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Abstract

We propose a novel depth-aware joint attention target
estimation framework that estimates the attention target in
3D space. Our goal is to mimic human’s ability to under-
stand where each person is looking in their proximity. In
this work, we tackle the previously unexplored problem of
utilising a depth prior along with a 3D joint FOV probabil-
ity map to estimate the joint attention target of people in the
scene. We leverage the insight that besides the 2D image
content, strong gaze-related constraints exist in the depth
order of the scene and different subject-specific attributes.
Extensive experiments show that our method outperforms
favourably against existing joint attention target estimation
methods on the VideoCoAtt benchmark dataset. Despite the
proposed framework being designed for joint attention tar-
get estimation, we show that it outperforms single attention
target estimation methods on both the GazeFollow image
and the VideoAttentionTarget video benchmark datasets.

1. Introduction
We live in a multi-dimensional world and experience our

environment through our senses. Vision is one of the most
dominant ways we experience the world. Our sense of ori-
entation within a given context, location, and place is de-
termined by an animated 3D model of the world our brains
construct from the cues around us. Image-based gaze tar-
get estimation aims to infer what the subjects in the im-
age scene are looking at from a single RGB image. Human
gaze following and gaze target estimation in the wild are
fundamental for visual navigation. Furthermore, this infor-
mation is important to evaluate intentions and predict hu-
man behaviours in various social contexts [7]. For these
reasons, gaze analysis has widely been used in neurophys-
iology studies [6, 21], relevant saliency prediction [5, 20]
and social awareness tracking [4, 18, 19]. Humans are nat-
urally good at understanding the actions of others and esti-
mating where they are looking by leveraging prior knowl-

Figure 1. Attention target estimation example use case visual-
isation. The driver performs gaze following of the pedestrians to
infer their intention and prevent a potential collision.

edge. They can infer the pose and the person’s orientation
and reconstruct the 3D image scene based on a single view.

By looking at the image, they can understand the per-
son’s actions and infer their intentions. They can even guess
what it would look like from another viewpoint. We can do
this because all the previously seen objects and scenes have
enabled us to build prior knowledge and create mental mod-
els of object appearance.

Figure 1 shows an example of an everyday scenario
where the human gaze following is critical to safe driving.
In this instance, the vehicle’s driver approaches a junction
where two pedestrians are about to cross the road. A cru-
cial part of safe driving is adequate situational awareness of
the driver. This includes predicting the actions of other road
users, such as pedestrians and cyclists within their proxim-
ity and on their path. Gestures such as pedestrians look-
ing around for traffic could indicate their intention to cross
the road and potentially the driver’s path. Furthermore, this
enables the driver to determine whether the pedestrian has
spotted them, which would help to prevent a potential col-
lision. To do so, the driver observes the pedestrians from
a third-person view and estimates their individual and joint
gaze direction and target.
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From the neurocognitive perspective, gaze perception is
performed by humans to discriminate the gaze direction of
others [27] as part of various social interactions, such as
gaze following. This action is a vital part of the cognitive
functions that allow people to learn via observation [10].
Once they successfully perceive the gaze direction of others,
they can utilise this knowledge through their social cogni-
tion system in various ways [25], for example, to engage
in joint attention with the observed person. By definition,
joint attention happens when a gaze leader looks at a par-
ticular object which induces gaze followers to orient their
attention to the same target. In computer vision, the task of
joint attention target estimation is often referred to as shared
attention in the literature [3, 8, 12]. While these terms are
similar, they are subtly different from each other [7, 25]. In
this work, we define joint and shared attention terms ac-
cording to the neurocognitive perspective as in [7] and treat
gaze perception and joint attention as parts of shared atten-
tion. Shared attention requires both the initiator and the re-
sponder to be aware that they are observing the same object,
unlike joint attention.

Recent work showed the ability to estimate the indi-
vidual’s gaze target directly from images using neural net-
works. We differentiate between single and joint attention
target estimation methods based on the number of subjects
involved in this process. A key step towards single atten-
tion target estimation was the work by Recasens et al. [22],
which demonstrated the ability to detect the attention tar-
get of each person within a single image. This image-based
method did not consider human attention over time and the
cases when the target of the subject’s attention was outside
the image frame. This approach was later extended to han-
dle the issue of out-of-frame gaze targets [2]. Afterwards,
Chong et al. [3] proposed a spatio-temporal approach to
gaze target prediction, which models gaze dynamics from
video data. These single-target estimation approaches are
attractive because they can leverage head pose features and
the saliency of potential gaze targets to resolve ambiguities
in gaze estimation. However, unlike humans, they only use
2D information to estimate the point of interest. For the first
time, Fang et al. [9] proposed a method using depth prior,
3D gaze estimation and 2D field-of-view (FOV) estimation
for gaze target prediction. This was essential to more realis-
tic gaze target estimation in 3D space. However, in reality,
the FOV of people is not two-dimensional, as a healthy per-
son can observe things in front of them within a 3D cone.

In social scenarios, we often infer the gaze target of two
or more people simultaneously. To solve this task, an in-
efficient way is to use the single target estimation models
and estimate the gaze target of every individual in the scene
one by one and then combine these estimates to find the
joint attention target of the scene. Fan et al. [8] proposed
to infer the joint attention target in third-person social scene

videos using a spatial-temporal neural network to overcome
the limitations of the single target estimation methods. This
solution was based on a head detector module, region pro-
posal, and saliency estimation. Later, Sumer et al. [26] pro-
posed an end-to-end solution without using any temporal
information, face detector, or head pose estimator to de-
tect and localise joint attention. Both joint attention target
estimation methods rely solemnly on 2D data, making the
models more prone to errors, such as physically impossible
predictions where the subjects are estimated to look within
their blindspot.

This study extends the previous approaches by develop-
ing a model for 3D FOV-based co-attention target estima-
tion by jointly using 2D and 3D clues. Our motivation is
to create a model that can translate the image as humans do
and estimate where the subject is looking in the 3D space.
Introducing strong 3D clues into this framework helps the
model handle occlusion and other challenging cases better.
Our contributions are fourfold:

• We propose a novel joint attention target estimation
model which mimics how humans observe their envi-
ronment using 2D and 3D clues.

• We trained a spatial model that can utilise the full
scope of the 3D information of the 3D space provided
by the monocular depth estimator. The predicted 3D
FOV of the subjects are used as a probability map in-
stead of a fixed angle, hard thresholded FOV cone to
make the model more robust against the potential 3D
gaze direction estimation errors.

• This is the first work to incorporate depth information
into a joint attention target model and investigate its
usefulness in the case of both joint and single attention
target estimation tasks.

• The proposed joint attention target estimation ap-
proach outperformed the state-of-the-art single and
joint attention target estimation methods. The results
of the methods were compared on a large-scale image
benchmark dataset and two video datasets.

In this work, we rely on an implicit social clue to in-
fer multiple users’ common gaze target point in the scene.
We aim to address the physically impossible predictions of
the existing models, where the subjects are predicted to ob-
serve a point within their blind spot. Inspired by the work-
ing of the human visual system, we proposed incorporat-
ing depth information into the attention target estimation
pipeline. By fully utilising the depth prior generated by a
monocular depth estimator module [11] combined with the
subject 3D orientation, we predicted a probability map in-
dicating the pixel-wise co-attention target likelihood on the
image frame. To the best of our knowledge, this is the first
work to fully utilise depth information in a joint attention
target estimation framework.
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Figure 2. Overall framework of the proposed JAT method. The input of the framework is the RGB image and the head bounding box
annotation of the subjects of interest. Head crops of the subjects are generated based on their head positional encoding and used as the
input of the 3D gaze target estimator. The depth map, generated by the monocular depth estimation network, is used as the input of the 3D
field-of-view (FOV) probability map generator alongside the estimated 3D gaze direction. The generated depth and 3D FOV probability
maps and the original RGB image are then inputted into the Joint attention target estimation module to predict the location of the joint
attention target of the selected subjects in the scene. The ground truth attention target location is shown in yellow, and the estimate of the
proposed method is in red.

2. Related Works
Attention target estimation methods can be categorised

based on the number of people involved in the social inter-
action in third-person social images or videos.
Single attention target (SAT). This class of methods fo-
cuses on a single subject within the scene and aims to in-
fer their visual attention target location based on the vi-
sual information. The pioneering work of this research
field was proposed by Recasens et al. [24]. The proposed
deep model was the first to learn to find the gaze target in
the image through two pathways. The input of the scene
saliency pathway is an RGB image designed to estimate the
saliency of the scene. The subject’s gaze direction was esti-
mated through the gaze pathway, which takes the face crop
of the subject and its spatial location within the original
image as the input. The image dataset (GazeFollow) pro-
posed in this paper serves as the primary large-scale bench-
mark of this research field. Despite the promising results
presented in this work, the proposed method did not han-
dle out-of-frame targets or modelled the temporal dynamics
of attention. Chong et al. [3] proposed a spatio-temporal
model to address these limitations. The authors proposed
a video attention target dataset (VideoAttentionTarget) and
extended the GazeFollow dataset with out-of-frame annota-
tions. These methods were designed to estimate the atten-
tion target location of a single subject within the 2D image.
Other related works include [13, 17, 23].
Joint attention target (JAT). Fan et al. [8] proposed a

method to infer the joint attention target of two or more peo-
ple in the scene. The method takes an image frame as input
and, through a head detector, a gaze estimation module, and
a region proposal module generates a joint attention spatial
heatmap. Furthermore, the authors presented this task’s first
large-scale third-person social scene video dataset (Video-
CoAtt). An end-to-end Joint attention target (JAT) estima-
tion method was developed by Sumer et al. [26]. A frequent
common mistake of the presented SAT and JAT methods is
that they do not utilise 3D clues for scene understanding.
Therefore, the target estimates are often within the subject’s
blind spot.
Depth-aware attention target The latest works on SAT es-
timation proposed by Fang et al. [9] and Bao et al. [1] ad-
dressed this limitation. [9] proposed an image-based SAT
estimation model. This work does not consider temporal
information, and although the authors developed a 3D gaze
direction estimation module, the FOV generator only relies
on 2D gaze and head direction and a view angle of 60◦. [1]
proposed to reconstruct the 3D scene to 3D point cloud
using relative depth estimation and 3D human pose esti-
mation. They selected the front-most 3D points along the
predefined visual rays to find the final gaze target position.
These works are the first and currently, only existing works
which took a step towards integrating the depth clue into the
attention target detection model.

The work presented in this paper is the first to use depth
information for the JAT estimation task. We propose for-

2680



Figure 3. Example joint 3D FOV probability map of the subjects looking at the same attention target. We show the original input
image and corresponding monocular depth map in the first column. Then we show the individual probability maps of each subject. Finally,
on the combined joint attention probability map, we show the ground truth head bounding boxes and the attention target location in black.

mulating the 3D FOV as a probability map instead of hard
thresholding the values along a pre-defined angle or visual
rays. This new way of representing the FOV allows more
room for inaccuracies in the 3D gaze direction estimator.
Furthermore, our method combines the depth information
with the subjects’ pose to produce a joint 3D FOV proba-
bility map to predict joint gaze targets of multiple subjects
within the scene.

3. Methodology
In this Section, we introduce a novel framework using a

monocular depth estimator and a 3D FOV-based probability
map to estimate the joint attention target while minimising
the physically impossible gaze target estimate. Our assump-
tion is that by integrating relative depth information of the
scene and the calculated joint 3D FOV of the subjects in our
framework, the model will learn to differentiate between the
FOV of the subject and the blind spot. The framework of the
proposed method is shown in Figure 2.

The input of this method is the original image, the head
positional encoding. We use an existing monocular depth
estimation method [11] for relative depth map generation
from the single image input and a gaze direction estimation
method [15] to estimate the subjects’ 3D gaze direction.

3.1. Framework

Our framework comprises three major components: a
Relative Depth Prior Module, a 3D Field-of-View Module,
and finally, a Joint Attention Target Prediction Module.

Relative Depth Prior Module This module is the core
of the proposed method, as the generated depth map is the
input of both the 3D Field-of-View and the Joint Attention
Target Prediction Modules. For our task, we are primar-
ily interested in the order of the objects and where they are
located w.r.t. each other. Therefore, instead of estimating
the absolute depth, we used an existing monocular depth
estimation network [11] to estimate the relative depth map
of the scene. Relative depth is the ratio between the depth
of two points, which is useful to determine which point is

closer to the camera [16].
3D Field-of-View Module The crop of the subjects’

heads in the scene is used to estimate their 3D head orien-
tation using an existing 3D gaze estimator module. The 3D
direction estimate combined with the 2D spatial positional
encoding of the head bounding boxes allows us to generate
the subjects’ 3D individual FOV (shown at the bottom of
Figure 2). We generate a shared 3D FOV probability map
for each image, including every subject. Based on the as-
sumption that a person is more likely to look within their
3D FOV cone than to their blind spot, we assigned a higher
probability for the joint attention targets to be within the in-
tersections of the subject’s 3D FOV cones, and we penalise
the predictions which fall outside of the cones. In addition,
based on our preliminary experimental results presented in
Section 1. of the Supplementary material, we assigned the
lowest probability score to the subjects’ head bounding box
region. The generator outputs are joint 3D FOV probabil-
ity maps corresponding to the input images. The individual
probability map generation is mathematically denoted as:

Mind = min max scaler
(

(i−hx,j−hy,k−hz)·(gx,gy,gz)
∥i−hx,j−hy,k−hz∥2·∥gx,gy,gz∥2

)
,

(1)
where ind={0,...,n} is the index of the subjects in the scene,
(i,j,k) is the coordinate of each point in Mind,(hx, hy, hz)
is the centre of the head bounding box, (gx, gy, gz) is the
estimated 3D gaze direction, and min max scaler() is the
transformation that scales each value of the probability map
between zero and one. Then we set the values within the
subject’s head bounding box ([xmin, xmax, ymin, ymax]) to
be equal to zero.

Mind[xmin, xmax, ymin, ymax] = 0 (2)

Finally, the joint attention probability map values are calcu-
lated as the average of the individual probability maps.

MFOV = mean(Mind) (3)

An example visualisation of the generated individual and
joint 3D FOV probability maps is shown in Figure 3. Four
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subjects are in the image, their head crops are highlighted
at the left top corner of the individual heatmaps, and the
positional encoding is visualised as black bounding boxes
on the joint probability map. The ground truth JAT point
is visualised in black on the joint probability map. We can
see that the highest probability map values correspond to
the area where the ground truth point is located within the
scene. Furthermore, by using the relative depth prior infor-
mation (shown at the bottom left of the figure), we can see
the clear difference between the pixel values of the blind
spot of the individuals and the FOV.

Joint Attention Target Prediction Module Finally, we
defined a JAT prediction module to localise the attention
target point of the individuals in the scene. The input of
this module is a series of scene images, the correspond-
ing relative depth maps, and the calculated 3D joint FOV
probability maps. These inputs are concatenated and fed
into an encoder consisting of a ResNet-50 [14] followed by
an additional residual and average pooling layer combined
with NL layers [29] In between the layers of the second
and third residual blocks, we included 3 and 5 NL layers,
respectively. The concatenated features are encoded using
two convolutional layers in the Encoder. A deconvolutional
network composed of four deconvolution layers upsamples
the features calculated by the Encoder into a full-sized fea-
ture map. We found that by combining the scene and the
subject-dependent information using these inputs, we can
find the most probable gaze target location on the image
from the joint FOV of the subjects.

3.2. Implementation details

We implement our method in PyTorch. All experiments
are run on an Intel i9-CPU @ 3.30GHz, 125 GB RAM, and
four NVIDIA GeForce RTX 2080Ti GPUs.

The input RGB and generated depth images are resized
to 224×224 and normalised. As described in [24], we used
random flip, colour jitter, and crop augmentations. We also
added noise to the head position and the 3D gaze direction
during training to minimise the influence of localisation er-
rors. The ground truth heatmap was generated using the out-
put 3D direction estimate calculated by [15] and by adding
Gaussian weight around the centre of the target for super-
vision. We implemented two loss functions during training:
heatmap and in-frame loss. We used MSE loss to compute
the heatmap loss (Lh) and binary cross-entropy loss for the
in-frame loss (Lf ). The total loss L used for training is a
weighted sum of these two: L = whLh + wfLf .

4. Experiments
4.1. Dataset and baselines

We performed experiments to evaluate the proposed JAT
estimation method on the GazeFollow [24] image, and

Figure 4. Qualitative highlights of the proposed method with
NL layers (Full-NL) and without (Full) on three attention target
estimation datasets: GazeFollow, VAT, and VCA. In the presented
examples, the head bounding box of the observed subjects and
the ground truth annotations are marked as yellow, the average is
shown in blue, and the estimated gaze target estimate is in red.

VideoAttentionTarget [3] video SAT benchmark datasets.
The proposed JAT method was compared to the following
state-of-the-art SAT models’ performance: solutions utilis-
ing depth prior DAM [6], ESCNet [1] and others without
VideoAttentionTarget [3], and HGTTR [28].

Furthermore, we evaluated the performance of our
method on the social interaction detection VideoCoAtt [8]
JAT video benchmark dataset. On the JAT estimation task,
we compare our method against the following methods:
Fan [8] the first method proposed to infer joint attention in
social scene videos, Sumer [26] an end-to-end method de-
signed for JAT estimation on videos, VideoAttentionTar-
get [3] a single attention target estimation method used on
videos, and Attention Flow [26] an End-to-End Joint At-
tention Estimation method. Our method produces state-of-
the-art results on all datasets in all experiments.

4.2. Comparison with the state-of-the-art

For the most exhaustive comparison, the proposed joint
attention target estimation model is evaluated and com-
pared against both single and joint attention target estima-
tion methods. We present our experiments’ quantitative and
qualitative results using three aforementioned benchmark
datasets.

4.2.1 Qualitative results

The qualitative highlights of the proposed Full and Full-NL
methods on three benchmark datasets, GazeFollow, VAT
and VCA, are shown in Figure 4. These examples were
selected to demonstrate the efficiency of our method in dif-
ferent scenarios, e.g. in case of occlusion and ground truth
ambiguity. Furthermore, we selected cases when the gaze
target was not another person in the scene to address the hu-
man bias problem. See the detailed discussion on the failure
cases of the previous attention target estimation methods in
Section 2. of the Supplementary material.

The attention target estimate of our methods is shown
in red, the ground truth annotations and the head bounding
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Figure 5. Qualitative results of ablation study on the GF SAT
image, VAT SAT video and the VCA JAT video benchmark
datasets, respectively. The input of the Full and Full-NL pro-
posed models and their variants, the RGB image, the generated
prior depth map and the corresponding calculated 3D FOV proba-
bility map are shown in the first column. We visualised the gener-
ated output heatmap of every variant (Scene only, Scene+depth,
Scene+prob) and the Full method (Scene+depth+prob) and, fi-
nally, the gaze target prediction of the Full method. In the target
prediction visualisation and the input image, the head bounding
box of the observed subjects and the ground truth annotations are
marked as yellow, and the estimated gaze target is shown in red.

boxes of the observed subjects are yellow. For the GazeFol-
low dataset, we show the average ground truth annotation
location in blue. These examples show that even in chal-
lenging cases e.g. when the subject’s face is occluded or
not visible or when the person is surrounded by many peo-
ple around them and is looking at an object or in the middle
of the field, our models successfully identified the attention
target location.

Additional qualitative results are shown in the last two
columns of Figure 5. In the first column of this figure,
we show the original input image, the prior depth map and
the 3D FOV probability map for each example. Follow-
ing these in the penultimate column, we show the predicted
heatmap of Full and Full-NL. In the last column, we visu-
alised the output target prediction, the ground truth anno-
tation and the subject’s head bounding box. We observed
that the two models produce similar heatmaps reflected in
the calculated AUC scores presented in Section 4.2.2. We
found that the Full-NL model generated more confident and
correct heatmaps when the scenario was complex (See the
first examples from the GazeFollow dataset). This might be
due to the NL layers’ ability to capture long-range spatial
dependencies. For less complicated cases, e.g. the second
example from the VAT dataset shown in Figure 5, we ob-
served that the use of the NL layers introduced unwanted
dependencies. Additional qualitative results are shown as
part of our Supplementary material in Section 4.

Table 1. Quantitative evaluation and ablation study results and
comparison with the state-of-the-art methods on the GazeFol-
low SAT estimation image dataset. Gaze direction estimation
error shows the range of the random noise added to the 3D gaze
direction of the subjects before the probability map generation.

Method AUC ↑ Min dist. ↓ Avg dist. ↓

Scene only 0.889 0.143 0.213
Scene + depth 0.894 0.136 0.205
Scene + prob 0.928 0.036 0.084
Full (scene + depth + prob) 0.932 0.036 0.082
NL + Scene only 0.883 0.148 0.216
NL + Scene + depth 0.894 0.136 0.204
NL + Scene + prob 0.925 0.033 0.082
Full-NL (NL + scene + d + prob) 0.926 0.028 0.075
Full gaze dir error ± 13.5◦ 0.930 0.052 0.100
Full gaze dir error ±30◦ 0.927 0.047 0.097
Full-NL gaze dir error ±13.5◦ 0.932 0.039 0.087
Full-NL gaze dir error ±30◦ 0.929 0.049 0.099

HGTTR [28] 0.905 0.065 0.138
VideoAttention [3] 0.921 0.077 0.137
DAM [9] 0.922 0.067 0.124
ESCNet [1] 0.928 - 0.122

4.2.2 Quantitative results

Here, we present the results of the quantitative evaluation.
Note that the evaluation metrics differ for each benchmark
dataset. For more details on the datasets and metrics, re-
fer to Section 3 of the Supplementary material. The type
of attention target estimation tasks and benchmark datasets
organise the results in this section.

SAT estimation on the GazeFollow dataset. The quan-
titative results on the GazeFollow dataset are shown in Ta-
ble 1. We compared the performance of our method in the
SAT estimation task with the latest methods HGTTR [28],
VideoAttention [3], DAM [9], and ESCNet [1] on this im-
age benchmark dataset. Among these, HGTTR, DAM and
ESCNet were specifically designed to solve this task and
similar to our solution, DAM and ESCNet used partial, rel-
ative depth prior information in their method. The results
highlighted in Table 1 show that in terms of all the eval-
uation metrics, the proposed Full-NL framework outper-
formed all the existing methods. Even though our frame-
work is not designed for SAT, 58.20% minimum distance
compared to [9] and 37.33% average distance compared
to [1] relative improvement was achieved by our method
on the GazeFollow dataset.

Note that the performance of the proposed method with
(Full-NL) or without (Full) the additional NL layers is very
similar. We found that in the presence of relative depth prior
information, the NL layers did not contribute towards the
performance significantly.

SAT estimation on the VAT dataset. Furthermore, we
compared our solution with the same methods on the SAT
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Table 2. Quantitative evaluation and ablation study results and
comparison with the state-of-the-art methods on the VAT SAT
estimation video dataset. Gaze direction estimation error shows
the range of the random noise added to the 3D gaze direction of
the subjects before the probability map generation.

Method AUC ↑ L2 dist. ↓

Scene only 0.711 0.306
Scene + depth 0.728 0.313
Scene + prob 0.935 0.082
Full (scene + depth + prob) 0.937 0.077
NL + Scene only 0.713 0.318
NL + Scene + depth 0.743 0.334
NL + Scene + prob 0.944 0.082
Full-NL (NL + scene + depth + prob) 0.951 0.074
Full gaze dir error ± 13.5◦ 0.930 0.134
Full gaze dir error ± 30◦ 0.911 0.122
Full-NL gaze dir error ± 13.5◦ 0.943 0.093
Full-NL gaze dir error ± 30◦ 0.914 0.153

ESCNet [1] 0.885 0.120
VideoAttention [3] 0.860 0.134
HGTTR [28] 0.904 0.126
DAM [9] 0.905 0.108

Table 3. Quantitative evaluation and ablation study results and
comparison with the state-of-the-art methods on the VCA JAT
estimation video dataset.. Gaze direction estimation error shows
the range of the random noise added to the 3D gaze direction of
the subjects before the probability map generation.

Method L2 dist. ↓ Pred. Acc. ↑

Scene only 139 13.0
Scene + depth 130 41.5
Scene + prob 16 90.0
Full (scene + depth + prob) 13 90.2
NL + Scene only 145 17.1
NL + Scene + depth 145 31.8
NL + Scene + prob 14 93.0
Full-NL (NL + scene + depth + prob) 13 93.2
Full gaze dir error ± 13.5◦ 21 83.5
Full gaze dir error ± 30◦ 24 50.1
Full-NL gaze dir error ± 13.5◦ 19 80.8
Full-NL gaze dir error ± 30◦ 34 66.2

Fan [8] 62 71.4
Sumer [26] 63 78.1
VideoAttention [3] 57 83.3
HGTTR [28] 46 90.4

estimation using the VAT video benchmark dataset. The re-
sults are shown in Table 2. We compared our performance
with the previously mentioned HGTTR [28], VideoAtten-
tion [3], DAM [9] and ESCNet [1] methods. Both proposed
methods were more efficient at estimating the gaze target
than the state-of-the-art methods. We found that Full-NL
outperformed the performance of the Full method in terms
of both AUC and L2 distance measures. Full-NL improved
the AUC score by 4.84 % and the L2 distance by 31.48 %.

JAT estimation on the VCA dataset. Finally, the quan-
titative results on the VCA video benchmark dataset are
shown in Table 3. We compared the JAT estimation perfor-
mance of our method with Fan [8], Sumer [26], VideoAt-
tention [3], and HGTTR [28]. Among these state-of-the-

art methods, Fan, Sumer and HGTTR were trained to esti-
mate the attention target location of multiple subjects in the
scene. The results showed that the proposed method with
and without the NL layers significantly outperformed all the
state-of-the-art methods in terms of the L2 distance metric.
We were able to reduce the distance error by 71.74 % com-
pared to the result report by [28]. The NL layers proved
useful in achieving the best prediction accuracy. Overall,
the proposed method achieved state-of-the-art performance
in terms of all evaluation metrics on this dataset too.

In summary, the quantitative results confirmed that the
JAT estimation method proposed in Section 3 achieved
state-of-the-art performance across all the benchmark
datasets and their evaluation metrics on the SAT and JAT es-
timation tasks. Furthermore, the comparison between Full
and Full-NL across the datasets shows that the usefulness
of the NL layers is context and complexity dependent.

4.3. Ablation Study

To study the contribution and effectiveness of different
components of the proposed method, we trained several
models with different parameters. In this section, we dis-
cuss the findings of these experiments on three benchmark
datasets.

4.3.1 Spatial model components

We trained the following variations of the proposed full spa-
tial method: Scene only, Scene+depth, Scene+probability
map, Scene+depth+probability map, and their variants, in-
cluding the non-local layers in the encoder. Qualitative
highlights are shown in Figure 5. Note that the observations
discussed below are accurate for all the benchmark datasets.

Across all the benchmark datasets, we found that the
Scene only variant performed the worst compared to the
other variants. The heatmaps in the second column of the
qualitative highlights figures also confirmed that the pre-
dicted output heatmap of this module alone, most of the
time, did not overlap with the gaze target area of the image,
and it was widespread and not confident. This is because
the model was unaware of any subject-specific information;
therefore, it relied solemnly on the scene information to es-
timate the subject-dependent attention target location.

We also found that when we combined the scene in-
formation with the output of the prior depth map of the
monocular depth estimator, the performance of the trained
Scene+depth models improved slightly. The estimated out-
put heatmaps of these models (See the third column of qual-
itative figures) were more successful in localising the FOV
of the subject. These heatmaps were more confident; how-
ever, they often misplaced the gaze target as it was selected
based on the Scene information. Therefore, despite this im-
provement, as the input of these models was still subject-
independent, their results were not satisfactory.
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Figure 6. Visualisation of the joint 3D FOV probability map
effected by gaze direction error. We show the generated prob-
ability map using the 3D gaze estimator Gaze360 [15] and when
additional 13.5 and 30 degree gaze direction error was added.

The proposed 3D FOV probability map contains depth
and subject-dependent information. Introducing subject-
dependent information into the model significantly im-
proved the performance quantitatively and qualitatively.
The output heatmaps of Scene+prob, shown in the fourth
column of Figure 5, are concentrated around the correct
gaze target location, the location of the maximum of these
heatmaps shifted significantly from the predictions of the
Scene only and Scene+depth models.

Finally, we can see that explicitly using the prior depth
map as an input and not just as a part of the probability
map further improved the results. While the improvement
was moderate compared to the Scene+prob performance.
However, the Scene+depth+prob with (Full-NL) or without
(Full) the NL layers proved to be the most efficient in es-
timating the attention target of single or multiple subjects
within the scene.

In summary, the ablation study confirmed
that all the modules included in the Full model
(Scene+depth+probability map) are useful and contribute
to the proposed solution’s performance. We demonstrated
that relying only or too much on the scene information is
insufficient to estimate the subject’s gaze target location.

4.3.2 Gaze direction estimation error

The proposed probability map’s role in the outstanding per-
formance of the proposed method has been demonstrated
through the previous experiments. The input of the 3D
FOV probability map is the 3D gaze target estimate of the
observed subject. To test the robustness of the proposed
method against gaze direction prediction errors, we trained
two variants of the Full and Full-NL models under extreme
error levels.

During this experiment, we generated the 3D FOV prob-
ability map using additional random noise added to the sub-
jects’ estimated gaze direction. We chose the noise levels
to reflect the average error (± 13.5◦) of the state-of-the-art
3D gaze direction estimation method [15] and to reflect the
human’s horizontal central vision range (± 30◦). We show
example probability map variants generated with additional
gaze direction error in Figure 6.

While adding NL layers to the proposed method did not
improve the performance significantly under moderate gaze
estimation error in the previously presented experiments,
our results show that the Full-NL models were more robust
against the additional noise than the Full models. Further-
more, we found that in the case of the large-scale GazeFol-
low image dataset (See Table 1) and the VAT video dataset
(See Table 2) the proposed model surpassed the perfor-
mance of the state-of-the-art methods even when we added
± 30◦ gaze direction estimation error, which is more than
double the existing 3D gaze estimators’ average angular er-
ror. These results on the SAT estimation task are especially
outstanding as the proposed 3D FOV probability map is the
most useful in improving the robustness of the attention tar-
get estimation when there is more than one subject within
the scene.

5. Conclusion

In this paper, we proposed a novel joint attention target
estimation framework which was developed to fully utilise
the 3D clues of the scene efficiently. Following the find-
ings of our preliminary experiments, we aimed to tackle the
human bias and physically impossible predictions, which
are the major flaws of the previously proposed models. To
achieve this, we proposed to combine a novel 3D field-of-
view-based joint attention probability map with the scene
and depth information. Extensive qualitative and quanti-
tative analysis on three benchmark datasets shows that the
proposed method achieved favourable performance com-
pared to both the state-of-the-art single and joint attention
target estimation approaches. The demonstrated outstand-
ing performance of the proposed method proved our hy-
pothesis that using 3D clues for the third-person view at-
tention target estimation is advantageous.
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