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Abstract

Federated Learning (FL) enables collaborative model
building among a large number of participants without the
need for explicit data sharing. But this approach shows vul-
nerabilities when gradient inversion attacks are applied to
it. FL models are at higher risk in the event of a gradient
inversion attacks, which has a higher success rate in re-
trieving sensitive data from the model gradients, due to the
presence of communication in their inherent architecture.
The most alarming thing about this gradient inversion at-
tack is that it can be performed in such a covert way that it
does not hamper the training performance while the attack-
ers backtrack from the gradients to get information about
the raw data. Some of the common existing approaches
proposed to prevent data reconstruction in the context of
FL are adding noise with differential privacy, homomorphic
encryption, and gradient pruning. These approaches suffer
from some major drawbacks, including a tedious key gener-
ation process during encryption with an increasing number
of clients, a significant performance drop, and difficulty in
selecting a suitable pruning ratio. As a countermeasure,
we propose a mixed quantization enabled FL scheme, and
we empirically show that issues addressed above can be
resolved. In addition, our approach can ensure more ro-
bustness as different layers of the deep model are quantized
with different precisions and quantization modes. We em-
pirically proved the validity of our defense method against
both the iteration based and recursion based gradient inver-
sion attacks and evaluated the performance of our proposed
FL framework on three benchmark datasets and found out
that our approach outperformed the baseline defense mech-
anisms.

1. Introduction

Federated Learning (FL) has emerged as an alternative
to the centralized approach of building a machine learning

model, which introduces collaborative training among mul-
tiple clients while keeping their data private [15, 16]. Al-
though the inherent architecture of FL eliminates the need
for explicit data sharing, it still shows vulnerabilities against
gradient inversion attacks. Among the present adversaries
in the context of FL, the gradient inversion attacks are con-
sidered one of the most harmful ones because attackers can
successfully reconstitute sensitive training data by secretly
snooping on gradient updates during iterative training and
without affecting model training quality. Gradient inversion
attacks have been investigated extensively, and there are
several such methods, e.g., DLG [25], iDLG [23], InvGrad
[6], CPL [20], GradInversion [22], R-GAP [24], COPA [3],
etc. These attacks can completely reconstruct the training
data and/or associated labels from gradients. Some of these
attacks are iteration-based and others are recursion-based.
The iteration-based attacks aim to minimize the distance
between the dummy gradients and ground-truth gradients.
Such attacks consider the distance between the gradients
as error and the dummy inputs as parameters and so, the
recovery process is formulated as an iterative optimization
problem. DLG, iDLG, Grad Inversion are the attacks of
iteration-based framework. On the other hand, recursion-
based attacks are also capable of reconstructing the original
data in a closed-form algorithm. The key insight is to ex-
ploit the implicit relationships among the input data, model
parameters, and gradients of each layer in order to find the
optimal solution with the minimum error. R-GAP, COPA
are the attacks of such types.

Some of the most explored prevention methods against
those attacks in the present literature are Gaussian or Lapla-
cian noise-based differential privacy (DP), gradient pruning,
and homomorphic encryption (HE). In the first approach
[14,21], to protect the confidentiality of training data, Gaus-
sian or Laplacian noise is added with gradients during train-
ing. But in this method, the accuracy deteriorates below
the threshold level. The second is ‘gradient pruning [25]’,
where a specific pruning ratio is selected during training to
make it robust against gradient inversion attacks. But prun-
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ing in the initial rounds of FL training is not advisable, as it
may cause the loss of fundamental feature-related informa-
tion. Homomorphic encryption [2, 4] can ensure protection
of data confidentiality, but generating unique keys for each
client increases computation complexity. In the FL context,
where one of the assumptions is that there will be a large
number of participants, implementing an HE-based protec-
tion method can be tedious. Also, to ensure all clients are
getting the same key, we have to enable key sharing among
the clients, but such communication is not desirable in FL.

Moreover, researchers have been investigating quanti-
zation, typically a model compression scheme to reduce
the computation resource requirement of deep models. We
point out a new use case of the quantization approach in
tackling the gradient inversion attacks1. In quantization, the
gradient values are transitioned into a less precise form ac-
cording to our choice of bit size. Unless the attacker has
some knowledge about the range information of the unquan-
tized gradient, it is highly unlikely to retrieve sensitive raw
data information. We have chosen mixed-precision over
single-precision quantization to make our resistance algo-
rithm more robust. Because in mixed-precision, for an at-
tacker, the number of iterations to estimate a hyperparame-
ter jumps up to the power of the layer number of the model.
Thus, it can make the data-extracting process significantly
resource-exhaustive for the attackers.

Our approach can overcome the disadvantages present in
the existing methods in the sense that, in our approach, we
are ensuring state-of-the-art accuracy without dequantizing
at the server end. This strategy will prevent the theft of valu-
able client information even if the server is attacked, be-
cause no information regarding full-precision gradient up-
dates is shared on the server. Also, due to the compressed
nature of the quantization, the gradient size required for
transmission is smaller, thus minimizing the communica-
tion overhead compared to other defense strategies. The
specific scientific contributions we offer here are:

• We conduct a detailed risk assessment in a Federated
Learning (FL) scenario due to gradient inversion attacks
and propose a quantization-enabled solution to ensure a
more robust FL framework. Specifically, our approach
is built upon the concept of mixed-precision quantization,
which is applied to the gradients prior the transmission
phase.

• We empirically demonstrate the applicability of our pro-
posed algorithm with three popular FL datasets covering
both the iteration and recursion-driven model inversion at-
tacks. Through performing a comprehensive baseline com-
parison, we achieve an average 15% increase in accuracy
while keeping the attack success rate to zero.

1https://github.com/PretomRoy/Defense-against-
grad-inversion-attacks

• We present a pertinent ablation study to determine the im-
pact of different hyperparameters used in our federated
framework. We find that along with the traits of attack re-
siliency and accuracy retention, our method can offer an-
other desirable property of reduced communication cost.

2. Related work
There can be numerous adversarial motives for infer-

ring private information, including data reconstruction. The
purpose of data reconstruction is to reveal training samples
utilized by participating clients. In federated learning, the
server and clients exchange gradients after each round of
training. According to [5, 13], gradients reveal some prop-
erties of the training data. Recently, the authors of [25]
proposed an algorithm named DLG to reconstruct training
samples from the gradients. Then, iDLG [23] is proposed
to improve the efficiency and accuracy of DLG. So, exist-
ing studies [6, 20, 23, 25] demonstrate that information can
be leaked from model updates shared between the server
and clients during FL training. Existing solutions against
gradient inversion attacks can be divided into a few groups:
differential privacy [7, 14, 21], encryption [4, 8], and gradi-
ent pruning [25].

Recently, client-level deferentially private federated
learning are proposed [7, 12] via injecting Gaussian or
Laplacian noise to local updates. However, these DP-based
methods demand a large number of participants in the train-
ing process to converge, resulting in a trade off between
data confidentiality and performance. In cross-silo feder-
ated setups, it may not be possible to have a large number
of clients. Then, the effectiveness of DP is reliant on each
client having access to a large dataset, according to [18].
However, the FL setup cannot guarantee that every client
will have a large training dataset, and the quantity of avail-
able data can differ between clients. In [19], authors have
demonstrated the use of Bayesian DP in FL in a context
where the data is distributed similarly among the participat-
ing clients. However, FL cannot ensure that the data dis-
tribution will be similar for all clients. While DP provides
a certain level of differential privacy guarantee, it can limit
the performance accuracy of deep learning models. Further-
more, careful parameter selection is essential for DP, or else
there is a risk of gradient induced data breach.

The encryption algorithms often used in FL can be
broadly classified as Homomorphic Encryption (HE) [2, 4]
and Secure Multi-party Computing (SMC) [8, 11]. While
preserving the confidentiality of training data, HE theoret-
ically ensures no performance loss in terms of model con-
vergence [2, 4]. However, in the context of FL, assigning
individual keys for each participating client is a cumber-
some task, and data-size of the encrypted models increases
linearly with each homomorphic operation [1, 17], hence
limiting its applicability in this use case. On the other hand,
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Secure Multi-party Computing (SMC) in FL scenarios in-
curs computational overhead and also requires each worker
to coordinate with others during the training process, which
is not desirable in FL. Furthermore, the authors of [25] at-
tempt to defend against attacks by using gradient pruning
and sparsification. However, such approaches require a high
pruning rate from the initial training epoch, which may lead
to poor model performance.

3. Methodology
In this section, we describe the detailed working pro-

cedure of our proposed federated learning approach along
with integration of mixed quantization.
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Figure 1. Overview of proposed FL framework.

We describe the individual operations carried out on
clients (data owner) and server (model owner), the two com-
ponents of a FL system. Some of the notations used in this
algorithm description are N = {1, . . . , N} signifying the
set of N clients, each of which has its own dataset Dk∈N .
Each of them trains a local model using its local dataset and
only shares the model gradients to the FL server. Then, the
global model formation takes place combining all the local
model gradient updates. The illustration of our proposed
framework is shown in figure 1 and complete pseudocode
of our method is shown in algorithm 1. The elaboration of
the client and server-side operations is given below:
1. Executed at the server side

• Weight initialization: The global model W0
G and

its hyperparameters are disseminated from the server
side. In our case, the application we chose is image
classification and the LeNet-5 model is initiated with
randomized weight during the first training round. As
soon as the first round finishes, the initial weights are
quantized and updated with the aggregated quantized
gradients sent from the clients.

• Aggregation and global update: The server first aggre-
gates the quantized gradient updates from each client.
The formula for the gradient aggregation through av-
eraging at the tth iteration is given below:

Algorithm 1 Proposed Federated Learning algorithm

Require: Clients number n per iteration, learning rate η,
local dataset D, local minibatch size B, and total num-
ber of iteration T

Ensure: Global model WG.
1: [Step 1](Server)
2: Initialize W0

G

3: [Step 2](Client)
4: LocalTraining(i,W ) : ▷ (Training with W 0

G during
first round)

5: Split local dataset Di to minibatches of size B which
are included into the set Bi.

6: for each local epoch do
7: for each b ∈ Bi do
8: ∆W (W; b) = ∆LCE(W; b) ▷ ∆W is the

gradient on b.)
9: end for

10: end for
11: Gradient Quantization: ∆Wq ← Quantize(∆W )
12: [Step 3](Server)
13: Gradient Aggregation:
14: ∆W t

qG = 1∑
i∈N |Di|

∑N
i=1 Di∆W t

qi ▷ (Aggregation
through average)

15: Updater:
16: Updated Global model, W t

qG = W t−1
qG − η∆W t

qG

17: [Step 4](Client)
18: Gradient Dequantization:
19: W t

G ← Dequantize(W t
qG)

20: for each iteration t from 2 to T do
21: Randomly choose a subset St of n clients
22: for each client i ∈ St parallely do
23: ∆W t+1

i ← LocalTraining (i,W t
G)

24: end for
25: end for

∆W t
qG =

1∑
k∈N |Dk|

N∑
k=1

Dk∆W t
qk

(1)

As we are not dequantizing the updates at the server
side, the server should not have the information to
extract the exact full-precision values of quantized
gradients. Thus, this approach minimizes the chance of
retrieving the raw data from the gradients even if there
is an attack on the server side. The aggregated gradient
updates, ∆W t

qG are multiplied with the learning rate
η to achieve the updated global model, W t

qG which
is used to check the performance. This process is
repeated until the global loss function converges or a
desirable training accuracy is achieved. We have found
mini-batch SGD [9] optimizer worked better during the
training process for our specific use case.
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2. Executed at the client side
In the first training round, each client initiates the local
training upon receiving the unquantized global model
from the server. The client tries to minimize the loss
function [10] LCE and generates the gradient of each
data batch b, ∆W t

k.

LCE = −
C∑
i=1

yi log (pi) , for C classes (2)

where yi is the truth label and pi is the Softmax prob-
ability for the ith class. In our case, we have used the
unquantized W 0

G as an argument for the local training
during first round. This round will be used to generate
the initial gradients for each client. For the second round
on-wards, all participating clients receive the updated
quantized weights from server and received quantized
weights will be dequantized before running the ‘Local
Training’ function. As soon as the training is completed
on the client side, the model gradients are quantized to
∆W t

q , where t stands for each iteration index, using
scalar quantization and transmitted to the server. This
step prevents the framework from the gradient inversion
attacks as training samples cannot be reconstructed from
the quantized gradients. Even if the attackers try to de-
quantize it to extract the ground truth gradients, the per-
mutations required to perform the dequantization and re-
trieve the raw data make the process very arduous for the
attackers.

3. Quantization and Dequantization
The quantization approach we have implemented here
depends on three major tuning parameters:

• Minimum and maximum range of the gradient updates
• Mode of Quantization
• Mechanism for rounding the float values to their quan-

tized equivalents

Upon selecting the process by setting up the ‘mode’ at-
tribute, we determine which calculations are carried out
in order to convert the float values into the quantized
equivalents of those values. We vary the quantization
‘mode’ and ‘rounding mechanism’ of float values for
each layer of the model, and this information is only
kept locally for the quantization and dequantization pro-
cesses. This approach brings us two-fold advantages in
terms of maintaining client data confidentiality.

• If a specific client is compromised, the range informa-
tion of the gradient of that client and information on
the ‘mode’ variable may be leaked. But this leaked in-
formation from one client cannot hamper the data con-
fidentiality of other participating clients as the com-
promised client doesn’t have access to the minimum
and maximum range information of the gradients of
another participant.

• Even if the server is vulnerable to inversion attacks,
the information about each client can still be kept safe.
This is because the minimum and maximum ranges of
the gradient updates, which are one of the fundamental
parameters for dequantization, aren’t shared with the
server.

The elaboration of our chosen quantization approach is
as follows:
Scaling factor determination is the key factor during
the quantization process. Since we have implemented
mixed-precision quantization, the bit size that is used for
each layer has a different range of options available to it.
The scaling factor ensures that all the values which fall
within the minimum and maximum ranges of full preci-
sion gradients are able to be represented by chosen bit
size of the output tensor. After setting the scaling factor,
it is utilized to make the modifications to the minimum
and maximum ranges. As soon as these steps are com-
pleted, a quantized version of the input tensor can be ob-
tained by clipping the values to the minimum and maxi-
mum range (rounding mechanism) and then multiplying
by the scaling factor. The dequantization process uses
the same set of parameters to convert the quantized val-
ues into their full-precision forms according to the min-
imum and maximum ranges of unquantized gradients.

4. Experiment Setup and Result Analysis

This section will step through the detailed experiment
setup and result analysis.

4.1. Experiment Setup

Attack Methods: In this experiment, we aimed to im-
plement both iteration-based and recursion-based gradient
inversion attacks. The iteration-based attacks, including
DLG [25], iDLG [23], InvGrad [6], CPL [20], and GradIn-
version [22], were launched by minimizing the distance be-
tween the dummy gradients generated by the dummy data
and the real ones. On the other hand, the recursion-based
attacks, such as R-GAP [24], were launched by exploiting
the implicit relationships among the input data, model pa-
rameters, and gradients of each layer to find the optimal so-
lution with the minimum error. These attacks were imple-
mented using different convolutional neural network (CNN)
architectures, such as LeNet for DLG, iDLG, and CPL at-
tacks, ResNet for Grad Inversion, and ConvNet for R-GAP
attacks. It is worth noting that some of the attack methods
can reconstruct a single training sample, whereas some can
reconstruct batch samples from the gradients.

Baseline Defenses: We conducted a comparative anal-
ysis of our proposed method with existing baseline de-
fense strategies, namely Gradient Pruning and Differential
Privacy. Gradient Pruning is a method that prunes gradi-
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(a) Training image extraction from gradients

(b) No extraction after mixed quantization applied

Figure 2. Reconstructed sample after applying DLG attack. (a) Training sample retrieved within 30 iterations from raw gradients, (b) No
extraction from quantized gradients.

(a) Training image extraction from gradients

(b) No extraction after mixed quantization applied

Figure 3. Reconstructed sample after applying InvGrad attack. (a) Training sample retrieved within 40 iterations from gradients, (b) No
extraction from gradients when mixed quantization applied.

ents smaller than a certain threshold, while Differential Pri-
vacy adds noise to gradients. However, it is worth noting
that most DPSGD implementations for image classification
tasks use a pre-training and fine-tuning pipeline, making it
challenging to compare them to other defense techniques
that can be applied directly during model training. As a re-
sult, we developed two DP baselines by separately applying
Gaussian and Laplacian noise, which we refer to as DP-
Gaussian and DP-Laplacian.

Datasets: To evaluate the attack resiliency and per-
formance of our proposed approach, we conducted ex-
periments on MNIST, FASHION-MNIST, and CIFAR10
datasets.

FL Training Setup and Configuration: Experiments
were conducted on a system with an Intel(R) Core(TM) i9-
11900K CPU (8 cores) and an NVIDIA GeForce RTX 3090
GPU. The federated learning framework was implemented
using Keras with a TensorFlow backend. The server con-
trolled the training pace, including the number of epochs
per round and the overall number of rounds. The server sets
the pace of the training, determines the number of epochs
per round, and how many rounds of overall training are to
be conducted. We utilized the LeNet-5 CNN architecture as
a global model and simulated FL training with 15 clients.

For each round, 1 epoch of local training is conducted on
the client side. We used SGD optimizer and set the learning
rate η to 0.01 during training. We employed mixed quan-
tization, where the gradients of different layers of the deep
model were quantized with different precision and quanti-
zation bits. We utilized the combination of int8 and int16
bit quantization to keep the accuracy in the loop. And to
initiate the attacks, we used the L-BFGS and Adam opti-
mizer and conducted up to 500 iterations of optimization to
reconstruct the raw data.

4.2. Result Analysis

We first showcase the gradient inversion attacks to re-
construct the training data. Figure 2 and figure 3 depict
the reconstruction of training samples from the gradients
with DLG and InvGrad attack methods respectively. And
we determine that recovering monochromatic images with
a clean background (MNIST) is easier, whereas recovering
relatively complex images (CIFAR-10) requires more iter-
ations. Then, we point out the capability of the proposed
mixed quantization in tackling the gradient inversion at-
tacks. In figure 2b and figure 3b, training images are not
retrieved from the quantized gradients even after 450 iter-
ations of distance minimization, whereas training samples

5050



(a) Training on batch image (b) Extracted batch image (c) No extraction after quantization applied

Figure 4. Extracted batch data after applying CPL attack.

(a) Training on batch image (b) Extracted batch image (c) No extraction after quantization applied

Figure 5. Extracted batch data after applying GradInversion attack.

are retrieved within 40 iterations when gradients are not
quantized, shown in figure 2a and figure 3a. In a similar
vein, figure 4 and figure 5 depict the reconstruction of batch
data from gradients with CPL and GradInversion attacks,
respectively. From figure 4c and figure 5c, it is observed
that not even a single sample from the batch is extracted
by these attacks when the gradients are quantized. In addi-
tion to iteration-based gradient inversion attacks, recursion-
based attacks, such as R-GAP, are also implemented as
shown in figure 6. R-GAP extracts the input training image
from the gradients by exploiting the relationship among the
input data and gradients, depicted in figure 6b. However,
when our mixed quantization-based defense strategy is im-
plemented, R-GAP is unable to extract the training sample,
as illustrated in figure 6c.

(a) Input image (b) Extracted image (c) No extraction

Figure 6. Extracted sample after applying R-GAP attack.

We then compare the effectiveness of our proposed
approach with existing baseline defense strategies. One
straightforward attempt to prevent the attack is to add noise
to gradients prior to share with the server. To evaluate, we
experimented with Gaussian and Laplacian noise (widely
used in differential privacy studies) variance range from
10−1 to 10−4 with mean 0. Figure 7 depict the impact of
varying noise levels against the attacks. It is observed that
when variance is at the scale of 10−4 or 10−3, the noisy
gradients do not prevent the attacks. For noise with vari-
ance level 10−2, though with artifacts, the reconstruction
can still be performed. We found out that added noise with
variance level larger than 10−2 can defend attacks. So,
Gaussian/Laplacian noise with a minimum variance level
of 10−1 should be added to the gradients to defend against

the attacks. However, this amount of noise has a significant
degradation in performance in federated training.

Another baseline strategy to prevent the attacks is gra-
dient pruning, depicted in figure 8. From figure 8a, it is
observed that pruning in the range of 1% to 10% can not
prevent the data reconstruction because the reconstructed
image reveals the data and is easily recognizable. For gra-
dients with 20% pruning, though with artifacts, the attack is
still successful. But when 30% pruning is applied on gra-
dients, the attack is prevented. So, gradients with above
30% pruning ratio is able to prevent the attacks for Cifar-
10 data. But it requires higher pruning ratio for Mnist and
Fashion Mnist dataset. From figure 8b, required pruning ra-
tio is 60% for Fashion-Mnist data and above 70% for Mnist
data to defend against the attacks. It means that less pruning
ratio is required for the complex training samples whereas
for monochromatic images with a clean background (e.g.,
MNIST), it requires higher pruning rate to prevent the at-
tacks. So, the required pruning ratio to prevent attacks may
vary depending on the complexity of the training data and
that ratio needs to be selected through iterative experimen-
tation. Moreover, the typical method of pruning entails
train the network first, then prune the less important part
of network by setting it to 0, and finally fine-tune the net-
work. This process involves the removal of the least signif-
icant neuron. To incorporate pruning into federated learn-
ing (FL) framework as a defense mechanism, the network
must be pruned from the initial round of training prior to
transmitting the local gradient updates to the server. But
in the first training round, the model cannot determine per-
fectly which neurons are significant and which are not. So,
pruning the network from the first epoch of training is not
recommended and may result in poor training performance.
Moreover, convergence is an issue in federated training and
clients may have local training data in an imbalanced fash-
ion with varying class distributions. Therefore, pruning the
network during training, particularly in a federated setup,
may result in no convergence at all.
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(a) Different magnitude Gaussian noise. (b) Different magnitude Laplacian noise.

Figure 7. Effect of Gaussian and Laplacian noise against attacks.

(a) Effect of pruning on Cifar10 sample.

(b) Effect of pruning on (i) FashionMnist, (ii) Mnist

Figure 8. Effect of different pruning ratios against attacks.

Performance Evaluation: Finally, we compare the per-
formance of proposed mixed quantization enabled FL with
baseline defense strategies by incorporating them in FL
framework, results are shown in table 1. And we find that
our approach outperforms the baseline defense strategies.
We report the performance of the DP-Gaussian and DP-
Laplacian approach with variance level 10−1 because this
level of noise is the least to prevent the attacks. In com-
parison with base FL (FL with no defense against gradient
inversion attacks), our proposed approach achieves almost
the same level of performance- only 0.5% drop for MNIST,
and around 1% drop for CIFAR10 and FASHION MNIST
datasets, demonstrated in table 1. On the other hand, DP-
Gaussian based FL degrades around 12% for MNIST and
FASHION MNIST, and 18% for CIFAR10. DP-Laplacian
based FL has even more degradation in performance. So,

our approach outperforms the DP-Gaussian based FL by
13% on average and the DP-Laplacian based FL by 20%
on average. We also evaluate the quality of the extracted
images by gradient inversion attacks, in comparison to the
ground truth images, both before and after implementing
the proposed defense mechanism, shown in table 2. We uti-
lize PSNR as metric to compute the peak signal-to-noise ra-
tio between the original and constructed images. The higher
the PSNR, the better the quality of the reconstructed image.

Methods Dataset
Mnist Fashion Mnist Cifar10

Base FL (Without any defense) 97.05 86.8 60.04
FL with DP-Gaussian (variance=10−1) 85.54 73.8 42.64
FL with DP-Laplacian (variance=10−1) 78.66 66.19 33.41

Mixed Quantization enabled FL (Proposed) 96.67 85.22 58.9

Table 1. Accuracy comparison with baseline defense mechanisms.

Attack Methods Without defense With proposed defense
DLG 55.31126 8.155

InvGrad 23.282996 7.89
R-GAP 13.526749 8.6

Table 2. PSNR comparison between extracted images without any
defense mechanism and after applying our proposed defense.

5. Ablation Study
In this section, we analyze our framework from two dif-

ferent points of view. While implementing our quantized
framework, we employ a hyperparameter named ‘Quanti-
zation mode’. This parameter determines which calculation
procedure will be used to determine the modified maximum
and minimum data range. It is varied across layers, keeping
accuracy in the loop. The mode that was used for quantiza-
tion must be selected for dequantization to get the ground
truth gradients otherwise dequantized gradients will have a
significant mismatch. To showcase this, we illustrated in
figure 9 that the ground truth image cannot be recovered
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Figure 9. Failure in image recovery when dequantized modes are mismatched with quantized modes.

Figure 10. Recovered image from dequantized gradients with negligible noise in the background.

even from deqauantized gradients if generated by a differ-
ent mode whereas ground truth image is recovered in figure
10 if generated by the same mode that was used for quan-
tization. But this recovered ground truth image has a few
negligible noises in the background pixels because dequan-
tization is not a fully reversible process.

Secondly, the mixed-precision quantization ensures
higher security against the attacks aimed at revealing the
actual gradients through dequantization. There are cer-
tain number of ‘modes’ for quantization and dequantiza-
tion. The set of operations that is used to quantize, the same
set of reverse operations is required during dequantization
to get the ground truth gradients. In mixed quantization,
each layer can be quantized with seperate set of quantiza-
tion modes and quantization bits. Thus the required permu-
tations to perform dequantization to retrieve ground truth
gradients are exponentially high that make the process very
arduous for the attackers. For example, for single-bit quan-
tization, the attacker needs to try m combinations of de-
quantization to get the ground truth gradients whereas for
mixed bit quantization, the attacker needs to try mL combi-
nations to crack it, where m is the number of quantization
mode and L is the number of layers in any deep model.

6. Discussions
Our proposed mixed quantization-based gradient inver-

sion tackling technique can readily be extended to address
two other important research problems in the FL context.

6.1. Resource Efficiency
Minimizing communication overhead during federated

training is another vital aspect to consider. Our proposed
approach can also be seen as a communication-efficient fed-
erated framework. In our approach, the low-bit quantized
gradients are shared between the server and clients rather
than transmitting the gradients of float32. For instance, in
our case, converting the precision of activation and gradi-
ents from 32-bit floats (model size 174 kB) to 8-bit inte-
gers (44 kB) results in 4× data reduction, which eventually
requires 4 times less transmission bandwidth. Quantized
gradients reduce downstream and upstream communication

costs and thus speed up training.

6.2. Adaptive Quantization Parameter Selection
To ensure robustness in terms of accuracy for an imbal-

anced dataset along with defense against gradient inversion
attacks, our quantization approach can be modified into a
class-specific one. While implementing the quantization-
based compression algorithm in the federated setting, it is
possible that some weight values of the specific classes can
be eliminated. To deal with this problem and prevent in-
formation loss, the compression algorithm will include a
class-specific distribution monitoring scheme to make sure
that enough information about each class is available during
the training time. On the client side, as a future direction,
the federated learning framework can be equipped with the
ability to determine the class specific data distribution after
each training round.

7. Conclusion
In this paper, we propose a mixed quantization en-

abled federated learning technique to prevent gradient in-
version attacks and ensure data confidentiality. We explore
both variants of gradient inversion attacks, namely itera-
tion and recursion-based, to ensure a generalized solution.
Furthermore, our proposed approach transforms the high-
precision gradients to low-bit precision, resulting in faster
training, less transmission bandwidth, and lower commu-
nication costs. Experimental results on three benchmark
datasets demonstrate that our approach outperforms all the
baseline approaches in terms of accuracy while preserving
the data confidentiality. To conclude, we envision that the
proposed federated training framework will have a high im-
pact in cyber-physical applications where high resilience
against gradient inversion attacks and competitive accuracy
are primary requirements.
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