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Abstract

Federated Learning (FL) was originally proposed to ef-
fectively exploit more data that are distributed at local
clients even though the local data follow non-i.i.d. distri-
butions. The fundamental intuition is that, the more data
we can use the better model we are likely to obtain in spite
of the increased difficulty of learning due to the non-i.i.d.
data distribution, or data heterogeneity. With this intu-
ition, we strive to further scale up FL to cover more clients
to participate and increase the effective coverage of more
user data, by enabling FL to handle collaboration between
clients that perform different yet related task types, i.e.,
enabling a new level of heterogeneity: task heterogeneity,
which can be entangled with data heterogeneity and lead to
more intractable clients. However, solving such compound
heterogeneities from both data and task levels raises ma-
jor challenges, against the current global, static, and iden-
tical federated aggregation ways across clients. To tackle
this new and challenging FL setting, we propose an intu-
itive clustering-based training baseline to tackle the signifi-
cant data and task heterogeneities. Specifically, each agent
dynamically infers its “proximity” with others by compar-
ing their layer-wise weight updates sent to the server, and
then flexibly determines how to aggregate weights with se-
lected similar clients. We construct new testbeds to examine
our novel problem setting and algorithm on two benchmark
datasets in multi-task learning: NYU Depth and PASCAL-
Context datasets. Extensive experiments demonstrate that
our proposed method shows superiority over plain FL al-
gorithms such as FedAvg and FedProx in the 5-task setting
on Pascal-Context and even enables jointly federated learn-
ing over the combined set of PASCAL-Context and NYU
Depth (9 tasks, 2 data domains). Codes are available at:
https://github.com/VITA-Group/MaT—FL.

1. Introduction

Deep neural network training can significantly benefit
from a substantial amount of data, which is largely created
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Figure 1. The illustration of the proposed many-task federated
learning (MaT-FL) setting. Each client is dedicated to its own task
and has only access to the labels of that task. The goal of this work
is to establish an FL framework that allows all clients that perform
different tasks (e.g. semantic segmentation (Seg.), surface normals
estimation (Normals.), edge estimation (Edge), depth estimation
(Depth) to collaboratively train a model together'.

by edge devices. To make full use of these data while pre-
serving data privacy, the federated learning (FL) [8, 14] is
introduced to enable many clients with decentralized data
to collaboratively train a model under the coordination of a
central server. In the traditional FL setting, due to the var-
ious deployment environments and clients’ characteristics,
participating clients typically tackle highly diverse samples
(i.e. data heterogeneity). e.g., two vehicles performing lane
detection in urban and rural areas respectively would gather
dissimilar image samples of lanes from two different dis-
tributions. Such non-IID sample distribution among clients
is detrimental to the optimization [10, | 1,27], and becomes
one of the key challenges of FL. While there are challenges,
the fundamental intuition behind the introduction and the
success of FL is that, compared to learn models at local
clients with an extremely limited amount of samples, the
more data we can use the better model we are likely to ob-
tain in spite of the increased difficulty of learning.

'The work is sponsored by a Cisco Research Grant (FA00000274).
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1.1. Many-Task Federated Learning: Problem Set-
ting, Challenges & Opportunities

Due to the increasing demand for one real-world ML
system to handle different tasks, multi-task learning (MTL)
is emerging [5, 18,22]. Tempted by the intuition of includ-
ing more data from edge clients in training, MTL model
trainers are also compelled to turn to FL approaches, which
bring about not only extra data but also more intractable
clients. Specifically, besides samples having different data
distributions among clients, the assumption that every client
tackles the same set of tasks which naturally holds in the
centralized learning case cannot be expected anymore. The
rationality lies in: (1) The process of obtaining task labels
often requires tedious and expensive labor; hence not all
clients can have access to all task labels. (2) In many real-
world scenarios, each client would only specialize in one
task. In such scenarios, each client may train a local model
dedicated to its own task which differs from other clients
in the same network. We term this as “task heterogeneity”,
which is a new and under-explored form of heterogeneity in
FL that makes the learning process even more challenging.

Note that the new task heterogeneity could co-exist with
and reinforce the existing data heterogeneity since task-
diverse clients might tend to acquire their local data from
diverse distributions too. However, besides the amplified
challenges, we argue that FL and MTL also have comple-
mentary merits for their co-design:

* MTL can potentially improve FL: (1) MTL relaxes the
restriction on clients, enabling FL to unify more di-
verse data for training. This is well aligned with the
intuition of FL to exploit as much data as possible and
is also consistent with our empirical observations later
in this work. (2) if FL systems can learn a common
model for many tasks, then it could lead to more ro-
bust and universal feature representation [26] that can
scale to more clients, data & task heterogeneity.

e FL can in turn provide a natural solution for the in-
herent MTL issue of cross-task conflicts. Prior works
[2,24] reveal that naively training all tasks together in
one model often lead to degraded shared representa-
tions, due to different tasks often incur different up-
date directions that might comprise each other. While
existing proposals [2, | 5,24] still train one model back-
bone with shared weight, the distributed and “modular-
ized” learning nature of FL agents could be leveraged
as a blessing to disentangle the parameter spaces, en-
abling MTL model trainers flexibly group and aggre-
gate models as needed.

1.2. Our Contributions

This paper aims to establish an algorithm framework
that enables such “many-task federated learning” (MaT-

FL), i.e., clients specializing on different tasks yet still col-
laborating through FL. As a preliminary baseline, we intro-
duce dynamic grouping as our core countermeasure against
strong data and task heterogeneity: (1) following the prac-
tice of personalized FL [7, 25], each FL client will per-
form its own weight aggregation (rather than aggregating to
one global model), and (2) each client will adaptively iden-
tify its “friendly” clients while excluding those whose local
updates severely conflict its own. Using this flexible yet
heterogeneity-aware mechanism, we aim to strike the bal-
ance between utilizing more diverse data and avoiding train-
ing conflicts. To evaluate the effectiveness of the proposed
method, we also construct new FL testbeds from two multi-
task learning benchmarks: NYU Depth [17] and PASCAL-
Context [16]. In their FL settings, while all clients jointly
learn multiple tasks, each client has access to a subset of
data and label belonging to only one task.
Our contributions in this work are summarized below:

* We introduce the “many-task federated learning”
(MaT-FL) setting where local clients can collaborate
effectively even they are specialized at different tasks.
This promising new setting could lead to scaling up FL.
“in the wild” by covering more clients, and hence to
much broader data coverage and effective utilization.

* We leverage the dynamic grouping mechanism for
each agent to dynamically choose and aggregate
weights from its friendly neighbors (by comparing
their update direction similarity). That effectively
tackles the gradient conflicts during federated aggre-
gation caused by task heterogeneity.

» Extensive experiments demonstrate that our method
outperforms off-the-shelf alternatives such as FedAvg
and FedProx in both new benchmarks for MaT-FL.
Most impressively, our algorithm even enables jointly
FL over the combined set of Pascal-Context and NYU
Depth (9 tasks, 2 data domains), setting a new record
of FL under strong data and task heterogeneity.

2. Related Work
2.1. Federated Learning

Federated learning (FL) [8, 10, 11, 14,27] allows local
clients to collaboratively train models without sacrificing
data privacy. Normally, it involves two stages: (z) lo-
cal clients train models separately and send models to the
cloud, and (2) the cloud aggregate those models to obtain
a global model which will be send back to local clients
for next round of training. Several methods concentrate
on handling heterogeneity of local data distribution across
clients. For instance, FedProx [1 1] improves FedAvg [14]
by adding a proximal term into the local training objective
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function to limit the norm of local updates; FedNova [23]
instead aggregate models with consideration in the different
computational power of clients; SCAFFOLD [9] corrects
local updates through local control variates.

2.2. Personalized Federated learning

Instead of assuming a single global model to accom-
modate multiple domains, personalized FL. methods [7,25]
aims to tackle heterogeneity through learning a person-
alized global model for each individual client, enabling
stronger compatibility with highly non-1ID clients. These
methods typically empower each client to play a more ac-
tive role in deciding who to collaborate with and how to
aggregate their models. [25] allows each client to assess the
degree to which other models can facilitate local conver-
gence on a hold-out validation set. However, this approach
requires intensive computational and communication costs
and hence may not be scalable to scenarios with many par-
ticipating clients and under resource constraints. [7] encour-
ages collaboration between similar clients through an atten-
tive message-passing mechanism that learns the relations of
clients implicitly. [4] introduces a clustering algorithm to
depict relationships of clients, where aggregations are only
computed within the group of clients. This approach as-
sumes mutual relationships between the models, whereby if
one model helps another, the other model will reciprocate
and provide help as well, which may be invalid in prac-
tical MTL settings where tasks may either help or inhibit
each other. Compared to those methods, our algorithm in-
tends to introduce a simple, straightforward baseline and
handles heterogeneous task types (i.e., segmentation, depth,
normal...; rather than single task type such as classification,
just with different per-client classes) - a more challenging
case that none of the prior works have accounted for.

2.3. Multi-Task Learning

Multi-task learning (MTL) [5, 12, 18,22] aims to lever-
age useful knowledge contained in multiple tasks to im-
prove the generalization of features and also suits the need
of handling different tasks in the same model. As task con-
flicts being the major problem in MTL [2], several works
explore grouping-based methods. For example, [15] intro-
duce “cross-stitch” units; [2] apply multi-task loss balanc-
ing; and [24] use gradient projection to deal with gradients
with negative cosine similarity; and TAG [3] exploited task
affinities (from a pre-trained MTL model) for task grouping.
However, their methods are all “centralized”, i.e., assuming
the model trainer has access to all tasks and data.

2.4. Federated Learning with Multi-Task Objective

There exist prior works attempting to combine MTL and
FL. [20] addressed the MTL-based FL setting for the first
time, learning separate models for each client. However,

their discussion was primarily based on learning linear con-
vex models, and cannot be straightforwardly generalized to
non-convex deep learning models. [13] and [19] tackle data
heterogeneity problems but did not assume local clients to
handle heterogeneous task types. The recent work [28] is
most similar to ours, but with totally different motivations
and setting. They assume each client to have a copy of the
full MTL model and a subset of data from all tasks, with
their goal to have clients jointly train the MTL model using
FL. Their work hence was not motivated by nor contributing
to broadening the data coverage (from diverse single-task
clients). In contrast, we make the more realistic assumption
that each client only accesses a data subset from one single
task; and each client trains its own single task model while
only the cloud aggregates multiple client/task information.

3. Methodology

3.1. Problem Formulation

For an MaT-FL system with N clients and C tasks, client
iowns data D; = {X;,Y}'},i = 1,2,..., N, where ;! de-
notes the label of sample X; on task ¢. Each client 7 special-
izes on a specific task t € {¢y, o, ..., tc} whose relationship
can be formulated through a mapping between the client in-
dex and the type of task ¢ = 7 (¢). Training on the local
data, each client will obtain the local update g} by:

9i = Vo L(X;, YY) (1)

An important change to note is at the cloud side: we assume
the MTL model trainer to maintain a task-specific global
model ¢! for each task ¢, hence C global models in total,
by certain weights aggregation strategy to be detailed next.
Those global models 6% will be correspondingly dispatched
to clients performing the same task types in the next com-
munication round.

3.2. Preliminaries

Single-task FL: In traditional FL approach FedAvg [14],
without incorporating multi-task scheme, the global model
6% solely focus on same-task clients and ignore other data.

g' =avg{gt,i:T(i) =t} 2)

Plain Many-task FL: A natural way to utilize full data
is to directly extend FedAvg [14] into multi-task scenario
without considering both data and task heterogeneity prob-
lems. This way will ignore the difference between clients.

9" = avg;{gj,i=1,2..N} 3)

Existing advanced FL: With many recent approaches
trying to tackle heterogeneity problems, as the extension of
FedAvg [14], the representative work FedProx [11] add the
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proximal term in the local training to restrict the local up-
dates to be closer to the initial model. However, as MTL
bringing “task heterogeneity” of clients, such method is not
capable of handle this more severe heterogeneity challenge.

gf = v&;? Eprox (Xz ) Yf)

“4)
g' = avg{gi,i=1,2..N}

3.3. Proof of Concepts: Why Grouping

First, let us find out the characteristic of MaT-FL weight
updates. To be specific, we want to zoom in to one single
FL step, and answer the following question:

With the same weight starting point, do models performing
different tasks update towards the dissimilar directions?

To answer the question, we train 90 single-task models on
different datasets and tasks, each for 10 epochs, with the
same starting point of ImageNet-pre-trained ResNet18 [6].
For Pascal-Context dataset [16], we train models on: Se-
mantic Segmentation; saliency estimation; Surface Nor-
mals Estimation; Edge Estimation; human part segmenta-
tion. For NYUD-v2 dataset [ | 7], we train models on: Depth
Estimation; Semantic Segmentation; Surface Normals Esti-
mation; Edge Estimation. For each dataset-task combina-
tion, we independently train 10 models with random 10%
data subsets. We then collect all their weight updates from
the starting point, and visualize those weight updates by T-
SNE [21] in Figure 2. Note that we normalize the updates
first since directions of updates are more likely to lead to
conflicts [2,24]. We draw two observations:

* The updates are well-clustering by tasks, which means
models performing the same task would behave sub-
stantially more similarly. Such similarity can even be
across-dataset: for example, Pascal updates from Se-
mantic Segmentation are even more similar to NYUD
updates of the same task type, compared to other
tasks on Pascal-Context. That shows compared to data
sources (domains), the task differences make the more
dominant source of heterogeneity.

* For each task, there are “friends” and “enemies”, in
terms of similar/dissimilar normalized weights up-
dates, i.e., different update directions.

The above observations motivate us to design a mecha-
nism to strike a balance between covering more “friends”
and preventing training interference caused by “enemies”.
At the heart of the mechanism is our new regime to effec-
tively group the “friends” and “enemies” for each client, and
to adaptively aggregate updates within friend groups.
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Figure 2. The T-SNE [21] visualization result for updates us-
ing data on different tasks, with the same ImageNet-pre-trained
ResNet18 as starting point.

3.4. Dynamic Grouping and Adaptive Aggregation

The pipeline of our method is illustrated in Figure 3 and
summarized in Algorithm 1. In each communication round,
our method can briefly separated into two parts: for each
client, we first group other clients into “friends” and “ene-
mies”, then generate aggregated updates within the group.

STEP 1: Dynamic Grouping. To explicitly tackle highly
dissimilar clients, we introduce the dynamic grouping tech-
nique to let each client decide whom others to aggregate
with. Note that considering the training dynamics, we do
grouping in each communication round independently in-
stead of grouping once and sticking to it.

Algorithm 1 Pseudo-codes for Dynamic Grouping and
Adaptive Aggregation

Input: Local updates collected by cloud g!.
fori=0to N — 1 do

for1=0to L — 1 do
S(Z) tv(l) tv(l)}

ij COS{gi 9;
sl 0)
votings; = TopK(s; ;)
end for

Pi) = AVg{votingsl(.l)}
af = Aggregate{g}, j € P(i)}
end for
for t=0to K — 1 do
0" = Avg,{al, T (i) =t}
end for
Output: Task-specific global models 6.

In each round, after the cloud collecting all local updates
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{g,i=1,2...N}, we first compute the similarity score be-
tween each pair of clients for each layer. At layer [, we ob-
tain the score sﬁ ; between clients ¢ and j by computing the
normalized cosine similarity between their weight updates:

sglg = cos{gz’(l),g?(l)} 5)

Each layer will then independently votes. Specifically, in
each layer, we will pick K clients with the highest K sim-
ilarity scores and assign related clients with vote values in
descending order (the most similar one assigned with “K”,
the second most similar “K-1", ...). Next, for each client ¢,
we will collect all its layers’ votes and pick the top “friends”
F (i) with the highest accumulated vote from all layers. Ag-
gregation of this client 7’s update in the next step will only
be performed within the group {g,i € F(i)}.

STEP 2: Adaptive Aggregation. After grouping, we
generate aggregated updates a! for each client. To further
cope with the potentially conflicting update directions even
within a group, we leverage similarity scores to adaptively
reweight local updates instead of directly averaging.

After obtaining the grouping result F (i) for each client
i, we consider re-using the similarity scores generated by
Equation 5 for aggregation. To be specific, we first gen-
erate normalized similarity score &} ; to keep Y 4, ; = 1
and average them on each layer to obtain the final similarity
score s; ; = Avgl{§§7j }. Then, for every client j in F (i),
we use s; ; as weights, generating the aggregated update a..
We perform normalization to have §; jsum up to 1:

ab= > {8i;*g'} (6)

JEP(Y)

Finally, we update the global model #¢ for each task ¢ us-
ing the average of {a!,7(i) = t}. Such models will be
dispatched in the next round of federated learning.

4. Experiment Results
4.1. Implementation Details

We leverage two representative MTL datasets, Pascal-
Context [16] and NYU Depth v2 (NYUD) [17]. Pascal-
Context dataset [ 1 6] has annotations on five tasks: semantic
segmentation (Seg.); saliency estimation (Sal.); surface nor-
mals estimation (Norm.); edge estimation (Edge); human
part segmentation (H.Parts). NYUD dataset [|7] has labels
for four tasks: depth estimation (Depth); semantic segmen-
tation (seg.); surface normals estimation (Norm.); edge esti-
mation tasks (Edge). From those two datasets, We establish
two benchmark settings for MaT-FL:

¢ Pascal-Context (5 tasks): all clients have a subset of
Pascal-Context and C equals 5. Each client specializes
on one of five tasks.

¢ Pascal-Context & NYUD Combined Set (9 tasks):
some clients have a subset of Pascal-Context while
others have a subset of NYUD. We consider C' equals
9 in this setting, by treating the overlapped tasks be-
tween the two datasets (such as Seg.) as two different
tasks. Each client specializes on one of nine tasks.

In either setting, we randomly partition the original dataset
evenly for N clients. For simplicity, we set the number of
clients accounting for each task to be the same, i.e., N/C.
We can control N/C to adjust the scale of FL, and we set it
to be 2 by default, while more ablations are in Section 4.3.

We use ResNet18 as the backbone and deeplab [1] as de-
coder on the head. In all experiments, we set local training
epochs as 10 and the number of total communication rounds
as 100. We use a batch size of 10 and an initial learning rate
of 1074, After every communication round, we decay the
learning rate by a factor of 0.99.

4.2. Improvements via Dynamic Grouping

We conduct experiments on the aforementioned settings
and hyper-parameters. For our proposed method with dy-
namic grouping, we set K in TopK as 8, and we will ex-
plore its effect in Section 4.4. We provide results in Ta-
ble 1. Here, the terms “Single-Task FL”, “Plain Many-Task
FL”, and “FedProx” are illustrated in Section 3.2. We show
the evaluation results of two representative tasks and pro-
vide others in the Appendix. On both Pascal-Context(5)
and Pascal-Context & NYUD(9) scenarios, we have sev-
eral interesting observations: @ Despite the potential in-
terference brought by task heterogeneity, directly extend-
ing Single-Task FL into Many-Task FL can help unify more
data, benefiting the training, which echoes the “the more
data, the better model” intuition in Section 1. @ FedProx
fails to tackle task heterogeneity and barely brings perfor-
mance gain. @ After using dynamic grouping and adaptive
aggregation, models can be free of interference and further
benefit from more data. Specifically, on Pascal-Context(5),
compared to Single-Task FL, our method achieves improve-
ments of 0.0313, 0.0155 on Seg. Sal., respectively. Sim-
ilarly, on Pascal-Context & NYUD(9), performances in-
crease by 0.0489, 0.0195.

4.3. Scaling the number of clients per task

To further validate our effectiveness, we test our method
on FL systems of different scales. To be specific, on the
Pascal-Context(5) setting, we change the number of clients
per task to control how many clients are involved in training.
According to Table 2, under different FL scales, our method
consistently shows better performance than baseline meth-
ods and similar patterns with results in Section 4.2. Surpris-
ingly, our performance is even better than baseline methods
with the smaller FL scale, which validates the effectiveness
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Figure 3. Illustration of how we could scale up FL by explicitly handling task heterogeneity. Our algorithmic framework is to dynamically
identify and group similar “friends” for each client during training, and then adaptively aggregate weights within the same group. Note
that ovals represent updates collected from edge devices, while parallelograms represent updates after aggregation.

Table 1. Comparisons between our proposed method and several
alternative methods mentioned in Section 3.2. As highlighted in
block font, our method successfully tackles the challenge of “task

4.4. Improvements under Different K

K is utilized in TopK of dynamic grouping, which serves

heterogeneity” and benefits performance by unifying more data.

Performance
Dataset Method
Seg. (mIoU) Sal. (mloU)
Single-Task FL 0.2449 0.5619
Pascal-Context (5) Plain Many-Task FL. 0.2731 0.5638
FedProx 0.2745 0.5661
Ours (DG w/ sc agg.) 0.2762 0.5774
Single-Task FL 0.2449 0.5619
Pasca"‘g"“te"t Plain Many-Task FL 0.2707 0.5714
NYUD (9) FedProx 0.2611 0.5745
Ours (DG w/ sc agg.) 0.2938 0.5814

of our proposed method in terms of coping with data short-
age. Note that the performance is supposed to drop when
increasing the FL scale since the FL is more “decentralized”
when less data is hosted on each client.

as the vital step to balance between using more diverse
clients with different tasks and excluding the highly dis-

Single-Task FL
Plain Many-Task FL
FedProx

Ours

Seg. (mloU)

0.24- ‘ ‘ | ‘ ‘ | |
2 4 6 8 « 10 12 14
Figure 4. The performance measured by Seg. mloU under differ-
ent K, showing the effectiveness within the wide range of 4 ~ 18.
Note that K is utilized in the TopK step in the dynamic grouping.
For every client’s aggregation, a larger K means more other clients

are “group” as its friends and be involved in aggregation.

5042



Edge. Seg. Edge.
0.02 Edge s
001
Edgg) l! Part 55 Edge. 0.08
0.02 - Se r 0.08 [ Seg. Edge.
Normy, 5, qiy (,gﬁeg Edge | Norm. l‘Il, s O 0
o) D gsal " xﬁlﬁ’is Seg Og \ ir 02
/] Snl N Seg. B .45 : 9&/ 1098,
\ . 007 (Seg 04}@% / Edge. Seg: 03— *nvsal
001 NO{I? R g2 03 H.) )ﬁrts e 005
pfﬂ \ 0.09 Norm, - — Y Oy L
e) y o042 |\
E 0.05 @I H.P&g9 (@ {-8al Depfh ﬁbpth
001 - 047 045 o1
f epth 041 Norj 1 0
Sal | 04 'm, 0.18
Edge Edge
Foim. Edge t Ngm.
H.Parts (Pascal) Norm. (Pascal) Seg. (Pascal)
_ Seg. Seg HPilrﬁs ‘ Seg. H;mts
Edge) 1§ 173118 002 - 0.09 , =
Edge. 048 1 ” Sal | gq,
038 A ge.
- S %042 039 orm No"'l'&ﬂ Eﬂ%: 5 045 | g gpmid Norm.
Normuss  /“qut i 015 Edge. hd Sk L (@]l}!ge 021 Sego‘5 N Sé‘g . @ 00
= P E eg y e‘7 =0
Feaps \ S - x‘\ dgq Norm. Norm: ””Seg‘l s o
sogt e | Edge sal’ | |Kage o a2 Edge
: - PL“ Rl 0.04 ‘Seg.‘ Tose P22 ‘H,;% \Seg)
H y };th phrt FO\\ //sal Nm,
Em. oo He r/ts 0.02 013
00 Eegth A ‘,Seg ) H.P{rts 002
- 0.0
Edge
Fo;m. W Edge
Sal. (Pascal) Edge (Pascal) Depth (NYUD)
H.Parts H.Parts H.Parts
4 { ¥ o
| Edge.
Sal Seg g 068 ;)q)th N)rm' Seg/ ?’
Ly L\ 04078 00 — (Seg |
Sego 0. 5Edge Sal 00 A | 00
» 0.02 0.01 ?)t 0.05 Sal ]
A 4 vy D 0.53 ' Nih E&OL £ 3
. H)tm - m, “CE \Edge . Norm,
"l' orm,
0.02 Seg.OAX —
! ; 05
- 0 @ AL
Sal J 00 [ Sal’ Edge| Seg- (Seg | Seg
00
Edge
Edge H.Parts

s YD)

Edge (NYUD)

Figure 5. The visualization of average grouping results across the whole training process. For every client, we visualize the frequency
of every other client being selected and included in its aggregation. For instance, in the first sub-figure which depicts the grouping result
of clients specializing H.Parts, the edge between two clients performing H.Parts (represented by two blue circles) equals 1, which means
100 out of 100 times, the H.Parts client successfully identifies another H.Parts client and includes it in its aggregation. We use squares to
represent NYUD clients while using circles to represent Pascal-Context Clients, and different colors represent different types of tasks.

similar ones. Therefore, it is important to analyze how
different K affects performance. Here, we use the Pascal-
Context(9) setting with the number of clients per task as
2, which means there are 18 clients in total. We compare
our results with several alternative methods explored in Sec-
tion 3.2 and provide results in Figure 4. Note that if we set
K = 2 and every client successfully chooses the other client
of the same task in each grouping step, the method will de-
generate to “Single-Task FL”. And “Plain Many-Task FL”

is also a special case when we set K = 18 and every client
is assigned with identical weights in the aggregation step.
By changing K within the range of 2 ~ 18, we plot the
performance for each K using the Seg. mloU as the met-
ric. @ Our method shows superior performance than all of
the baseline methods when K is within the large range of
4 ~ 18, which shows our effectiveness is not sensitive to
the choice of K. @ The performance drops if we use an ex-
tremely small K. That is because a small K (as small as 2)
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Table 2. The effectiveness of our method compared to methods
explored in Section 3.2 under different FL scales using Pascal-
Context (5). Note that by default we keep the number of partic-
ipating clients of every task to the same, which means (# Clients
per task) x (# Tasks). equals the total number of clients. There-
fore, the larger (# Clients per task) means a larger FL scale.

i Performance
# Clients Method
(per Task) Seg. (mloU)  Sal (mIoU)
Single-Task FL 0.2896 0.5730
1 Plain Many-Task FL 0.2738 0.5712
FedProx 0.3032 0.5604
Ours (DG w/ sc agg.) 0.3045 0.5803
Single-Task FL 0.2449 0.5619
’ Plain Many-Task FL 0.2731 0.5638
FedProx 0.2745 0.5661
Ours (DG w/ sc agg.) 0.2762 0.5774

H.Parts (Pascal)

Norm. (Pascal) Seg. (Pascal)

Sal. (Pascal) Edge (Pascal) Depth (NYUD)

< R
Norm. (NYUD)

Seg. (NYUD) Edge (NYUD)

Figure 6. Illustration of every layer’s voting. The brighter color
means the related client get a higher vote, indicating the layer is
more willing to aggregate the related client. Note that if perform
TopK, each layer will assign all clients with voting values in de-
scending order (the most similar one assigned with “K”, the sec-
ond most similar “K-17, ...).

will invalidate our method’s capability to utilize more data,
only weakening the method by imperfect grouping results.

5. Ablation Analysis
5.1. Grouping ‘““Correctness”

The clients performing the same type of task do not have
task heterogeneity, which means they are supposed to be-
have similarly and help each other thus to be chosen in the
aggregation. Based on such prior knowledge, we define the
grouping to be “correct” if the clients performing the same
task are identified as “friends” and are included in the aggre-
gation process. Therefore, it is important to check whether
the dynamic grouping method successfully includes those
clients who are known helpful in the training.

Based on the default Pascal-Context & NYUD(9) dataset
where N/C = 2,C = 9 and K = 8, we analyze the group-
ing results in the whole training process in Figure 5. For ev-
ery client, we calculate the frequency of every other client
being included in its aggregation step, and we visualize it in
the related sub-figure. Note that for each task, we randomly
select one client and show its “correctness”.

The results show that in the vast majority of cases, all
clients almost perfectly choose and group other clients that
share the same task. Besides, it validates our method would
benefit training by enlarging the scope of data to be used for
aggregation. For instance, as shown in the third sub-figure,
in nearly half of the communication rounds, Seg.(Pascal-
Context) clients would pick Seg.(NYUD) clients.

5.2. Voting Consistency

As is illustrated in Section 3.4, layers will first make
their own choices on which client to aggregate with. Then
the model trainer will consider opinions from all layers and
make the final decision. We further analyze whether those
layers agree with each other. Using the Pascal-Context &
NYUD(9) setting, we present results of one client per task,
and each sub-figure in Figure 6 shows the voting of a spe-
cific client. It is clear that a majority of layers would make
similar choices, which means our method is not sensitive to
the choice of layers for dynamic grouping. In all experi-
ment, by default, we use the last 8 convolutional layers.

6. Conclusion and Discussions

In this work, we introduce the novel “many-task feder-
ated learning” (MaT-FL) setting to allow local clients per-
forming different tasks to collaboratively train a model.
This new setting brings potential benefits by unifying more
data while raising the challenge of “task heterogeneity”. To
tackle the challenge, we design a dynamic grouping mech-
anism, enabling every client to dynamically choose and ag-
gregate weights from its “friends”. Extensive experiments
also show its potential to scale FL up to 9 tasks, 2 data do-
mains). While this work is a pilot study, we hope for more
attention from the community in this new setting.
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