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1. Failure cases of the bounding box memory

To understand when our proposed bounding box mem-
ory fails, we extracted single frames and short sequences
from the validation set and show them in Fig. 1. Two rows
in a subfigure depict the bounding boxes without (top) and
with memory. If only one row is shown, it is the predic-
tions with memory. In Fig. 1a and Fig. 1b, two success
cases are shown: In a), The memory remembers a predic-
tion from the past and adds it to the current prediction be-
cause of the low event count. A new prediction updates the
memory, the older bounding box is forgotten. In b), a pre-
diction is deleted due to the low event count. Comparing
to the ground truth, we see that it is a false positive. The
other cases are failure cases: In c), the detector manages
to make predictions under low event counts (130 and 250
events) that coarsely fit a ground truth box. These detec-
tions are deleted due to the low event count, but there also
exists no bounding box in memory to compensate. In d),
boxes are forgotten because the threshold is crossed much
faster for smaller boxes. Having an area-dependent thresh-
old could improve this. In e), the memory forgets the box
due to the high event count, but the detector also misses a
prediction. The scene in f) shows a car coming from the left
that is occluded by another car. The detector detects a box
with the wrong shape, due to the occlusion. The memory
remembers this shape, which leads to multiple false posi-
tives due to the low event count. In g), an occluded object
appears again, but does not move and therefore does not
generate events. The detector cannot detect it at any point
in time, and therefore also the memory does not help. In h),
a car is correctly detected in a frame, but it is not labeled
in the dataset, most likely it was missed by the automatic
labeling procedure. Our memory (correctly) remembers it,
but as there is no ground truth label, it leads to many more
(wrong) false positives than without the memory.

2. Details of single-frame architecture
The following section lists a few details of our architec-

ture to enable reproducible results. Our architecture con-
sists of a backbone, a neck and a detection head (see Fig. 3b,
and Fig. 2 for the backbone). Our single-frame single-shot
detector has a ResNet [2] or ResNeXt [12] backbone. The
first layer of the pretrained backbone is replaced to fit the
number of channels of the event volume: As in [6], we use
five time bins with two polarities each, resulting in ten in-
put channels. This layer is randomly initialized. One addi-
tional convolutional layer is added after the backbone which
downsamples the number of features to 512, to reduce the
number of parameters in the neck and head. The heads use
sigmoid (one-vs-all) outputs for the classes and regress on
the relative locations
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as in Faster R-CNN [8]. To tune prior box parameters, we
maximize the intersection-over-union (IoU) between prior
and ground truth bounding boxes of the 1 Mpx Dataset on
a subset of the training labels and find that prior boxes with
side lengths of (18, 40, 61, 101, 151, 202) and aspect ratios
of (0.5, 1, 2, 3) perform best. Hard negative mining is used
to always have an objects-to-background ratio of at least
1 : 3. Random cropping around a random bounding box is
used as data augmentation. We use the full training set dur-
ing each epoch. After each epoch, the network is evaluated
on a validation set and training is stopped if the validation
mAP does not improve over a fixed amount of epochs. A
learning rate schedule with an initial learning rate of 0.002
and decays of 0.2 at 5, 85 and 90% of epochs is used in
conjunction with the Adam optimizer [3].

When using the 1 Mpx Dataset, we always do one full

1



a) b) c)

d)
e)

f)

g) h)

Figure 1. Success and failure cases of the memory. Purple is the ground truth, orange the prediction. a) Memory remembers box. b) A
false positive is deleted because of the low event count. c) True positives are deleted because of low event count. d) Memory forgets box
due to noise e) Memory forgets box due to high event count, but detector also misses detection f) Detector detects wrong shape, is kept
in memory due to low event count g) An occluded object appears but with a low event count, is never detected h) An object is correctly
detected, but there’s no ground truth label.
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Figure 2. Backbone of our single-shot detector. We use a ResNet-
18 and ResNeXt-50 from torchvision and replace the first convo-
lutional layer to fit the number of channels of our voxel input. The
last layer downsamples the number of feature maps.

pass through the training set and then evaluate on 70% of
the validation set. This saves time and has proven to give
similar results to using the full validation set. The best net-
work (on the validation set) is saved and training is done
after 10 epochs or after the validation mAP did not change
after 6 consecutive epochs. Additionally, we replace the
ResNet-18 backbone with a ResNeXt-50 networks. We did
not need this complexity for the simpler RM-MNIST, but it
improves the results on the 1 Mpx Dataset significantly.

A comparison between the architecture design of RED
and our single-frame detector with memory is shown in

Fig. 3. While RED uses ConvLSTM layers in their neck to
memorize an abstract internal state, our proposed bounding
box memory memorizes the bounding boxes.

3. Details of the RM-MNIST simulation and
training

During simulation, we generate a new frame every 1ms
to simulate events with the Event Camera Simulator [5].
Digits are rescaled randomly between 20x20 pixels and
320x180 pixels, but stay the same in a sequence. Ran-
dom digits from the training set of MNIST are used for the
training set of RM-MNIST, and the same for validation and
test. To generate the bounding boxes, we search for the first
and last non-zero pixel in the x- and y-direction, such that
bounding boxes are tight around each digit.

The network backbone is a ResNet-18 from torchvision.
Networks are trained for 30 epochs. For the experiments
with ConvLSTM layers, each layer has 128 output channels.



backbone

neck

(n_priors, 5)

head

(n_bins, 2, height, width)

events

voxels

(n_events, 4)

boxes

boxes(n_predictions, 5)

post processing (NMS,
confidence filtering)

backbone

neck

head

events

voxels

boxes

boxes

backbone

neck

head

events

voxels

boxes

boxes

backbone

neck

head

events

voxels

boxes

boxes

a) b)

memory memory memory

t t+1 t t+1

Figure 3. Schematic of a) RED and b) our single-frame approach. The main difference is how information is memorized in time. RED
choses a neck of ConvLSTM layers, while we utilize our bounding box memory. Time goes from left to right.

4. More detailed description of RED

For the interested reader, we summarize here the main
features of the Recurrent Event Detector (RED) architecture
that is proposed in conjunction with the 1 Mpx Dataset [6]
and to this date the only architecture (besides this paper)
that works on the full 1 Mpx Dataset.

The baseline architecture is a single-frame, single-shot
detector [4] with a feature extractor built from Squeeze-and-
Excitation blocks [9] and multiple heads to detect objects at
multiple scales. Three different event representations are
compared: Histogram, Timesurface [11] and event volumes
(time-space voxels) [1, 13], where event volumes perform
best. Additionally, the authors evaluate a frame-like rep-
resentation from a trained events-to-frames conversion net-
work [7], which has a lower mAP than their network. The
authors replace the last convolutional layers by convolu-
tional LSTM (ConvLSTM) layers [10], which leads to a
significant boost in mAP. At each box head, bounding boxes
are predicted for the current time step and also for one time
step in the future; the authors argue that these Dual Regres-
sion Heads improve detection consistency. This network is

called Recurrent Event-camera Detector (RED).
Our method in comparison is much simpler: We don’t

use ConvLSTM layers or Dual Regression Heads, and in-
stead rely on dataset filtering and a simple memory mech-
anism as described in Sec. 3.4 (main paper) and Sec. 3.5
(main paper). As backbone, we use an off-the-shelf ResNet-
18 [2] and ResNeXt-50 [12] from torchvision, which is de-
scribed in more detail in Sec. 3.6 (main paper).

5. Detailed results of RM-MNIST and 1 Mpx
Dataset

We report the values for the bar charts (Fig. 5 and Fig. 6b
of the main paper) in Tab. 1 and Tab. 2. Results are dis-
cussed in the main text.



architecture mAP

single-frame (SF) 0.2685
SF + dataset filtering (DF) 0.309± 0.036
SF + DF + memory 0.825± 0.053
SF + ConvLSTM 0.263± 0.061
frames: SF 0.855± 0.015
frames: SF +DF 0.855± 0.015
frames: SF + ConvLSTM 0.769± 0.026
frames: SF + filter train & test 0.762± 0.020
events: SF + filter train & test 0.780± 0.022

Table 1. Results on RM-MNIST. When filtering train and test, the
results are not comparable to the previous experiments, due to the
change in the test dataset. This experiment just confirms that when
we remove all frames without events from the test dataset, that the
single-frame detector performance is the same, regardless of using
frames or events.

architecture mAP

single-frame (SF) 0.180 03± 0.000 38
SF + dataset filtering (DF) 0.204 45± 0.000 85
SF + DF + memory 0.213 95± 0.000 78
SF + ConvLSTM 0.1604± 0.0042
SF + filter@0 0.225 67± 0.000 95
SF + filter@10 0.230 47± 0.000 50
SF + filter@100 0.257 57± 0.000 45
SF + filter@1000 0.3246± 0.0011
SF + filter@10 000 0.3902± 0.0012

Table 2. Results on the 1 Mpx Dataset. filter@100 means that
we filter out all bounding boxes with at most 100 events from the
training, validation and test dataset. The experiments where we
filter the test set show that objects that contain a lot of events are
easier to detect. They cannot be compared to RED or our other
experiments, because we change the test dataset.
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