces the
number of events on average by x10, while preserving the
edges and motion information. Ultra-fast edges with the
same relative contrast can be removed by this filter, but the
overall performance using HUGNet is not significantly im-

*Corresponding author
†Contact djoubert@prophesee.ai for access to Rock Scenes

This work is partly funded thanks to the French national program “Pro-
gramme d’Investissements d’Avenir, IRT Nanoelec” ANR-10-AIRT-05.

pacted. In the MVSEC dataset, this filtering strategy is too
strong. We use instead another filter which keeps the first
event of a burst of events. As these filters are available
in state of the art sensors [1], it will also considerably re-
duce the size of event-based datasets used for further motion
analysis tasks too.

2. Detail on Seq-flownet
The different components of the network topology of

Seq-flownet is shown in Fig. 2. The architecture uses the
same UNet structure as Ev-flownet with a few notable dif-
ferences. First, each downsampling block (Fig.2(a)) is com-
posed of 2 convolution layers and a pooling layer. Also,
each upsampling block is composed of a transposed convo-
lutional layer. In the upsampling layers, the lower resolu-
tion feature map is concatenated with the feature map com-
ing from the same level in the encoder stage and then passed
through a convolution layer - similar to the decoder stage
of [6] and depicted in Fig.2(b). In contrast EV-flownet uses
bi-linear interpolation for upsampling. It should be noted
that, in the main text, the computational cost of this upsam-
pling is not considered for EV-flownet whereas it does con-
tribute to the MAC/s reported for Seq-flownet. The number
of MAC/s for EV-flownet is therefore likely under-reported.
In addition, EV-flownet uses two residual blocks at the bot-
tleneck point of the topology whereas Seq-flownet has only
a single block. The kernel size is 3× 3 for all filters besides
the output layer. The output feature maps, one feature map
for each of the optical flow x and y components, are calcu-
lated by performing 1 × 1 convolutions with the output of
the final upsampling block.

Furthermore, EV-flownet adds a single convolutional
layer to predict the optical flow prediction at the output of
each up-sampling block. The predictions at each level are
used to train the network in a self-supervised manner: min-
imising the difference between the next image and the previ-
ous image warped by the predicted flow at each level. Seq-
flownet is trained in a fully-supervised manner: minimising

1

20000 30000 40000 50000 60000 70000
time (s)

Unfiltered
Filtered

ON

OFF

10 ms 10 ms

Frames Events Filtered Eventsa)

b) c) d)

Figure 1. Rock Scene dataset. a) A sequence of images is generated at 5 kHz to simulate the events produced by an event camera. The
resulting events are then filtered using a basic algorithm to discard repeated events outside a polarity change. b) Example of the filtering
for the pixel at the centre of the red square in part (a): the events in red are removed because they arrive less than 10 ms after an event with
the polarity. The double arrow represents the 10 ms filtering threshold. c) Distribution of the speeds of the objects and the backgrounds. d)
Example of three trajectories of the album cover in one scene: each colour represents a trajectory.

the predicted optical flow to the ground truth available in
the dataset in same fashion as described for HUGNet in the
main text. A mask is used such that the loss is only calcu-
lated over active pixels - i.e., pixels having a non-zero event
count. Seq-flownet is therefore useful for a direct compari-
son with HUGNet since the two approaches are trained us-
ing the same data and loss function.

A final difference is that Seq-flownet uses as its input the
concatenation of five successive dense frames, each frame
representing the positive and negative event count in two
polarity channels during 100ms. This results in a total of ten
input channels. These frames are created at a rate of 100Hz
which was found to be required in order for the model to
model scene movements (i.e., using previous scene states)
and provide more accurate optical flow results. On the other
hand, EV-flownet uses a single frame with four channels as
input: two channels representing the event count for the pe-
riod of the frame and another two channels storing the abso-
lute timestamp of the most recent activity per pixel. As EV-
flownet uses RGB frames for the self-supervised training,
dense event frames use the same framerate as the standard
frames used for warping.

3. Details about Algorithm 1 and [7]
Algorithm 1 is not an exact replication of the method

proposed in [7]. Indeed, their approach is to asynchronously
update not only the graph features but also the task head.
Algorithm 1 modifies this point waiting for the graph fea-
tures to be frozen to compute the task head. While both
methods will produce the same output, waiting for the graph
to be frozen to compute task head decreases the number of
operation used per event and permitted the fairest compari-
son to this approach in terms of MAC/s.

4. Event-Graph Charbonnier Smoothness loss
- Ablation study

Fig.3 shows the ablation study performed for the Char-
bonnier Smoothness loss adapted to event-graph computa-
tion. The loss is weighted by different values between zero
to one to understand the optimum value of its contribution
on the MVSEC indoor split. While Charbonnier smooth-
ness loss aims to smooth Optical Flow prediction between
neighbouring pixels, our adaptation aims to smooth predic-
tion between neighbouring node in the event-graph. The av-
erage prediction of neighbours is acquired through an iden-
tity weighted graph convolutional layer as described in the

Figure 2. Seq-flownet network topology. (a) The DownBlock (DB) used for downsampling. (C,H,W) represent the feature size at each
input and output. (b) the UpBlock (UB) used for upsampling. A transposed convolution is used to upscale the input coming from lower
resolution. (c) Seq-flownet topology. DBi and UBi represents successive downblocks and upblocks respectively. 16 channels are used for
the first 2 conv and each downsampling multiplies the number of channels by 2 and divides image size by 2. A final pointwise convolution
layer is used to output optical flow prediction.

Figure 3. The average endpoint error (green) and the flow pre-
diction accuracy at 25% (blue) plotted as a function of the graph
Charbonnier smoothness loss. The MVSEC indoor split was used
for this study.

main text.

5. Qualitative HUGNet optical flow examples

Qualitative examples of optical flow predictions made by
HUGNet on Rock scenes and MVSEC test sequences are
shown in Fig.4 and Fig.5 respectively. The central column
contains the predicted vectors, coloured based on their flow
accuracy at 25%. On the right-hand side, the ground truth
vectors are shown and on the left the RGB corresponding
image.

It can be instantly seen that, globally, the predicted flow
by HUGNet corresponds well to the movement in the scene.
This is particularly impressive in Rock scenes where the
background and the foreground object have different direc-
tions and velocities. The coloration of the flow vector ar-
rows (green: AEE magnitude < %25 of ground truth mag-
nitude, red: the inverse) also highlights the challenging na-
ture of the flow accuracy metric. Flow vector arrows that
are visibly very close to the ground truth are in fact often
outwith this limit.

6. Graph neural network timing codes

The graph update latency and the number of MAC/s re-
ported in the main text were measured using Python codes
that reproduce exactly the sequence of steps required to in-
corporate an event into an existing event-graph. The time
Python library was used to measure the elapsed time for the
critical code block. Each code was run 1000 times on the
same CPU to calculate an average graph update latency and
MAC/s. The three codes are Sub-graph Full, Sub-graph
Sparse and Sub-graph HUGNet.

Sub-graph Full: An entire graph G from an input
recording is initially loaded. The graph is already built
(since they are the same used for training and testing) so
an event is randomly sampled within the graph and the past
sub-graph that relevant to this event is isolated from the full
structure. This corresponds to all events and edges within
L time and pixel radii - i.e., all possible events that interact
with the sampled event. We then start the timer. For the
newly generated event and all events within a single time

+100ms

+100ms

Iflow predictions Iflow labelsRaw image

Figure 4. Qualitative example (Kiss album cover moving over a Louvres pyramid background) on Rock scenes. The figure is
composed to a three by three grid of imagettes. The left-most column features the raw images recorded at intervals of 100ms at a particular
point of one of the test sequences. The central column show optical flow vectors predicted by HUGNet. These predicted flow are shown
using arrows that correspond to the sum of the predicted x and y components. These arrows are coloured either green or red corresponding
to whether they are inferior to, or exceed, the flow accuracy at 25%. Events are plotted as blue dots at the base of each flow vector arrow.
The right-most column show the ground truth flow vectors - plotted in black.

and pixel radius we perform a KD-tree K-nearest neighbour
search using the search radius vector 3d() function from
the library Open3D [8]. This returns all events within the
search volume sorted by distance. These events are then fil-
tered such that only the nearest (L2-distance) K events are
kept. For the new event the formed edges are added to the
graph and for previously generated events the edges are up-
dated if the new event becomes one their K-nearest neigh-
bours. After this point, all of the node embeddings in each
of the L layers are updated by applying the graph convolu-
tional layers as detailed in the main paper - the multi-layer
perceptron used to predict optical flow is not executed. The
graph convolutions are implemented using the PyTorch geo-
metric framework [3]. The number MAC required to update
all of the event node embeddings is counted. At this point,

the timer is stopped and the execution time and the total
number of MAC operations are recorded. In order to com-
pute the MAC operations per second (MAC/s), the average
number of MAC required per graph update is multiplied by
the average event-rate over the test data.

Sub-graph Sparse: The sparse method is equivalent to
the full method described above besides the fact that only
a subset of node embeddings are updated. This is based
on the method described in [7] and makes us of the func-
tion k hop subgraph() from PyTorch geometric [3]. Given
a graph node, this function returns the nodes to which it
is connected in the graph over K-hops over intermediate
nodes. Over L iterations (i.e., for L layers) all of the nodes
found within an increasing number of hops (1,2,3,4 for five
graph convolutional layers) from the newly arrived event as

Iflow predictions Iflow labelsRaw image

+100ms

+100ms

Figure 5. Qualitative example on MVSEC. The figure is composed to a three by three grid of imagettes. The left-most column features
the raw images recorded at intervals of 100ms at a particular point of one of the MVSEC indoor test sequences. The central column show
optical flow vectors predicted by HUGNet. These predicted flow are shown using arrows that correspond to the sum of the predicted x and
y components. These arrows are coloured either green or red corresponding to whether they are inferior to, or exceed, the flow accuracy
at 25%. Events are plotted as blue dots at the base of each flow vector arrow. The right-most column show the ground truth flow vectors -
plotted in black.

well as any event with updated edges within a single time
and pixel radius are found. The node embedding, in a layer
l, of each concerned node is then updated. This means not
all graph convolutional layers are required to be applied to
all nodes - reducing considerably the number of MAC op-
erations per second.

Sub-graph HUGNet: Unlike the previous two methods,
the HUGNet approach does not require an existing graph
as a starting point. Rather, from a sampled event within
the raw 3D-pointcloud, the subset of past events within one
time and pixel radius are isolated from the full pointcloud.
The timer begins at this point. A KD-tree search is then
used to find the K-nearest neighbours as described above.
The K node embeddings of the these events are then directly
used to calculate only the L node embeddings of the newly
arrived event only using PyTorch. The timer is then stopped.

As for the other codes, this code is repeated 1000 times and
an average graph update latency is taken.

References
[1] Event signal processing. https://docs.prophesee.

ai/stable/hw/manuals/esp.html. Accessed: 2021-
10-22. 1

[2] Spatiotemporal contrast algorithm. https :
/ / docs . prophesee . ai / stable /
metavision _ sdk / modules / cv / python _
api / bindings . html # metavision _ sdk _ cv .
SpatioTemporalContrastAlgorithm. Accessed:
2021-10-24. 1

[3] Matthias Fey and Jan Eric Lenssen. Fast graph representation
learning with pytorch geometric. Proceedings of the Interna-
tional Conference on Learning Representation, 2019. 4

[4] Yuhuang Hu, Shih-Chii Liu, and Tobi Delbruck. v2e: From
video frames to realistic dvs events. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1312–1321, 2021. 1

[5] Damien Joubert, Alexandre Marcireau, Nic Ralph, Andrew
Jolley, André van Schaik, and Gregory Cohen. Event camera
simulator improvements via characterized parameters. Fron-
tiers in Neuroscience, page 910, 2021. 1

[6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 1

[7] Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza.
Aegnn: Asynchronous event-based graph neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12371–12381, 2022. 2,
4

[8] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:
A modern library for 3d data processing. arXiv preprint
arXiv:1801.09847, 2018. 4

