Supplementary Notes for Neuromorphic Optical Flow and Real-time Implementation with Event Cameras

Yannick Schnider^{1,2}, Stanisław Woźniak¹, Mathias Gehrig³, Jules Lecomte⁴, Axel von Arnim⁴, Luca Benini^{2,5}, Davide Scaramuzza³, Angeliki Pantazi¹

¹IBM Research – Zurich ²ETH Zurich ³University of Zurich ⁴fortiss GmbH ⁵Università di Bologna

1. WAEE metric definiton

The weighted average end point error (WAEE) combines the AEEs of the four sequences:

- outdoor_day1 (od1)
- indoor_flying1 (if1)
- indoor_flying2 (if2)
- indoor_flying3 (if3)

and is defined as:

$$WAEE = \left(\frac{AEE_{od1}}{w_{od1}} + \frac{AEE_{if1}}{w_{if1}} + \frac{AEE_{if2}}{w_{if2}} + \frac{AEE_{if3}}{w_{if3}}\right)/4.$$

The weights w_{od1} , w_{if1} , w_{if2} , w_{if3} are the sequence specific average AEEs of the spiking EV-FlowNet variants: LIF, ALIF, PLIF and XLIF for the modes dt = 1 and dt = 4 published in [1]:

$$dt = 1:$$

$$w_{od1} = (0.53 + 0.57 + 0.60 + 0.45)/4.0 = 0.5375$$

$$w_{if1} = (0.71 + 1.00 + 0.75 + 0.73)/4.0 = 0.7975$$

$$w_{if2} = (1.44 + 1.78 + 1.52 + 1.45)/4.0 = 1.5475$$

$$w_{if3} = (1.16 + 1.55 + 1.23 + 1.17)/4.0 = 1.2775$$

 $\begin{aligned} & \text{dt} = 4: \\ & w_{\text{od1}} = (2.02 + 2.13 + 2.24 + 1.67)/4.0 &= 2.0150 \\ & w_{\text{if1}} = (2.63 + 3.81 + 2.80 + 2.72)/4.0 &= 2.9900 \\ & w_{\text{if2}} = (4.93 + 6.40 + 5.21 + 4.93)/4.0 &= 5.3675 \\ & w_{\text{if3}} = (3.88 + 5.53 + 4.12 + 3.91)/4.0 &= 4.3600 \end{aligned}$

(1)

2. Additional comparison

Table 1 includes an extended comparison with additional prior art non-spiking models. In particular, EV-FlowNet_{PM} [3] was trained in comparable setting to ours, but used a photometric loss (PM). The results had been only reported for dt = 1 mode. Furthermore, several prior art architectures were trained in a different setup using directly the MVSEC dataset, as opposed to our architectures that were trained on the UZH-FPV Drone Racing Dataset and evaluated on the MVSEC dataset. Results for models trained directly on MVSEC, delimited by dashed lines, include:

- EV-FlowNet_{PM-MVSEC} [4], trained in a self-supervised manner with the photometric loss (PM),
- EV-FlowNet_{CM-MVSEC} [5], trained in a self-supervised manner with a contrast maximisation loss (CM),
- Hybrid-EV-FlowNet_{MVSEC} [2], trained in a self-supervised manner with the photometric loss.

Considering the extended comparison with non-spiking ANN prior art models, the EV-FlowNet_{CM-MVSEC} [5] yields the best performance on all MVSEC sequences for dt = 1 with regard to WAEE and percentage of outliers. Its WAEE of 0.67 is 8.2% lower than 0.73 of our sSNU-Timelens. In turn, the Hybrid-EV-FlowNet_{MVSEC} [2] is outperformed by our sSNU-Timelens by 26.0% (0.73 vs. 0.92).

However, when evaluating in mode dt = 4, the Hybrid-EV-FlowNet_{MVSEC} [2] yields the best overall performance with an WAEE of 0.68 compared to our sSNU-Timelens with 0.71 (+4.4%). The sSNU-Timelens shows on par performance in terms of WAEE with the EV-FlowNet_{CM-MVSEC} [5] (also 0.71) in this mode.

In summary, the EV-FlowNet_{CM-MVSEC} [5] and the Hybrid-EV-FlowNet_{MVSEC} [2] perform best for MVSEC evaluations with dt = 1 and dt = 4, respectively. Remarkably, our sSNU-Timelens is a runner-up in both cases, despite being trained without access to the examples from the MVSEC dataset.

	outdoor_day1		indoor	indoor_flying1			indoor_flying2			indoor_flying3		overall	
dt = 1	AEE	% _{Out.}	AEE	% _{Out.}		AEE	% _{Out.}		AEE	% _{Out.}	WAEE	₩ _{Out.}	
LIF-EV-FlowNet [1]	0.53	0.33	0.71	1.41		1.44	12.75		1.16	9.11	0.93	5.90	
XLIF-EV-FlowNet [1]	0.45	0.16	0.73	0.92		1.45	12.18		1.17	8.35	0.90	5.40	
LIF-FireNet [1]	0.57	0.40	0.98	2.48		1.77	16.40		1.50	12.81	1.15	8.02	
PLIF-FireNet [1]	0.56	0.38	0.90	1.93		1.67	14.47		1.41	11.17	1.10	7.00	
our SNN-Timelens	0.44	0.18	0.70	0.79		1.30	<u>9.41</u>		1.05	<u>6.00</u>	0.84	4.10	
our SNUo-Timelens	0.39	<u>0.17</u>	0.64	0.96		1.17	7.71		0.96	4.92	0.76	3.44	
EV-FlowNet _{PM} [3]	0.92	5.4	0.79	1.2		1.40	10.9		1.18	7.4	1.13	6.23	
EV-FlowNet [1]	0.47	0.25	0.60	0.51		1.17	8.06		<u>0.93</u>	5.64	0.78	3.61	
RNN-EV-FlowNet [1]	0.56	1.09	0.62	0.97		1.20	8.82		0.93	<u>5.51</u>	0.83	4.10	
our sSNU-Timelens	<u>0.36</u>	<u>0.10</u>	0.58	0.56		1.19	8.78		0.96	6.11	<u>0.73</u>	3.89	
EV-FlowNet _{PM-MVSEC} [4]	0.49	0.20	1.03	2.20		1.72	15.10		1.53	11.90	1.13	7.35	
EV-FlowNet _{CM-MVSEC} [5]	0.32	0.00	0.58	0.00		1.02	4.00		0.87	3.00	0.67	1.75	
Hybrid-EV-FlowNet _{MVSEC} [2]	0.49	-	0.84	-		1.28	-		1.11	-	0.92	-	
dt = 4													
LIF-EV-FlowNet [1]	2.02	18.91	2.63	29.55		4.93	51.10		3.88	41.49	0.92	35.26	
XLIF-EV-FlowNet [1]	1.67	12.69	2.72	31.69		4.93	51.36		3.91	42.52	0.89	34.57	
LIF-FireNet [1]	2.12	21.00	3.72	48.27		6.27	64.16		5.23	58.43	1.17	47.97	
PLIF-FireNet [1]	2.11	20.64	3.44	44.02		5.94	64.02		4.98	57.53	1.11	46.55	
our SNN-Timelens	<u>1.65</u>	<u>11.03</u>	<u>2.61</u>	<u>29.40</u>		<u>4.50</u>	<u>50.87</u>		<u>3.58</u>	<u>40.22</u>	<u>0.84</u>	<u>32.88</u>	
our SNUo-Timelens	1.44	8.98	2.36	24.18		3.98	44.71		3.25	36.01	0.75	28.47	
EV-FlowNet [1]	1.69	12.50	<u>2.16</u>	<u>21.51</u>		3.90	40.72		3.00	29.60	0.74	<u>26.08</u>	
RNN-EV-FlowNet [1]	1.91	16.39	2.23	22.10		4.01	41.74		<u>3.07</u>	<u>30.87</u>	0.78	27.78	
our sSNU-Timelens	1.34	<u>7.99</u>	2.15	20.92		3.97	<u>41.31</u>		3.17	32.44	<u>0.71</u>	25.67	
EV-FlowNet _{PM-MVSEC} [4]	1.23	7.30	2.25	24.70		4.05	45.30		3.45	39.70	0.73	29.25	
EV-FlowNet _{CM-MVSEC} [5]	1.30	9.70	2.18	24.20		<u>3.85</u>	46.80		3.18	47.80	0.71	32.13	
Hybrid-EV-FlowNet _{MVSEC} [2]	1.09	-	2.24	-		3.83	-		3.18	-	0.68	-	

Table 1. Extended evaluation on MVSEC: AEE (the lower, the better \downarrow), the percentage of outliers $\%_{Out.}(\downarrow)$ per sequence, and the overall WAEE(\downarrow) as defined in Eq. 1 as well as the average percentage of outliers $\overline{\%}_{Out.}(\downarrow)$. Best scores are in bold, while runner-ups are underlined. Horizontal lines delimit the spiking and the non-spiking models. Dashed line delimits not directly comparable prior art setups.

References

- [1] Jesse Hagenaars, Federico Paredes-Vallés, and Guido de Croon. Self-supervised learning of event-based optical flow with spiking neural networks. *Advances in Neural Information Processing Systems*, 34, 2021. 1, 2
- [2] Chankyu Lee, Adarsh Kosta, Alex Zhu, Kenneth Chaney, Kostas Daniilidis, and Kaushik Roy. Spike-FlowNet: Event-Based Optical Flow Estimation with Energy-Efficient Hybrid Neural Networks, pages 366–382. Oct 2020. 1, 2
- [3] F. Paredes-Vallés and Guido C.H.E. de Croon. Back to event basics: Self-supervised learning of image reconstruction for event cameras via photometric constancy. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3445–3454, 2020. 1, 2
- [4] Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. EV-FlowNet: Self-supervised optical flow estimation

for event-based cameras. In *Robotics: Science and Systems XIV*. Robotics: Science and Systems Foundation, Jun 2018. 1, 2

[5] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Unsupervised event-based learning of optical flow, depth and egomotion. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1694–1694, 2019. 1, 2