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Abstract

In recent years, face recognition systems have faced in-
creasingly security threats, making it essential to employ
Face Anti-spoofing (FAS) to protect against various types of
attacks in traditional scenarios like phone unlocking, face
payment and self-service security inspection. However, fur-
ther exploration is required to fully secure FAS in long-
distance settings. In this paper, we propose two contribu-
tions to enhance the security of face recognition systems:
Dynamic Feature Queue (DFQ) and Progressive Training
Strategy (PTS). DFQ converts the conventional binary clas-
sification task into a multi-classification task. It treats live
samples as a closed set and attack samples as an open set by
using a dynamic queue that stores the features of spoofing
samples and updates them. On the other hand, PTS tar-
gets difficult samples and iteratively adds them in batches
for training. The proposed PTS divides the entire training
set into blocks, trains only a small portion of the data, and
gradually increases the training data with each stage while
also incorporating low-scoring positive samples and high-
scoring spoof samples from the test set. These two contri-
butions complement each other by enhancing the model’s
ability to generalize and defend against various types of
attacks, making the face recognition system more secure
and reliable. Our proposed methods have achieved top per-
formance on ACER metric with 4.73% on the SuHiFiMask
dataset [11] and won the first prize in Surveillance Face
Anti-spoofing track of the Challenge@CVPR 2023.

*Equal contribution. This work is done while Mouxiao Huang is an
intern at Baidu and being mentored by Keyao Wang and Guosheng Zhang.
†Correspondence to: Keyao Wang (wangkeyao@baidu.com)
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Figure 1. Our proposed method treats each attack case as a sep-
arate attack type and models the traditional liveness binary clas-
sification task as a multi-class task, based on the assumption that
liveness samples are a closed set and attack samples are an open
set.

1. Introduction
Face recognition technology [14, 16, 31] has become

an integral part of many security and surveillance systems
[26,39]. However, its reliability is constantly challenged by
the threat of face spoofing attacks, where an attacker uses
a fake face to deceive the system into granting access or
authentication, such as replay-attack [7], print-attack [42]
and face-mask [10]. Therefore, the development of effec-
tive FAS methods has become a critical research direction.

Early FAS methods mainly relied on handcrafted fea-
tures [1, 4, 8, 17, 28, 29], which required prior knowledge
and human liveness cues to distinguish between live and
spoof faces. While there have been notable advancements
in the performance of face presentation attack detection
(PAD) technology in short-distance scenarios [5, 18, 21, 25,
33, 36, 40], such as phone unlocking, face payment, and
self-service security inspection, it remains sensitive to face
quality and falls short in long-distance applications. This
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Figure 2. The overview of the proposed Dynamic Feature Queue and Progressive Training Strategy has three parts: (1) Progressive Training
Strategy: divides the training set into blocks, trains only a portion of the data at each stage, and increases it with each subsequent stage.
(2) Transformer Backbone: divides input images into patches and extracts features. (3) DFQ-Liveness: uses a dynamic queue to store the
features of spoofing samples and treats attack samples as an open set during classification.

limitation obstructs the deployment of FAS in surveillance
scenarios, where the ability to detect face spoofing attacks
is crucial for ensuring the security and integrity of the sys-
tem. With the emergence of deep learning, FAS meth-
ods based on deep neural networks have achieved state-of-
the-art performance. However, most existing methods are
still vulnerable to unknown spoofing attacks. As the use
of surveillance systems in long-distance scenarios becomes
more prevalent, detecting face spoofing attacks has become
an even more significant challenge [11]. In these scenar-
ios, low-quality faces are common, and they often do not
provide sufficient detail for fine-grained feature-based FAS
tasks. Therefore, developing effective FAS systems that can
handle these challenging scenarios is crucial for ensuring
the security and reliability of surveillance applications.

To address these challenges, we propose Dynamic Fea-
ture Queue (DFQ) and Progressive Training Strategy (PTS)
method for FAS in surveillance scenarios. The DFQ is de-
signed to improve the model’s ability to generalize to un-
known attack types. By modeling the traditional binary
classification task into a multi-classification task, the pro-
posed method can effectively model the unknown character-
istics of attack samples and improve the generalization abil-
ity of the model. Additionally, the PTS method is designed
to refine and extract massive training data. By adding dif-
ficult samples in batches for training through the loop it-
erative training method, the proposed method can improve
the model’s ability to learn from non-stationary data and
adapt to new spoofing attacks. In this paper, we present
a comprehensive evaluation of our proposed methods on a
challenging surveillance scenarios dataset SuHiFiMask [11]
that is first work to extend FAS to real surveillance scenes
rather than mimicking low-resolution images and surveil-

lance environments. The experimental results demonstrate
the effectiveness and robustness of our proposed methods
in detecting various types of face spoofing attacks. And the
main contributions of this paper are summarized below:

• We propose the Dynamic Feature Queue (DFQ) and
Progressive Training Strategy (PTS) methods for Face
Anti-spoofing (FAS) in surveillance scenarios.

• We evaluate the proposed methods on a challenging
surveillance dataset, SuHiFiMask [11], which extends
FAS to real surveillance scenes.

• The experimental results demonstrate the effectiveness
and robustness of our proposed methods in detecting
various types of face spoofing attacks.

2. Related Work
Face Anti-spoofing Methods In recent years, FAS has

received increasing attention due to its critical role in ensur-
ing the security and reliability of facial recognition systems.
Various approaches have been proposed to address this
problem, including handcrafted feature-based methods and
deep learning-based methods. During the early stages of
FAS research, many traditional handcrafted feature-based
methods were proposed, which required task-specific prior
knowledge. These methods were designed based on hu-
man liveness cues, such as gaze tracking [1], facial or head
movements [3] and eye-blinking [28], for dynamic discrim-
ination. However, capturing these cues from videos is in-
convenient for practical deployment. In addition, classical
handcrafted descriptors such as LBP [8], SIFT [29], SURF
[4], HOG [17] were developed to extract effective spoof-
ing patterns from various color spaces, which also required
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task-specific prior knowledge. Recently, deep learning-
based methods [2, 12, 19, 22–24, 34, 35, 37, 38, 41] have
shown promising results in FAS. These methods use convo-
lutional neural networks (CNNs) to learn highly discrimina-
tive features from large-scale datasets. CNN-based methods
can capture complex patterns and relationships between fea-
tures, making them highly effective for FAS. Examples of
CNN-based methods include residual-learning frameworks
[12], central difference convolution [38], and LSTM [12] or
GRU-based [37] methods. Despite the significant progress
made in FAS, challenges remain, such as domain adapta-
tion and generalization across different scenarios and attack
types. Future research directions include developing more
robust and efficient FAS methods that can adapt to different
scenarios and attack types.

Face Attacks in Surveillance Scenarios The field of
face recognition in surveillance scenarios has garnered sig-
nificant attention from researchers, who have concentrated
on data collection and algorithm design. To facilitate re-
search in this area, several face recognition datasets have
been released, including SCface [13], QMUL-Survface [6],
and IJB-C [27], which aggregate face images from various
sources with the objective of improving the global popu-
lation’s representation. These datasets provide researchers
with large-scale, real-world data to facilitate the develop-
ment and evaluation of face recognition algorithms specif-
ically designed for surveillance scenarios. Face recogni-
tion algorithms have been developed for surveillance sce-
narios utilizing these datasets. This work [20] implemented
adversarial generative networks and fully convolutional ar-
chitectures for the supervised discriminative learning of
ground-resolution faces. SFace [43] proposed the sigmoid-
constrained hypersphere loss to reduce intra-class distance
of high-quality samples while avoiding over-fitting label
noise. AdaFace [16] introduced an adaptive marginal func-
tion to prioritize the role of clean samples in classification
by adjusting the importance of different samples.

3. Methodology
This section presents the proposed methods for enhanc-

ing the security of face recognition systems, which include
Dynamic Feature Queue (DFQ) and Progressive Training
Strategy (PTS). To begin, we introduce the problem formu-
lation in Section 3.1, followed by detailed explanations of
DFQ in Section 3.2 and PTS in Section 3.3. An overview
of our methods can be found in Figure 2.

3.1. Problem Formulation

The problem of face anti-spoofing in surveillance scenar-
ios can be formulated as a classification task, where a given
face image needs to be classified as either belonging to an
authorized individual or an unauthorized individual. Math-
ematically, the dataset is formulated as {xi ∈ X, yi ∈ Y },

Algorithm 1 Pseudocode of DFQ in a Paddle-like style.

# encoder: encoder network for feature extraction
# fc: linear layer for classification
# queue: feature queue for negative (spoof) samples
# scale: scaling factor for logit
# alpha: similarity threshold for enqueued features

# load a minibatch data with N samples
for imgs, labels in loader:

feat = encoder(imgs) # features Nxd
feat = normalize(feat) # features normalization

# similarity the with fc: Nx1
log0 = matmul(feat, normalize(fc.weight))

# similarity the with queue: NxQ
sim = matmul(feat, queue.detch())

# choose the most similar sample: Nx1
log1 = topk(sim, 1, axis=1, largest=True)[0]

# logits: Nx2
logits = concat((log0, log1), axis=1)

# cross entropy loss
loss = CrossEntropyLoss(logits * scale, labels)

# updata encoder and fc layer
loss.backward()
update([encoder.params, fc.weight])

# choose easy negative features
neg = feat[(label > 0) & (log0[:, 0] < alpha)]

# update queue
enqueue(queue, neg)
dequeue(queue)

where {xi ∈ X, i = {1, 2, ..., N}} is the input space of face
images and {yi ∈ Y = {0, 1}} is the output space of binary
labels where 0 represents the class of authorized individuals
and 1 represents the class of unauthorized individuals. Here,
xi ∈ Rh×w×3 is a face image with height h, width w and
3 channels, and N is the number of identities in the dataset.
The goal of the FAS system is to learn a mapping function
y = f(x) : X → Y that can accurately predict the class
label of a given face image. Specifically, we aim to learn a
feature extractor Φ(x;ϕ) ∈ Rd with learnable parameters ϕ
to encode images into feature embeddings and then a fully
connected layer W ∈ Rd×N maps the features to the cor-
responding label yi. The encoder is trained by minimizing
the Cross Entropy loss:

LCE = − 1

N

N∑
i=1

L(WT · Φ(xi;ϕ), yi) (1)

3.2. Dynamic Feature Queue

To address the issue of limited defense capability of FAS
systems against unknown attack types in surveillance sce-
narios, we introduce a novel dynamic queue training algo-
rithm called Dynamic Feature Queue (DFQ), as shown in
Figure 2 and Figure 3. Our approach is based on the hy-
pothesis that live samples form a closed set, while attack
samples form an open set, modeling the traditional binary
classification task into a multi-classification task. The main
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Figure 3. The process of samples learning during DFQ training.
Live samples are considered a closed set, while attack samples are
treated as an open set.

idea behind DFQ is to utilize a dynamic queue to update the
model with negative (spoof) samples.

The pseudocode of DFQ is presented in Algorithm 1.
The algorithm takes a mini-batch of images and their cor-
responding labels as input. It extracts the features for each
image and normalizes them. It then calculates the similar-
ity between the features and the linear layer’s weight (the
center of positive samples), giving a similarity score of each
sample with the weight. Next, it calculates the similarity be-
tween the features and the feature queue using matrix multi-
plication, which results in a similarity score for each sample
with each negative sample in the queue. It chooses the most
similar negative sample for each image, and concatenates
the similarity score of the image with the similarity score of
its corresponding negative sample to form a 2-dimensional
tensor of logits. The Cross Entropy loss can be calculated
and then update the encoder and linear layer. After that, it
selects easy negative features by filtering those with simi-
larity scores lower than a certain threshold α and updates
the feature queue by adding the new negative features and
removing the oldest ones.

The DFQ algorithm iteratively trains the encoder net-
work and linear layer and updates the feature queue to gen-
erate negative samples for better training. The use of neg-
ative samples from the queue provides additional informa-
tion for the model to learn the feature space better, improv-
ing the model’s performance. Additionally, DFQ model in-
ference calculates feature similarity with positive FC, elim-
inating the need for extra model parameters.

3.3. Progressive Training Strategy

To address the problem of hard samples in deep networks
under massive non-stationary data, we propose a Progres-
sive Training Strategy (PTS) algorithm. PTS is a train-
ing strategy for deep metric learning that aims to address
the problem of hard sample mining. The PTS algorithm

Algorithm 2 Pseudocode of PTS in a Paddle-like style.

# isr: initial sampling rate
# hsr: hard sample rate
# dr: decay rate
# pss: progressive step size
# infos: [(img_path, label),...]
# ds: dataset to train

# initial training
p_l, n_l = len(ds.p_infos), len(ds.n_infos)
p_infos = random.sample(ds.p_infos, (1 - isr) * p_l)
n_infos = random.sample(ds.p_infos, (1 - isr) * n_l)

pend_ds = copy(ds)
pend_infos = p_infos + n_infos
ds.infos = list(set(ds.infos) - set(pend_infos))
loader = build_loader(ds)

# start training
for ep in range(max_epoch):

train_epoch(loader, model)

if (ep + 1) % pss == 0:
p_l, n_l = len(p_infos), len(n_infos)

# update val_ds and val_loader
pend_ds.infos = p_infos + n_infos
pend_loader = build_loader(pend_ds)

with paddle.no_grad():
preds = test_epoch(pend_loader, model)

# sort by prediction score
p_idxs = argsort(preds[:p_l])
n_idxs = argsort(-preds[n_l:])

# mining hard samples
ph_infos = p_infos[p_idxs[:hsr * p_l]]
nh_infos = n_infos[n_idxs[:hsr * n_l]]

# update p_infos and n_infos
p_infos = p_infos[p_idxs[hsr * p_l:]]
n_infos = n_infos[n_idxs[hsr * n_l:]]

# update ds and loader
ds.infos += ph_infos + nh_infos
loader = build_loader(ds)

hsr *= dr # hard sample rate decay

consists of two key components: initial sampling rate and
progressive step size. The initial sampling rate determines
the percentage of easy samples to be used during the ini-
tial training, while the progressive step size is the number
of epochs after which the hard samples are progressively
added to the training set.

The pseudocode for the PTS algorithm is shown in Algo-
rithm 2. PTS begins by randomly selecting a subset of easy
positive and negative samples from the training dataset,
based on the given initial sampling rate. The remaining
samples are used for validation. During training, the al-
gorithm progressively adds hard samples to the training set,
based on the validation loss. Specifically, after every pss
epochs, the algorithm evaluates the model on the valida-
tion set and sorts the validation samples by their predicted
scores. Then, the algorithm mines the top hsr percentage of
hard samples and adds them to the training set. Finally, the
sampling rate is reduced by a decay rate factor, dr, to en-
sure that the algorithm progressively focuses more on hard
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samples as the training progresses.
In general, PTS offers a framework for training deep

neural networks on massive non-stationary data, while also
preserving the capability to identify previously learned
classes through hard sample data mining.

4. Experiments

4.1. Experimental Setup

Datasets To assess the efficacy of our proposed method
in surveillance scenarios, we utilized a large-scale dataset
called SuHiFiMask [11] as our primary dataset. SuHiFi-
Mask comprises 40 real-life surveillance scenes, such as
movie theaters, security gates, and parking lots, represent-
ing a diverse range of face recognition scenarios. It includes
101 participants of different ages and genders, engaged in
various natural activities of daily life. The dataset also in-
corporates several types of spoofing attacks, including high-
fidelity masks, 2D attacks, and adversarial attacks. The data
was collected under realistic outdoor conditions, capturing
diverse weather and lighting conditions. The SuHiFiMask
[11] dataset is divided into three subsets: {training, dev,
and test}, with {159,063, 89,276, and 161,882} images, re-
spectively. The partitioning of images into these subsets is
based on their quality scores, which are assigned according
to a specific range for each subset. Specifically, SuHiFi-
Mask [11] assigns images with quality scores ranging from
[0.4, 1] to the training set, scores from [0.3, 0.4) to the dev
set, and scores from [0, 0.3) to the test set. This dataset
provides a comprehensive and varied set of data for evalu-
ating and refining FAS algorithms in surveillance settings.
As seen in Figure 4, the SuHiFiMask dataset exhibits sig-
nificant differences in image quality scores across its three
parts. Images in the train set are generally of good qual-
ity, with clear facial features that are easy to identify. Faces
in the dev set are of lower quality, with a range of noise
types such as masks and occlusions. In contrast, the test
set has the poorest quality faces with the highest amount of
noise compared to the train and dev sets, including various
types of noise such as motion blur, lens flare, and low light-
ing conditions. This implies that the proposed FAS method
must be robust enough to handle these types of noise to be
effective in real-world surveillance settings.

Evaluation Metrics To assess the efficacy of our
proposed approach for FAS, we utilize the widely ac-
cepted metrics, namely the Attack Classification Error Rate
(ACER) and Area Under the Curve (AUC), concurrently.
The ACER quantifies the FAS system’s ability to accurately
identify legitimate faces and fake faces by averaging the at-
tack presentation classification error rate (APCER) and the
bona fide presentation classification error rate (BPCER) at
a specific decision threshold. The APCER and BPCER are
instrumental in determining the accuracy of classifying an
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Figure 4. Samples from SuHiFiMask [11] dataset. Images are
assigned with quality scores ranging from [0.4, 1] to the training
set, scores from [0.3, 0.4) to the dev set, and scores from [0, 0.3)
to the test set.

image as either live or spoof and in establishing the balance
between security and convenience. The APCER evaluates
the percentage of presentation attacks that are misidentified
as bona fide examples, indicating the level of security vul-
nerability. Conversely, the BPCER gauges the percentage
of bona fide examples that are misidentified as presentation
attacks, indicating the degree of user inconvenience. ACER
metric is defined as follows:

ACER =
APCER+BPCER

2
(2)

ACER is a widely used performance metric for FAS sys-
tems, and it is often reported alongside other metrics such
as AUC, which measures the ability of a model to distin-
guish between positive and negative classes. AUC metric is
defined as follows:

AUC =

∫ 1

0

TPR(t)dFPR(t) (3)

where TPR(t) and FPR(t) are the true positive rate and
false positive rate, respectively, at a given classification
threshold t.

Implementation Details To train our model, we utilized
8 V100 GPUs with 32G memory each. For feature extrac-
tion, we employed a ViT-Large backbone [9] with 300 mil-
lion parameters, which was pretrained on the ImageNet-1K
dataset [30]. The input images are resized to 224× 224× 3
and normalized using the mean and standard deviation com-
puted from the SuHiFiMask [11] dataset. The feature em-
bedding dimension is set to 768. We use a batch size of
64 and use SGD with momentum 0.9. The total number of
epochs is 120, with a warmup strategy applied for the first
2000 iterations. We set the initial learning rate to 0.01 and

6376



use Cosine decay to gradually reduce the learning rate. The
hyperparameters in PTS are set to isr = 0.2, hsr = 0.15,
dr = 0.5, respectively. To address the poor quality of
face images in surveillance scenarios, as shown in Figure
4, which often suffer from blurriness, changes in illumi-
nation, occlusions, compression artifacts, and other issues,
we applied various image augmentation techniques includ-
ing random flip, random rotation, random crop, photometric
distortion, and blurs. To ensure that the distribution of the
training set data is as close as possible to that of the test set,
we also used low-quality augmentations like motion blur,
which was found to be particularly effective in monitor-
ing scenarios where people are in motion. To further im-
prove the robustness of our models, we utilize Test-Time
Augmentation (TTA) [32], a technique that enhances the
accuracy and generalization performance of deep learning
models. We apply three augmentations to each test image,
including random flip, rotation, and crop, and average the
predictions of the original and augmented images to yield
the final prediction. By leveraging TTA, our models are
better equipped to handle variations in the test data, leading
to improved performance and generalization capabilities.

4.2. Experimental Results

Comparison of Backbones To ensure effective feature
extraction and superior performance in a face anti-spoofing
model, selecting a suitable backbone network is crucial. We
conducted a comprehensive evaluation of popular and effec-
tive models [9,15], including ResNet50, ResNet101, ViT-S,
ViT-B, and ViT-L, on the SuHiFiMask validation set with-
out employing any training strategies or tricks. The results
in Table 1 demonstrate that ViT-L outperforms other mod-
els in terms of ACC (accuracy), AUC, and ACER metrics.
Additionally, as the face images in the test set are usually
of lower quality than those in the validation set, we selected
ViT-L as the backbone of our face anti-spoofing model to
achieve superior performance on low-quality images.

Comparison with SOTA Methods We compare the
performance of our proposed method with state-of-the-
art (SOTA) methods (teams) on the SuHiFiMask dataset
[11]. Table 2 summarizes the results of the comparison in
terms of four metrics: AUC, APCER, BPCER, and ACER.
Among the SOTA methods, CTEL AI achieves the lowest
BPCER with a value of 1.90%. However, our proposed
method achieves the highest performance on the AUC and
ACER metrics, with values of 98.38% and 4.73%, respec-
tively. In addition, our method achieves the lowest APCER
with a value of 5.07%, which is significantly lower than
the other methods. The experimental results confirm the
effectiveness of our proposed method that integrates the
DFQ and PTS methods to enhance the performance of face
anti-spoofing. Our approach surpasses SOTA methods on
the SuHiFiMask dataset, which is specifically designed for

Models ACC ↑ AUC ↑ ACER ↓
ResNet50 97.91 99.12 2.09

ResNet101 96.73 98.83 3.27
ViT-S 98.06 99.19 1.94
ViT-B 98.22 99.21 1.78
ViT-L 98.37 99.25 1.63

Table 1. Performance comparison of different backbone networks
on the SuHiFiMask [11] validation set (dev split), based on ACC,
AUC, and ACER (%) metrics.

Team AUC ↑ APCER ↓ BPCER ↓ ACER ↓
OPDAI 97.38 9.18 5.13 7.16

hexianhua 97.83 11.21 2.94 7.08
horsego 96.97 8.17 4.26 6.22

CTEL AI 98.21 9.20 1.90 5.56
Ours 98.38 5.07 4.38 4.73

Table 2. Comparing results on the test set of the SuHiFiMask [11]
dataset. Our method achieves the highest performance on the
AUC, APCER, and ACER (%) metrics.

Method AUC ↑ APCER ↓ BPCER ↓ ACER ↓
baseline 97.72 8.37 6.52 7.44
w/ DFQ 97.88 7.27 4.07 5.67
w/ PTS 98.06 4.84 6.92 5.88

w/ DFQ & PTS 98.38 5.07 4.38 4.73

Table 3. The effectiveness of DFQ and PTS was evaluated on the
test set of the SuHiFiMask [11], and the results showed significant
improvements in face anti-spoofing performanc (%).

surveillance scenarios with complex challenges such as di-
verse types of attacks, as well as variations in illumination,
occlusion, noise, and other issues. These results highlight
the potential of our method to improve the accuracy and re-
liability of face anti-spoofing in real-world scenarios.

Effect of DFQ and PTS To assess the effectiveness of
our proposed DFQ and PTS methods, we conducted ex-
tensive experiments on the SuHiFiMask dataset [11]. The
baseline model was trained without DFQ or PTS, while
the other models were trained with either DFQ, PTS, or
a combination of both. Table 3 shows the results of our
experiments, indicating that incorporating DFQ and PTS
significantly improved face anti-spoofing performance, as
measured by the AUC, APCER, BPCER, and ACER met-
rics. Notably, the model trained with both DFQ and PTS
achieved the best performance on AUC and ACER met-
rics. These findings demonstrate the effectiveness of our
proposed methods in mitigating the impact of spoofing at-
tacks on face recognition systems in surveillance scenarios.
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5. Conclusion
In conclusion, we have proposed a novel method for FAS

in surveillance scenarios by utilizing DFQ and PTS algo-
rithms. Our approach achieved SOTA performance on the
SuHiFiMask [11] dataset, which is a challenging bench-
mark due to variations in illumination, pose, and various
types of attacks, and won the first prize in Surveillance Face
Anti-spoofing track of the Challenge@CVPR 2023. The
results demonstrate the effectiveness of our method in en-
hancing the security of face recognition systems. This work
presents new opportunities for future research on FAS in
real-world scenarios and provides a solid foundation for fur-
ther development and exploration in the field of FAS.
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On the effectiveness of local binary patterns in face anti-
spoofing. In 2012 BIOSIG-proceedings of the international
conference of biometrics special interest group (BIOSIG),
pages 1–7. IEEE, 2012. 1

[8] Tiago de Freitas Pereira, André Anjos, José Mario De Mar-
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