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Abstract

Recent developments in Artificial Intelligence techniques
have enabled their successful application across a spec-
trum of commercial and industrial settings. However, these
techniques require large volumes of data to be aggregated
in a centralized manner, forestalling their applicability to
scenarios wherein the data is sensitive or the cost of data
transmission is prohibitive. Federated Learning alleviates
these problems by decentralizing model training, thereby re-
moving the need for data transfer and aggregation. To ad-
vance the adoption of Federated Learning, more research
and development needs to be conducted to address some
important open questions. In this work, we propose Open-
Fed, an open-source software framework for end-to-end
Federated Learning. OpenFed reduces the barrier to en-
try for both researchers and downstream users of Federated
Learning by the targeted removal of existing pain points.
For researchers, OpenFed provides a framework wherein
new methods can be easily implemented and fairly evalu-
ated against an extensive suite of benchmarks. For down-
stream users, OpenFed allows Federated Learning to be
plugged and play within different subject-matter contexts,
removing the need for deep expertise in Federated Learning.
The source code of OpenFed is publicly available online at
https://github.com/FederalLab/OpenFed.

1. Introduction
Recent developments in Artificial Intelligence (AI) and

Machine Learning (ML) techniques have advanced the
state-of-the-art across many application domains [28]. In
particular, Deep Learning (DL) has revolutionized the field
and deep neural networks are now the defacto standard for
computer vision [11], natural language processing [26], au-
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dio and speech processing [41], and reinforcement learn-
ing [4], among others. In the broader historical context of
AI research, deep learning simply represents the next mile-
stone in the Bitter Lesson 1 - “general methods that lever-
age computation are ultimately the most effective”. Deep
learning enables today’s vast computational resources to be
unleashed on equally vast amounts of data, with the best-
known example perhaps being ImageNet’s 14 million hand-
annotated images [29]. The typical setup involves central-
izing the said data onto a database, which is connected to a
high-performance server or cluster of servers. The training
process can then take place, and the deep neural network is
exposed to these examples and their corresponding desired
outputs and therefore “learns” the assigned task.

While this paradigm has proven to be broadly effective,
there are some use cases where it is not straightforwardly
applicable [3, 22]. The very first step of centralizing the
data onto a database can be challenging or impossible for
two main reasons: the data is personal or confidential and
therefore the user would not consent to it being transmitted,
or the data originates from edge devices and transmission
costs are prohibitive.

Federated Learning (FL) is a family of ML techniques
proposed to address these challenges [24]. Rather than cen-
tralizing the data and then training the model on a server,
in FL, model training is decentralized to the data sources
themselves, obviating data transfer entirely [32, 39]. Al-
though FL has already been applied successfully in some
industrial and commercial settings, it is in fact still an area
of active research. Many open sub-problems need to be ad-
dressed before FL can be considered ready for broader ap-
plication [21].

As a research topic, FL suffers from several stum-
bling blocks. Firstly, fair comparisons are difficult to per-
form. Much research is built upon synthetically generated
datasets. For these datasets, typically only the statistical

1http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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properties can be practically reported. This introduces a
significant element of randomness to experimental results.
Secondly, in applied ML research, it is common to make use
of existing frameworks which may not have been built with
FL in mind. Because these frameworks are industry stan-
dards for their respective domains, it is not feasible to aban-
don them just to make use of FL techniques. Finally, to be
effective in FL research requires a broad skill set. Whether
to replicate existing work or to propose new methods, re-
searchers need strong software engineering skills to imple-
ment the (pseudo) distributed setting that FL takes place in,
a deep understanding of the ML principles that undergird
FL techniques, as well as subject-matter expertise in the do-
main in question.

In this work, we propose OpenFed, a software frame-
work that targets the stumbling blocks identified above in
order to accelerate FL research and development. For FL
researchers, OpenFed provides comprehensive implemen-
tations of existing methods and their corresponding perfor-
mances across a suite of standardized datasets, thereby en-
abling convenient and fair comparisons for newly proposed
methods while reducing the effort required to implement
them. For FL users, OpenFed’s support for common third-
party frameworks allows state-of-the-art FL techniques to
be integrated into practical applications without the need
for practitioners to fully understand the underlying imple-
mentation.

2. Aims and contributions
For both academic and industrial applications of FL, it is

essential that the software framework used is versatile and
flexible. There already exist several influential FL frame-
works, each with its own focus. However, these frameworks
have left some challenges unmet.

Firstly, the full diversity of FL topologies is not com-
monly supported. For example, TensorFlow Federated [16],
PySyft [42], and LEAF [6] support only the centralized
topology. Furthermore, these libraries do not provide con-
venient interfaces for the flexible exchange of auxiliary in-
formation or the customization of the training procedure,
thereby limiting the algorithmic innovations possible.

Secondly, it is challenging to perform fair compar-
isons. Newly proposed FL algorithms are often imple-
mented based on different libraries and dataset configura-
tions. As a result, it is difficult for researchers to compare
the performances of the algorithms fairly.

Finally, it is not easy to transition FL algorithms to ap-
plied scenarios. Existing FL frameworks have not suffi-
ciently catered for downstream integration. For instance,
it is not trivial to employ even the famous FedML [15] to
train models from well-established libraries like Hugging-
Face [33].

In order to address the above challenges, we designed

a novel FL framework named OpenFed based on the Py-
Torch [27] ecosystem. OpenFed provides an expandable
toolkit for FL algorithm development across diverse topolo-
gies. Comparisons between OpenFed and existing main-
stream FL libraries are given in Table 1. The main contri-
butions of the OpenFed framework are listed as follows.

Diverse topologies OpenFed provides powerful auto-
matic topology analysis and construction tools. By intro-
ducing the concept of a federated group, we are able to de-
compose an entire FL topology into its atomic units. Novel
FL algorithms for split, vertical, hierarchical, or decentral-
ized topologies can then be implemented as though they
were the standard centralized topology. In addition, Open-
Fed provides an interface for auxiliary information to be
exchanged across compute nodes.

Comprehensive and standardized FL algorithms and
benchmarks OpenFed provides standardized datasets,
algorithms, and benchmarks. Researchers proposing
novel algorithm designs can conveniently and compre-
hensively compare their new ideas against existing solu-
tions. OpenFed also provides rich configuration possi-
bilities (e.g. server/client optimizer, sampling strategy of
partial-activated clients, non-i.i.d. distribution of dataset
partition), allowing researchers to better validate how well
different algorithms generalize to specific situations.

User-friendly API design Mainstream deep learning
(DL) frameworks, such as PyTorch and TensorFlow, lack
ready-made APIs for FL. OpenFed carefully inherits the
API design from the PyTorch library, which is commonly
used by the DL community. This reduces the barrier to en-
try for the larger DL community to participate in FL re-
search and development. Furthermore, OpenFed provides
rich built-in features including weighted gradient descent,
federated averaging, diverse data augmentation, local early
stopping, etc. These FL modules offer an immersive devel-
opment experience to OpenFed users.

Third-party library support The relative maturity of DL
has resulted in the rise and success of open-source sec-
ondary libraries. These libraries provide state-of-the-art im-
plementations for their respective domain areas. For ex-
ample, HuggingFace [33] for natural language processing,
MONAI [9] for medical analysis, and MMCV [8] for com-
puter vision. However, few of this support FL natively. Fur-
thermore, because these libraries are increasingly widely
adopted, it is unlikely for newly proposed libraries that offer
only FL as an advantage to gain much traction. Therefore,
OpenFed is designed to be plug-and-play compatible with
these third-party libraries.

5019



CrypTen
[13]

FATE
[35]

PaddleFL
[23]

PySyft
[42]

FedML
[15]

FFL-ERL
[31]

LEAF
[6]

TensorIO
[10]

TFF
[16]

OpenFed
(ours)

Diverse
computing
paradigms

Standalone simulation ✓ ✓ ✓ ✓ ✓ ✓ ✓

Distributed computing ✓ ✓ ✓ ✓ ✓ ✓ ✓

On-device training ✓ ✓ ✓ ✓

Flexible
& generic

API design

Message flow ✓ ✓

Customize data distribution ✓ ✓

Unified paradigm ✓ ✓ ✓ ✓ ✓

Third-party support ✓ ✓

Topology
customization

Split ✓ ✓ ✓ ✓

Vertical ✓ ✓ ✓ ✓

Hierarchical ✓

Decentralized ✓ ✓

Centralized ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Federated
optimizer

Aggregation customization ✓ ✓

Gradient accumulation ✓

Parameter penalization ✓ ✓

State synchronization ✓

Benchmarks

Computer vision ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Natural language processing ✓ ✓ ✓ ✓ ✓ ✓

Reinforcement learning ✓

Medical analysis ✓ ✓

Table 1. Comparison between OpenFed and existing FL frameworks.

3. Architecture design
As depicted in Figure 1, the FL workflow is based on

the distributed computing setup [38], with a server and a
number of local devices. Since user data never leaves the
local device, the FL workflow inherently protects personal
privacy.

Each local device downloads a copy of the most recent
global model. This model can then be independently per-
sonalized using private data, resulting in improved perfor-
mance for the user. These personalized models are then up-
loaded from local devices to the main server. An aggre-
gator at the server fuses all the personalized models into a
newer and better-performing global model. Similarly, the
on-device personalized model is also continuously improv-
ing with every round of this FL training loop. Note that the
prediction task is typically also independently conducted on
each local device.

We designed the OpenFed architecture based on the FL
workflow described earlier. The crucial architectural fea-
tures of OpenFed are as follows.

Flexible federated groups abstraction The connections
between servers and local devices in an FL system can be
complicated. Furthermore, the effort to implement these

connections is often orthogonal to the algorithmic work that
researchers primarily deal with. Therefore, OpenFed in-
cludes an automatic topology analysis strategy in which dif-
ferent FL connections are expressed by the same atomic unit
which is called a federated group. As Figure 2 shows, the
proposed strategy has three levels. Device nodes are added
to the topology graph based on their connection modes. The
topology graph is then parsed into a set of federated groups.
The key insight is that every topology - even ones that ap-
pear highly irregular or complex - can be decomposed into
a set of simpler groups that are individually just centralized
topologies. By this mechanism, OpenFed enables central-
ized FL algorithms to be applied to other topologies.

The robust distributed training scheme FL algorithms
naturally assume a distributed training scenario since the
servers and the devices are physically separated. OpenFed
offers an interface to simulate dozens of federated groups
on a single machine. This lowers the resource requirement
to participate in and contribute to FL research. Furthermore,
the distributed design in OpenFed allows complicated auxil-
iary information exchange within each federated group. For
example, algorithmic hyper-parameters like learning rate,
the FL round number, training instance, etc. can be eas-
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Figure 1. An illustration of the FL workflow based on the OpenFed framework. A server collects personalized models from different users,
and the aggregator combines these to create a global model. This model is sent to all the users and is separately personalized on each
device. The cycle then repeats, making up the main body of the FL workflow. Note that private data is only ever accessed by the local
device to guarantee user privacy.

Build topology graph

DecentralizedVerticalSplit CentralizedHierarchical

Analyze topology graph

Federated groups

Topology graphs

Device nodes

Figure 2. Three-level abstraction of the OpenFed design. Bottom level: nodes abstracted from various physical devices. Middle level:
topology graph generated from the connection between different nodes. Top-level: federated groups deriving from the specific topology.
Although one device might belong to several federated groups, communication among different devices is limited to within each group.
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ily shared. This enables the implementation of even highly
exotic algorithms.

Specialized functional modules The OpenFed architec-
ture is composed of several functional modules. Re-
searchers can pick and choose corresponding modules as
required for their experiments. By using OpenFed’s pre-
defined modules like the aggregator, collaborator, pipe and
optimizer, FL research can be accelerated. In addition, se-
curity and privacy-related functional modules are also sup-
ported in OpenFed, implementing defenses against com-
mon attacks like data and model poisoning [12, 25].

4. Real-life application scenarios and bench-
marks

FL has already been employed in many different appli-
cations; here we discuss a few representative scenarios, as
illustrated in Figure 3. These scenarios also motivate Open-
Fed’s support for third-party libraries commonly used in
industry. Specifically, OpenFed-CV and OpenFed-RL ad-
dress the perception and decision-making components re-
spectively for self-driving systems. OpenFed-Medical sup-
ports common medical use cases. Finally, OpenFed-NLP
can be used for the text-based recommendation systems de-
scribed.

Self-driving Self-driving systems can typically be broken
down into two major components: perception, and decision-
making [3]. The perception system is generally further
divided into subsystems responsible for self-localization,
static obstacle mapping, moving obstacle detection and
tracking, road mapping, and traffic signal detection, and
recognition, among others. The decision-making system
likewise comprises tasks such as route planning, path plan-
ning, behavior selection, motion planning, and control.
These tasks are highly complex and each requires not only
large volumes of data but also data of a sufficiently wide di-
versity to account for the natural diversity of street scenes.

A promising source of data is the fleet of vehicles already
sold - in the course of their everyday operation, these ve-
hicles would collectively accumulate data approaching the
scale and variety needed. Due to privacy concerns and the
high costs of transmitting rich multimedia data, the tradi-
tional model of data aggregation and centralized training is
unfeasible. FL addresses these problems directly - for ex-
ample, a previous case study demonstrated that using FL for
the steering wheel prediction problem reduces bandwidth
by 60% and training time by 70% with no loss to the model
performance [40].

Drug discovery According to Pharmaceutical Research
and Manufacturers of America, it takes on average 10 years

and $2.6 billion for a new medicine to reach the market [1].
One part of this process that machine learning can acceler-
ate is drug discovery. For example, quantitative structure-
activity relationship (QSAR) is a machine learning method
for predicting the relationship between chemical structures
and resultant biological activities. One challenge in improv-
ing the performance of QSAR models is data availability.
Data from different institutions cannot be freely shared and
aggregated due to commercial and legal reasons. FL has
been demonstrated to work well for QSAR [7, 34], and can
overcome the data availability problem.

Furthermore, FL for drug discovery has moved beyond
the theoretical. The MELLODDY project is a federated
learning platform to accelerate drug discovery for 10 ma-
jor pharmaceutical companies, allowing them “for the first
time to collaborate in their core competitive space” [2].

Clinical diagnosis Clinical diagnoses are often made
with context provided by a diverse range of sources, from
patient medical history to different types of imagery. This
use of multi-modal information is required to give a holis-
tic assessment of the patient’s condition. Vertical FL, also
known as Heterogeneous FL, allows different types of in-
formation across different data sources to be combined se-
curely and with privacy protection. This is critical for such
a system to be deployed in practice, as medical data and
records are highly sensitive.

Previous work has demonstrated the need for more di-
verse data in this clinical diagnosis setting [43]. Medical
data can be highly heterogeneous across institutions - it was
found that models trained using data from single institutions
perform substantially worse on test examples from other in-
stitutions. By using FL, models can benefit from a greater
diversity of cases and thereby perform better even on vali-
dation data from their own institution [30].

Recommendation FL has been successfully applied to
recommendation systems such as browser history sugges-
tion [14], keyboard query suggestion [36], and mobile key-
board prediction [20]. The mobile keyboard prediction
study provides a rare real-world large-scale comparison be-
tween an FL system and the best-performing centralized al-
ternative. The centralized model benefited from the relative
maturity of its traditional machine learning setup - including
best practices for the algorithm design, parameter selection,
and training methodology. However, it was limited to users
who had opted in and allowed their data to be recorded. In
this setup, it was found that the FL model did not simply
match the centralized model performance, but in fact, ex-
ceeded it in terms of both the top-1 and top-3 prediction
metrics by 1%.
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(a) Self-driving (b) Drug discovery

(c) Clinical diagnosis (d) Recommendation

Figure 3. Real-life use-cases of FL. In (a), a better self-driving system can be trained by combining the varied experiences of individual
vehicles across the full diversity of road scenes. In (b), FL enables pharmaceutical companies to collaborate in an otherwise highly
competitive space, thereby accelerating drug discovery. In (c), more accurate clinical diagnoses can be made by considering multiple
modalities of information. In (d), FL can make for higher quality recommendations through on-device personalization.

5. Discussion
We present OpenFed, a comprehensive and versatile

open-source framework for FL with a variety of bench-
marks across diverse federated tasks. In this section, we
further discuss the strengths and weaknesses of OpenFed as
well as future work directions from the perspective of facil-
itating academic and industrial research and development.

Comparison with prior FL frameworks As shown in
Table 1, although there exist other FL frameworks, most
of them focus on specific uses and are not meant for gen-
eral purposes. A gap exists for a framework to accelerate
underlying FL algorithm research. OpenFed bridges this
gap. The main advantages of OpenFed compared to exist-
ing frameworks are summarized as follows:

• Inherited design structure. In general, most exist-
ing frameworks are based on either TensorFlow or Py-
Torch. However, they typically do not follow the pro-

gramming structure of their underlying frameworks.
Instead, they propose their own proprietary designs.
Uniquely, our implementation completely follows the
design philosophy of our base, PyTorch. The relatively
large DL community should thus find OpenFed to be
immediately familiar. Researchers using OpenFed can
thus concentrate on exploring and implementing novel
algorithms, while developers will find it easy to apply
these algorithms to their tasks.

• Modular algorithm implementations. Most frame-
works support only the simplest FL optimization algo-
rithm, FedAvg [17, 18]. Although some frameworks
also include other more complex algorithms, the im-
plementations tend to be more functional. In com-
parison, the OpenFed design clearly demarcates where
each step of the FL workflow begins and ends. We
summarize and standardize the workflow by describing
it with four independent steps, i.e. parameter aggre-
gation, gradient accumulation, parameter penalization,
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and state synchronization. Different FL algorithms can
thus be clearly implemented by making specific adjust-
ments within only the required steps. This philosophy
not only facilitates researchers to realize standardized
and maintainable code but also makes explicit where
the differences are between different algorithms.

• Flexible topology support. Most frameworks support
only centralized topologies and provide limited sup-
port for some of the more complex ones. Research on
different topologies is an important topic in FL. Our
concept of the federated group allows OpenFed to flex-
ibly implement any topology.

Future work As FL continues to gain traction, we antic-
ipate that new features will become necessary for OpenFed
to continue to meet the requirements of academia and in-
dustry.

• Topology benchmarks. At present, all benchmarks
default to the centralized topology for algorithm eval-
uation, and no relevant large-scale experiments have
been conducted on the impact of different topologies
on FL performance. We will continue to promote this
work as OpenFed matures.

• Industry deployment. OpenFed runs in a Python run-
time environment, which makes it challenging for de-
ployment on resource-constrained devices. Therefore,
more efficient runtime environments such as C/C++
must be supported. Furthermore, we will continuously
increase the number of third-party libraries that Open-
Fed supports [5].

• Cryptography. Although there are many mature sym-
metric/asymmetric encryption algorithms in the com-
munication field, these algorithms are often too com-
plex to encrypt large amounts of data and consume
too much computation. An open problem is therefore
to design an effective encryption algorithm under the
condition of limited computing resources according to
the characteristics of FL.

• Poisoning and adversarial attacks. The data used
for training in FL often involves personal and pri-
vate information. There has been researched work
demonstrating vulnerabilities in FL, for example, it has
been shown that the content of training data can be
inferred (to some degree) through the exposed gradi-
ents [19, 37]. OpenFed requires more defense mecha-
nisms and algorithms to counteract these attacks.

Limitations. With the growing importance of privacy
protection and data security, FL has become increasingly

adopted across different fields. However, there is still gen-
erally a performance gap between FL and traditional dis-
tributed learning. As such, in scenarios where the data is not
particularly sensitive, researchers and developers still pre-
fer traditional distributed learning. We hope that OpenFed
can address the pain points of FL research and stimulate the
enthusiasm of researchers new and experienced, ultimately
narrowing the performance gap.

6. Conclusion
We present a free, open-source software framework for

FL and end-to-end encrypted inference, which we show-
cased in several relevant real-life case studies. OpenFed is
comprehensive and versatile and can be used both for re-
search and development as well as for commercial and in-
dustrial applications. Ongoing work will enable the large-
scale deployment of OpenFed, the validation of our find-
ings on diverse cross-institutional datasets, and further the
widespread utilization of our framework.

References
[1] Biopharmaceutical research & development: The process

behind new medicines. 2015. 5
[2] Melloddy: Machine learning ledger orchestration for drug

discovery. 2019. 5
[3] Mohammed Aledhari, Rehma Razzak, Reza M Parizi, and

Fahad Saeed. Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access,
8:140699–140725, 2020. 1, 5

[4] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage,
and Anil Anthony Bharath. Deep reinforcement learning: A
brief survey. IEEE Signal Processing Magazine, 34(6):26–
38, 2017. 1

[5] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kid-
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