
A. Appendix
A.1. Experiment Settings
A.1.1 Computing Infrastructure

The simulation experiments are conducted on a computing
server with one GPU. The server is equipped with AMD
EPYC 7502 32-Core Processor and 1024G memory. The
GPU is NVIDIA RTX A4000.

A.1.2 Datasets and Models

AI Benchmark. AI Benchmark [10] is a public dataset
that is designed for evaluating the performance of impor-
tant AI tasks on mobile devices. AI Benchmark provides
diverse models’ training and inference speed across vari-
ous devices, including chipsets from Qualcomm, HiSilicon,
Samsung, MediaTek, and Unisoc. Figure 8a illustrates the
distribution of the computation efficiency across clients in
the AI Benchmark. The slowest device would take around
13.3⇥ computational times than the fastest device for the
same task. To approach the dynamic availability of devices,
such as low-power mode or multi-process running, we de-
sign a coefficient w as follows:

x ⇠ N (1, 0.3)

w =

8
><

>:

1 x 1

x 1 x 1.3

1.3 x � 1.3

(2)

In this work, we assign the values from AI Benchmark as
base computation time to the clients to emulate real devices,
analogous to the usage in FedScale [14]. We also generate
the coefficient w every round for each client to simulate the
natural disturbance to availability. The local computation
time in each round equals the product of w and the base
computation time for each client.

MobiPerf. MobiPerf is a public dataset for measuring
network performance on mobile devices, which collects the
available cloud-to-edge network throughput of over 100k
worldwide mobile clients. Figure 8b illustrates the distribu-
tion of communication consumption of MobiPerf. Note that
the best communication channel can be 200⇥ better than the
worst one. We randomly assign a value from MobiPerf to
a simulated device every communication round to emulate
intermittent connectivity in a real deployment.

CIFAR-10. The CIFAR-10 dataset [13] consists of
60,000 32x32 colour images in 10 classes. There are 50,000
training images and 10,000 test images. We normalize the
images by the mean and standard deviation of the dataset.
We evaluate the dataset with ResNet-20 [7] model. To
emulate the realistic non-iid distribution, we partition the
dataset using a Dirichlet distribution, following the previ-
ous works [22].

Google Command. The Google Command speech
dataset [29] covers 105,829 audio recordings collected from
2,618 clients. The training set includes recordings from
2,112D speakers, the validation set includes 256 speakers,
and the test set includes 250 speakers. The data set is com-
posed of 35 common words from the everyday vocabulary,
such as ”Yes”, ”No”, ”Up”, and ”Down”. We evaluate the
dataset with VGG11 [26] model and a lightweight model
based on one related work [33] for a 35-class keyword spot-
ting task.

For the VGG11-based experiment on Google Speech
Commands, we use the Mel-frequency cepstral coefficients
(MFCC) method to pre-process the raw audio data. Specif-
ically, a sequence of overlapping Hamming windows is ap-
plied to the raw speech signal with a time shift of 10 ms and
window size of 25ms. The MFCC is used for training the
keyword spotting model.

For the lightweight model experiment, to pre-process
the raw audio data, a sequence of overlapping Hamming
windows is applied to the raw speech signal with a time
shift of 10 ms. We calculate the discrete Fourier trans-
form (DFT) with a frame length of 1,024 and compute
the Mel-spectrogram with a dimension of 128. The Mel-
spectrogram is used for training the keyword spotting
model. We follow [33] for this setup.

Reddit. Reddit [1] consists of comments from 1,660,820
users in the Reddit forum. Each client corresponds to a user,
whose data are all of their personal posts. Thus it follows
the real non-iid data under FL scenarios. In this dataset, we
filter the users with less than 20 words in total and restrict
to the 30k most frequently used words, as the same settings
in the previous work [14]. Then, we train the lightweight
Albert [16] model for the next-word-prediction task. The
performance is evaluated by the perplexity loss (ppl), which
lower is better.

A.1.3 Hyperparameter Settings

We searched for the client learning rate in a range from
10�6 to 100, server learning rate in a range from 10�4 to
100, input batch size in a range from 8 to 256, and total
training round in a range from 1000 to 10000. The aggre-
gation goal and aggregation participation target is searched
from 30% to 50% of training concurrency per round for
FedBuff and TimelyFL, respectively.

After hyper-parameter searching, we fixed the follow-
ing hyperparameters: for CIFAR-10 related experiments,
the total training round is 2000, and training concurrency
is 128 for all setups. The aggregation goal and aggregation
participation target is 50% of the training concurrency for
both FedBuff and TimelyFL. For CIFAR-10 with Fe-
dAvg related experiments, the batch size is 8, and the client
learning rate is 0.8. For CIFAR-10 with FedOpt related ex-

(a) Diverse computation efficiency in AI Benchmark

(b) Diverse communicate efficiency in Mobiperf

Figure 8. Heterogeneous system utility across simulated clients.

periments, the batch size is 10, the client learning rate is
0.03, and the server learning rate is 0.001 with ADAM as
server optimizer.

For Google command related experiments with VGG11
model, the total training round is 1000, and training con-
currency is 20 for all setups. The aggregation goal and ag-
gregation participation target is 50% of the training concur-
rency for both FedBuff and TimelyFL. The batch size
is 32, and the client learning rate is 0.01. Under the FedOpt,
the server learning rate is 0.001 with ADAM as server opti-
mizer.

For Google command related experiments with the
lightweight model, the total training round is 5000, and
training concurrency is 106 for all setups. The aggrega-
tion goal and aggregation participation target is 50% of the
training concurrency for both FedBuff and TimelyFL.
The batch size is 16, and the client learning rate is 0.1 under
the FedAvg. Under the FedOpt, the client learning rate is
0.05 for synchrounous FL and TimelyFL, and the client
learning rate is 0.2 for FedBuff. The server learning rate
is 0.001 with ADAM as server optimizer for all setups.

Finally, for Reddit related experiments, the total training
round is 500, and training concurrency is 20 for all setups.
The aggregation goal and aggregation participation target
is 50% of the training concurrency for both FedBuff and
TimelyFL. The batch size is 20, and the client learning
rate is 0.0005 for SyncFL and TimelyFL, and 0.0003 for
FedBuff. Under the FedOpt, the server learning rate is
0.001 with ADAM as server optimizer.

Figure 9. Partial training system performance in on real edge de-
vices.

A.2. System Performance
A.2.1 Partial Training Performance

Due to different parameters and tensor shapes among dif-
ferent layers, the training time (computational time of the
forward and backward propagation) is not strictly linear to
the trainable layer numbers and varies with the model struc-
tures. For simplicity and generality, we define the training
time of the partial model as the linear multiplication of the
training time of the full model and the training ratio. This
linear relationship is verified through our real measurement
on a Samsung Galaxy S20 with ResNet-20 model using
MNN [11] library. As shown in Figure 9, most of the test
results are below the linear straight line (except the ratio is
below 0.2), justifying the rationality of our choice.

