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Abstract

Conventional appearance-based 3D gaze estimation
methods generally use the roll of the head pose to represent
the eyeball’s roll status by default. To reduce degrees of
freedom of head poses, a normalization step was proposed
to apply global transformations to images to make heads
upright and eyelids horizontal. However, due to the ocular
countering-rolling (OCR) response, the eyeball will rotate
in the opposite direction when the head tilts to the side. Af-
ter normalization, the eyeball will have an extra roll com-
pared to the roll status of the eyeball when the head is not
tilted. This roll from the OCR response causes a changed
orientation of the eyeball in normalized eye images, which
represents the roll status of the anatomical structure inside
the eyeball and consequently affects gaze directions. Thus
in this work, we propose a pipeline to regress the person-
dependent anatomical variation as a calibration process
with considering the OCR response, which can work with
our proposed eye-image-based person-independent gaze es-
timator trained with real and synthetic eye images. The
proposed method firstly brings the OCR response into the
gaze estimation task, achieving better performances on the
two benchmark datasets with fewer parameters under the
real-time scenarios. With a replacement of a deeper net-
work, compared to state-of-the-art methods, the proposed
method is more efficient, achieving a). better average esti-
mate (3.9% and 2.5% improvement), b). much better stan-
dard deviation (lower by 59.0% and 44.2%) and c). a much
lower number of parameters (reduced by 88.0%).

1. Introduction

Human gaze is an essential indicator for many applica-

tions such as human-computer interaction [9,23], health as-

sessment [14], automotive assistance [29,32] and virtual re-

ality [26, 45]. Non-invasive appearance-based gaze estima-

tion methods enjoyed significant improvements [20, 27, 39]

for in-the-wild settings due to the development of the

(a) Eyeball Structure (b) Eyeball Muscles and Motions

Figure 1. Eyeball structure and muscles. (a) Kappa Angle κ is de-

fined as the angle between visual axis V (the line connecting the

fovea and nodal point N , which defines gaze and is unobserved)

and optic axis O (the line connecting the eyeball center and pupil

center, which is related to the observed iris [15]). (b) The arrows

show the eyeball motions controlled by the corresponding mus-

cles. The oblique muscles are used for the eyeball roll motion [37].

Convolutional Neural Network (CNN). However, they still

struggle with achieving high accuracy due to the challenges

caused by variations of head poses [12, 41], noisy and lim-

ited annotations [27], eye shapes and anatomical variations

of different subjects [15, 21], etc.

Several techniques, ranging from normalization for data

pre-processing [31,41] to individual-specific calibration af-

ter training [20], were proposed to reduce the variations

stated above. Image normalization’s fundamental idea is

reducing the degrees of freedom of the object pose from

six (head poses: pitch, yaw, roll and position: x, y, z) to

two (head poses: pitch, yaw) by perspective image warp-

ing. This normalization step facilitates mapping from im-

ages to gaze directions across different samples or even

datasets [44]. Another source of variation causing limited

accuracy with a person-independent gaze estimator emerges

from the anatomical structures of the eyes. As shown in

Fig. 1 (a), the visual axis is not aligned with the optic axis

(related to the observed iris) [15], and such alignment dif-

ferences, called ‘Kappa Angle’, are subject-specific. Given

this unobserved anatomical variation across different sub-

jects, person-dependent calibration methods such as gaze
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differences estimation [21], models calibration with meta-

learning [27], and personalized parameters regression [20]

were proposed, which further improved gaze estimation

performance with a few calibration samples.

However, normalization focuses more on global trans-

formations of images according to head poses and ignores

independent eyeball motions. It obeys the human eyeball

movement response called ocular counter-rolling (OCR).

When the head tilts to the side, the OCR response consists

of a torsional conjugate eye movement opposite the static

head roll direction around the optic axis [8]. As presented

in Fig. 2, when the head has a roll motion, the eyeball will

have an opposite roll motion to maintain the initial horizon-

tal status instead of rotating together with the head given

the indications from iris patterns [24]. After normalization

is applied to images, the head and eyelids are transformed

to the upright status, but the eyeball’s orientation in nor-

malized images still has an extra roll caused by OCR. This

extra roll is difficult to acquire from low-resolution eye im-

ages and its highly-related variable [25, 28], the roll of the

head pose, is abandoned after normalization. Failing to

account for the eyeball’s counter-rolling movement is un-

desired because this movement causes different roll status

of the eyeball, which implies different fovea locations and

consequently changes gaze directions, shown in Fig. 2. In-

spired by this observation, we propose a new framework for

gaze estimation, which considers OCR during the regres-

sion of the person-dependent variable: the Kappa Angle.

Our contributions are:

1) Propose to utilize the OCR response that is obtained

by considering the commonly ignored roll of the head pose

after normalization, in order to achieve a more precise re-

gression of the Kappa Angle.

2) Integrate the OCR-aware Kappa Angle regression part

with a unified eye-image-based gaze estimator to achieve

person-dependent calibration during training and evalua-

tion.

3) Present a comparable estimation accuracy and much

lower standard deviation with fewer network parameters on

benchmark datasets, which indicates the effectiveness of

our proposed KAComp-Net.

2. Related Work

2.1. Appearance-Based Gaze Estimation

Appearance-based gaze estimation methods aim at map-

ping eye-containing images the gaze directions (2D screen

locations or 3D gaze direction vectors), which achieved sig-

nificant improvements [12, 42] compared with geometric

approaches [11, 33, 36] given supports from several large-

scale datasets [10, 18, 19, 44] and constantly evolving deep

learning techniques. GazeNet [42] was the first learning-

based 3D gaze estimation method that took one eye image

-
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Figure 2. Changed gaze directions caused by the processes of

OCR and normalization. OCR stage: When a subject rotates his

head with a roll of α, the eyeball will rotate in the opposite di-

rection with a roll of −β. Norm stage: After normalization, the

roll of the head pose is normalized to zero by an rotation of −α.

But the current eyeball still has a roll with −β, leading to different

fovea locations and altering the direction of the visual axis.

as the input. Except for the single input, multi-branch’s in-

puts included both eyes inputs [6, 7, 21]; full-face inputs

[38, 43]; and multi-model inputs [5, 7, 19] were proposed

and achieved improvements given extra informative data,

which were at the cost of calculation complexity and mem-

ory requirements. More recently, person-dependent calibra-

tion [4, 20, 21, 27, 40] (or domain adaptation [2, 22, 34]) ap-

proaches were proposed, which attempted to remove per-

sonal variations (or domain gaps) with a few annotated (or

unannotated) samples. Strobl et al. [30] utilized the fea-

tures from a person-independent model over the test sub-

ject’s data to further train a person-specific Support Vec-

tor Regression for personalized gaze estimation. Liu et
al. [21] proposed learning the gaze difference between two

images of the same eye to remove the unobserved person-

dependent variables. Chen et al. [4] decomposed gaze into a

person-independent component estimated from images and

a person-dependent bias regressed as network parameters.

Liu et al. [22] used an ensemble of networks for collabora-

tive learning, guided by outliers. Bao et al. [2] introduced

the constraint of rotation consistency for unsupervised do-

main adaptation. Our method follows this gaze decompo-

sition idea. A unified gaze estimator was utilized for esti-

mating the person-independent component of gaze and the

person-dependent part was regressed by including OCR.

2.2. Gaze Redirection

Given the need for large amounts of labeled data for

training a robust gaze estimator, several conditional image
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synthesis methods were proposed to generate images with

desired gaze directions. Ganin et al. [13] proposed learning

warping fields to rearrange the pixels’ locations for gaze

redirection given the input images. Yu et al. [39] intro-

duced a cycle pipeline with semantic segmentation consis-

tency to supervise warping-field-based gaze redirection and

they [40] further extended the warping-field-based meth-

ods with an unsupervised learning strategy by representa-

tion learning. Besides warping-field-based methods, He et
al. [17] first applied the Generative Adversarial Network

to the gaze redirection task, generating photo-realistic eye

images with desired gaze directions. Park et al. [27] pro-

posed FAZE: an encoder-decoder structure to change gaze

directions and head orientations in feature space with de-

sired labels. Zheng et al. [46] presented ST-ED, which first

advanced the encoder-decoder method from eye images to

full-face images. However, these gaze redirection methods

did not consider modeling person-independent components

of gaze. Much more accurate gaze estimation results trained

and tested only with synthetic data also proved it. Thus in

our work, we utilized ST-ED to generate synthetic face im-

ages with desired gaze directions for learning the person-

independent component of the gaze.

2.3. Ocular Counter-Rolling

Ocular Counter-Rolling (OCR) is a partially compen-

satory torsional eye movement only when the head is tilted

toward the shoulder [8]. In particular, the OCR response of

human eyeballs is controlled separately by the surrounding

muscles called superior and inferior obliques [37], shown in

Fig. 1 (b). When the head is tilted with α toward the shoul-

der in a natural pose, these muscles make the eyeball rotate

in the opposite direction with β, as shown in Fig. 2. Af-

ter normalization, eye images look horizontally orientated,

but the eyeball and the fovea location are tilted with an ex-

tra roll (β) owing to the OCR response. This extra roll (β)

caused by OCR doesn’t change the absolute value of the

Kappa Angle, which is always invariant for the same sub-

ject. It only redistributes the pitch and yaw components

of the Kappa Angle. Thus we can compensate this redis-

tribution (counteract OCR) on pitch and yaw components

of the Kappa Angle by applying a rotation matrix built by

β. Given this, we proposed a Kappa Angle compensation

method with OCR awareness, elaborated in Section 3.

3. Method
In this section, we will firstly discuss the cases without or

with considering ocular counter-rolling (OCR). Secondly,

we will show the difference between real and synthetic data

based on some simulation results. Thirdly, we will intro-

duce the training and evaluation pipeline with considering

OCR and the person-dependent part of gaze. Lastly, we will

introduce loss functions for supervising the whole process.

3.1. Processes W/O or W/ OCR

Fig. 1 (a) illustrates that the Kappa Angle (κ) represents

the angle between the optic axis (O) and the visual axis (V ),

and is dependent on the individual.

O + κ = V , (1)

where O, V and κ ∈ R
2×1 (2D vectors representing pitch

and yaw), and hence we can use the addition to depict the

3D relationship of these variables. According to Atchison’s

study [1], the absolute angle value (norm of pitch and yaw)

of the Kappa Angle remains constant for the same subject.

However, if the eyeball’s roll status changes with respect to

the head coordinate system, the pitch and yaw of the Kappa

Angle will adjust accordingly, as depicted in Fig. 2.

W/O OCR: Diff-NN [21] is a typical method without

considering OCR in the gaze estimation task. While the op-

tical axis O can be estimated from images using a unified

model, there is no ground truth available. On the other hand,

the gaze direction V does have ground truth. However, be-

cause the Kappa Angle is person-specific and not directly

observable from images, it is not possible to estimate V us-

ing images alone. To address this, Diff-NN estimates the

difference in gaze by subtracting the unobservable Kappa

Angle and leveraging the available ground truth. Given two

images (I1, I2) from the same eye, the gaze difference is

V 1 − V 2 = (O1 + κ1)− (O2 + κ2), (2)

where the subscripts denote variables related to the respec-

tive images. If we don’t consider OCR during gaze estima-

tion, the pitch and yaw of the Kappa Angle maintain con-

stant regardless of different head poses between images. In

this case, Eq. 2 simplifies to

V 1 − V 2 = O1 −O2 if κ1 = κ2, (3)

indicating the scenario without considering OCR.

W/ OCR: Due to the presence of OCR response, the eye-

ball undergoes an additional roll (−β) that counteracts the

roll motion of the head (α), as illustrated in Fig. 2. Even

after normalization where the head roll is removed, the ex-

tra roll (−β) of the eyeball persists in the normalized eye

images. As a result, the pitch and yaw of the Kappa Angle

vary for the same subject’s data and consequently Eq. 3 is

no longer valid. We can update Eq. 1 to

O + T −1 [ROCR · T (κ)] = V , (4)

where ROCR ∈ R
3×3 is a roll rotation matrix built given

the OCR response; κ represents the Kappa Angle with in-

variant pitch and yaw components; T is a function to trans-

form pitch and yaw to a 3D directional unit vector and T −1

represents the inverse process. As reported in the statis-

tics [25, 28], the roll (β) from OCR is around 1/7.5 of the

roll motion (α) of the head.
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Figure 3. Training (left) and test (right) pipelines of KAComp-Net. Training stage has two branches: synthetic branch aids the CNN in

learning the optic axis directions by generated data from ST-ED with manually assigned labels, while real branch focuses on estimating

the OCR-compensated Kappa Angle κ̂ with invariant pitch and yaw components. Test stage consists of calibration and test branches.

Calibration branch estimates the Kappa Angle of the test subject using M labeled data. Then, test branch estimates the final gaze directions

using the output from CNN and the estimated Kappa Angle. V (O) denotes the visual (optic) axis directions. ̂(·) denotes the estimated

variables and ˜(·) denotes the synthetic variables used by ST-ED. L denotes the loss functions which are elaborated in Section 3.4.

Figure 4. Comparison of angular errors given real and synthetic

data from MPIIFaceGaze with the leave-one-subject-out protocol.

The network has a single branch with three convolutional layers.

3.2. Real and Synthetic Data

The optic axis is the line connecting the nodal point with

the pupil center, which is related to the observed iris [15]

and can be estimated from images [4]. However, the optic

axis is not provided in gaze datasets. The visual axis defines

gaze, which is what we want to estimate. However, due to

the subject-dependent unobservable deviations between vi-

sual and optic axes [1,15], a unified gaze estimator does not

work well on new subject data. Considering this, we pro-

posed to utilize synthetic redirected eye images with man-

ually set gaze directions to learn the approximation of the

optic axis given the simulation results. We quantitatively

evaluated the subject-dependent variations across different

subjects’ eye images between real and synthetic data. Syn-

thetic data was generated based on real data with assigned

conditions by using ST-ED [46]. We trained a three-layer

CNN with either real or synthetic eye images and tested its

performance with the ‘leave-one-subject-out’ protocol. The

mean angular errors are 6.89◦ and 2.72◦ on the real and syn-

thetic data from MPIIFaceGaze [43], shown in Fig. 4. The

mean angular errors of EYEDIAP [10] are 7.31◦ (real data)

and 2.30◦ (synthetic data). We noted that there existed a

large gap in angle errors between real and synthetic data. In

other words, the subject-dependent unobservable deviations

from the Kappa Angle across different subjects were largely

removed after gaze redirection. Based on this, we utilized

synthetic eye images to learn the person-independent part

of gaze, viewed as the approximation of the optic axis.

3.3. Pipeline

Training Stage. To begin with, given a real face im-

age, we apply the preprocessing step utilized in ST-ED to

obtain a normalized face image with the corresponding nor-

malized ground truth gaze V , the normalized head pose H
and the roll motion Hroll of the head before normaliza-

tion. Next, we input the normalized face image into ST-ED

to generate redirected face images using the provided con-

dition as pseudo labels: gaze Ṽ and head pose H̃ . We

then crop the same-side eye images from the normalized

real and synthetic face images and feed them into a single-

stream convolutional neural network (CNN) that takes one

eye image at a time as input. The normalized head pose

is attached to the intermediate features of the eye images,

similar to GazeNet [44]. The output of the CNN is the esti-

mated direction (pitch and yaw) of the subject-independent

component of the gaze, which approximates the optic axis.

We use the roll motion Hroll to calculate the roll sta-

tus of the eyeball and build the rotation matrix ROCR, as

described in Section 3.1. We can then estimate the Kappa

Angle for each instance using Eq. 4, based on the esti-

mated optic axis, the ground-truth gaze and the roll status

of the eyeball. To ensure that the pitch and yaw of the es-

timated Kappa Angle are identical for the same subject, we
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employ the Kappa Angle loss, which is built on the Cen-

ter Loss [35]. This loss aims at reducing standard devi-

ations of the estimated instance-wise Kappa Angle within

each subject’s data and iteratively updates the average cen-

ter as the subject-wise Kappa Angle. Finally, the estimated

subject-wise Kappa Angle is used to update the unobserv-

able subject-dependent part and combined with the esti-

mated optic axis for final gaze estimation.

Evaluation Stage. During evaluation, we randomly pick

a certain number (M ) of calibrated samples with ground-

truth labels from the same test subject. We input these sam-

ples into the trained CNN to estimate their optic axis di-

rections. Using the provided gazes and the calculated OCR

response, we derive several instance-wise Kappa Angles κ̂i

from calibrated samples based on Eq. 4. We then calculate

their average as the estimated subject-wise Kappa Angle κ̂.

Finally, we use the estimated optic axis directions of the tar-

get samples and κ̂ to determine the visual axis direction as

the final gaze. Since we apply the Kappa Angle to the com-

pensation of the subjects’ variation, we call it ‘Kappa Angle
Compensation Neural Network’ and KAComp-Net in short.

3.4. Loss Functions

We trained our proposed KAComp-Net using multi-

objective loss functions defined as

L = λsyn · Lsyn + λrealLreal + λκ · Lκ, (5)

where we empirically set λsyn, λreal = 1.0 and λκ = 0.5.

In order to balance real and synthetic eye image groups,

we use the same number of real and synthetic eye images

during the training. The details of each loss component are

elaborated on in the following paragraphs.

Kappa Angle loss. There is no ground truth to supervise

the learning of the Kappa Angle and the only clue to restrict

it is that the pitch and yaw of κ keep identical across sam-

ples within the same subject’s data. Thus we propose the

Kappa Angle loss, which aims at making the standard devi-

ation (SD) of the calculated Kappa Angle with considering

OCR within every subject’s data as small as possible. In-

spired by the Center Loss [35] designed for classification,

which narrowed the intra-class distances from data points

to the class center, we applied it to the Kappa Angle loss.

There are K subjects’ data included in the training set.

Each subject has Nk real eye images Ie and Nk synthetic

eye images Ĩ
e
. The Kappa Angle loss is defined as

Lκ =
1

2Nk

Nk∑
i=1

(
||κ̂i − ck||22 + ||˜̂κi − cK+1||22

)
, (6)

where k = 1, · · · ,K. The former part, ||κ̂i − ck||22, in Eq.

(6) is designed for real eye images, where ck represents

the center point (mean values) of the calculated κ̂i over all

samples from the subject with identity number k and κ̂i is

calculated given Eq. 4 as

κ̂i = T −1
{
R−1

OCR,i · T
[
ggt(Ie

i )− ψ(Ie
i )
]}

, (7)

where R−1
OCR,i is the inverse rotation matrix given the

OCR response with regard to the i-th real eye image; ψ(·)
denotes the output from KAComp-Net, which is the esti-

mated direction of the optic axis; and ggt(·) denotes the

ground truth gaze direction given the image. The latter part,

||˜̂κi − cK+1||22, in Eq. (6) is designed for synthetic eye im-

ages. Since the Kappa Angles are no longer varied across

different subjects’ synthetic data, we assign only one cen-

ter point cK+1 to all synthetic data. The subscript K + 1
means a new center point different from the previous K cen-

ter points of real data. ˜̂κi is defined as

˜̂κi = ggt(Ĩ
e

i )− ψ(Ĩ
e

i ), (8)

where we don’t consider OCR in synthetic data.

Gaze loss for synthetic images. This loss aims at su-

pervising the network learning the manually designed gaze

from synthetic eye images, which have smaller and less var-

ied Kappa Angles across different subjects’ data. In other

words, this loss guides the network to learn synthetic cases

with nearly overlapped optic axis and visual axis.

Lsyn =
1

Nk

Nk∑
i=1

∣∣∣∣∣∣ggt(Ĩ
e

i )− ψ(Ĩ
e

i )
∣∣∣∣∣∣
1
. (9)

Gaze loss for real images. The aim of importing this

gaze loss is to balance real and synthetic data influences.

Since we have center points for every subject, which repre-

sent the estimated Kappa Angle, we can remove this unob-

servable subject-dependent part from ground truth gaze to

acquire the optic axis directions for real eye images as the

ground truth. To be specific,

Lreal =
1

Nk

Nk∑
i=1

∣∣∣∣∣∣ψ(Ie
i )− Ô(Ie

i )
∣∣∣∣∣∣
1
,

Ô(Ie
i ) = ggt(Ie

i )− T −1 [ROCR,i · T (ck)] .

(10)

4. Experiments
In this section, we thoroughly evaluated the performance

of the proposed algorithm with other state-of-the-art meth-

ods on published datasets. We also elaborated several im-

pacts on the proposed algorithm, such as the numbers of

references in calibration, the proportion of synthetic images

and the estimated Kappa Angles distribution.

4.1. Datasets

MPIIGaze [44] is a widely used benchmark dataset for

the appearance-based in-the-wild gaze estimation task. In
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CAL Methods Backbone
Num of

Channels
Input Image(s)

Estimated

Gaze Type

Mean Angle Error

(Degree)

MPIIFaceGaze EYEDIAP

No

GazeNet [44] VGG-16 1 Single-Eye Eye 5.83 6.83

ARE-Net [7] 6 CL 4 Both-Eyes Face 5.02 6.08

CA(Eye)-Net [6] 10 CL 2 Both-Eyes Face 5.01 5.30

AGE-Net [3]
9 CL +

4 Dilated CL
2 Both-Eyes Face 4.64 -

Yes

Diff-NN [21] 3 CL 2 Same-Eyes Eye 4.72±0.40 4.51±0.52

KAComp-Net1 3 CL 1 Single-Eye Eye 4.21±0.28 3.89±0.25

RedFTAdap [40] VGG-16 1 Single-Eye Eye 4.01 -

Faze [27] DenseNet 1 Both-Eyes Face 3.90 -

DAGEN2 [16] ResNet-18 1 Both-Eyes Face 3.74 4.30

Diff-NN-VGG [21] VGG-16 2 Same-Eyes Eye 3.80±0.61 3.53±0.52

KAComp-Net-VGG1 VGG-16 1 Single-Eye Eye 3.65±0.25 3.44±0.29

Table 1. Quantitative comparison (MPIIFaceGaze and EYEDIAP) with state-of-the-art eye-image-based gaze estimation methods, which

are classified given the need for the calibration (CAL) step. The network size can be described by the backbone category of a single

channel and the number of channels. The types of input image(s) are: one single (Single-) eye, both-side (Both-) eyes from one face image

and same-side (Same-) eyes from different face images of one subject. The estimated gaze type ‘Eye’ represents that the origin of gaze

directions is the center of the eye. The estimated gaze type ‘Face’ represents that the origin of gaze directions is the center between two

eyes’ centers. 1Results were acquired with additional synthetic data for training. Details are discussed in Section 4.4. 2Calibration needed

methods’ results are based on nine calibrated samples except DAGEN since it achieves best performance based on four references samples.

our experiments, due to the need to generate synthetic face

images, we utilized its subset MPIIFaceGaze [43], which

contains 37667 full-face images captured from 15 partici-

pants’ images (nine males and six females). EYEDIAP [10]

contains 94 full-face videos from 16 subjects with labeled

outliers (blinking or distraction) of each frame. We utilized

the data from discrete and continuous screen targets with

both static (SP) and dynamic (DP) head poses, covering 14
participants (11 males and 3 females).

Since raw images in both datasets contain the upper torso

and the provided data collection information indicates a hor-

izontal camera position, we estimate the roll of the head

pose in raw images as the actual roll of the head to elimi-

nate any ambiguity arising from the camera pose.

4.2. Evaluation Protocol

We cross-validated the methods’ performance within the

published datasets. In detail, we utilized the ‘leave-one-

subject-out’ protocol when we evaluated the models within

MPIIFaceGaze or EYEDIAP. Each time we select one sub-

ject’s data as the test set, and the rest was viewed as the

training set. Note that only real data was utilized as the test

set, and the synthetic data generated from the test subject’s

data was not included in the training set in case of data leak-

age. At test time, we needed to choose several eye images

for calibration. In order to alleviate the bias from some cali-

brated samples, we repeated testing the same trained model

200 times with random combinations of samples and calcu-

lated the mean angular errors of the predicted gazes and the

standard deviations as the corresponding trained models’

performance on the test subject’s data. We looped all sub-

jects’ data as the test set one by one and reported the average

of mean angular errors and the standard deviations. Since

the proposed KAComp-Net aims at predicting the single-

eye gaze, we trained and evaluated the models on left and

right eye images separately.

4.3. Comparison with Eye-image-based Methods

We listed several state-of-the-art eye-image-based gaze

estimation methods in Table 1, which were categorized into

two groups according to the needs for calibration. There

were two kinds of outputs: eye gazes and face gazes. The

eye gaze represents the direction from the eye center to the

gazing target, usually used for single-eye gaze estimation.

The face gaze represents the direction from the center of

two eye centers to the gazing target, which requires more

inputs (e.g. left and right eye images).

Effectiveness of Calibration. It was straightforward to

notice that with the assistance of a few (M = 9) calibra-

tion samples from the test set, the methods achieved signif-

icant improvements even if the networks were much sim-

pler. However, better performance and lower calculation

complexity were at the cost of the need for several cali-

brated samples and labeled gazes, which required extra ef-
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forts (e.g., calibration before use) under practical scenarios.

Methods with Calibration. We first compared two shal-

low networks’ (Diff-Net [21], KAComp-Net) performance,

which were designed for real-time purposes. Then we re-

placed the proposed KAComp-Net backbone from three-

layer CNN to the VGG-16 backbone for fair comparisons

with other calibration-needed state-of-the-art methods.

Compared with Diff-NN, the proposed KAComp-Net

worked better with only around half of the multiply-

accumulate (MAC) operations. The KAComp-Net per-

formed a 0.51◦(10.81%) boost on the MPIIFaceGaze and

a 0.62◦(13.75%) boost on the EYEDIAP. Apart from de-

creasing the mean angular error, KAComp-Net maintained

a more stable performance given different calibration sets.

The standard deviation of KAComp-Net was reduced by

0.12◦(30.00%) and 0.27◦(51.92%) compared to those of

Diff-NN in MPIIFaceGaze and EYEDIAP, respectively.

These results fully demonstrated that the estimated Kappa

Angle with considering OCR is a more unified and robust

characteristic than the gaze difference from the same eye

when the network depth (learning ability) is limited. The

differential-based method assumed that the pitch and yaw of

the Kappa Angle were invariant concerning different head

poses if the input eye images were normalized, which vio-

lated OCR and introduced the undesired person-dependent

bias when calculating gaze differences. KAComp-Net con-

sidered OCR and used it to derive the invariant pitch and

yaw of the Kappa Angle for the optic axis direction estima-

tion, which essentially removed the bias caused by OCR

and guided the network to learn a more unified feature

from the eye images. The lower standard deviation meant

a lower dependence on the calibrated samples, whose im-

pact was further discussed in Section 4.5. In order to make

the proposed KAComp-Net competitive compared to other

state-of-the-art methods, we replaced the three-layer CNN

with the pre-trained VGG-16 backbone for better feature

extraction ability. The training parameters remained iden-

tical after we changed the backbone. KAComp-Net-VGG

achieved 8.98%, 6.41% and 3.95% improvements on MPI-

IFaceGaze compared with RedFTAdap [40], FAZE [27] and

Diff-NN-VGG [21], respectively.

4.4. Impacts of Synthetic Images

We discussed the effects from synthetic images based on

experiments of Diff-NN and KAComp-Net in this section.

Synthetic data were generated from real training data only.

Evaluation with Diff-NN. We utilized Diff-NN to in-

vestigate synthetic data impacts on the differential-based

network. Since Diff-NN needed pairs of eye images from

the same subject for training, we implemented three exper-

iments according to the source of paired images: 1) real

samples only; 2) separated real or synthetic samples within

pairs; 3) Mixture of real and synthetic samples within pairs.

Figure 5. Comparison of mean angular errors and standard de-

viations (200 repeated experiments) of the gaze by KAComp-

Net with and without synthetic data according to the leave-one-

subject-out protocol in EYEDIAP.

The inference process was taken only on real data with 200
repeated evaluations and the number of calibration samples

M = 9. The performance on real data only (RO), real and

synthetic data independently (RS I) and the mixture of real

and synthetic data (RS M) were 4.51± 0.52◦, 4.27± 0.50◦

and 5.99 ± 0.68◦ on the EYEDIAP, respectively. RO and

RS M performance were similar, which meant that the syn-

thetic data maintained the same gaze difference property as

the real data. The mixture of them achieved worse per-

formance than the other two, which further demonstrated

that the Kappa Angle variation of the synthetic data was no

longer kept as the real data did.

Evaluation with KAComp-Net. We did the exper-

iments on KAComp-Net with or without synthetic data.

Fig. 5 elaborates on the impacts of synthetic samples on

KAComp-Net. The mean angle error was 4.54±0.32◦ with-

out synthetic data and 3.89 ± 0.25◦ with synthetic data in

EYEDIAP. Synthetic data played an important role during

the training of the KAComp-Net because it helped supervise

the network learning a unified characteristic and further im-

proved the accuracy for the Kappa Angle regression.

4.5. Impacts of Calibrated Samples

Fig. 6 illustrates the impact of the number of calibrated

samples in EYEDIAP. The evaluation protocol is illustrated

in Section 4.2. When the number of calibrated samples was

less than three, Diff-NN had similar performance compared

with no-calibration-needed methods. Especially when the

number of calibrated samples M = 1, Diff-NN achieved

1.03◦ worse than GazeNet [44], mainly due to large gaze

differences between limited calibrated samples and target

ones, and the number of network layers. As the number of

calibrated samples increased, the prediction errors and the

standard deviations of Diff-NN dropped significantly be-

cause more calibrated samples with similar gaze directions

to target ones were acquired. Given the same number of
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Figure 6. Comparison of mean angular errors and standard devia-

tions (200 repeated experiments) among the state-of-the-art meth-

ods given different numbers of calibrated samples in EYEDIAP.

(a) M = 9 (b) M = 64

Figure 7. Distribution maps of the estimated Kappa Angles given

different subjects with KAComp-Net given M calibrated samples.

The legend number means subject ID in EYEDIAP.

calibrated samples, KAComp-Net achieved more accurate

and more stable results than Diff-NN, proving the higher

tolerance to the calibrated samples. Even with only one cal-

ibrated sample, KAComp-Net can achieve 1.32◦(19.33%)
improvement compared with GazeNet. When the number

of calibrated samples was larger than 64, KAComp-Net can

further improve the estimation accuracy, unlike the plateau-

ing performance of Diff-NN, shown in Fig. 6. The main

reason for this phenomenon was given the estimation ac-

curacy of the Kappa Angle from calibrated samples, which

was discussed in detail in Section 4.6.

4.6. Estimated Kappa Angle Distribution

During the inference, we first calculated the Kappa An-

gles from the calibrated samples of the test subject. The es-

timated Kappa Angle distribution maps with different num-

bers (9 and 64) of calibrated samples were shown in Fig.

7 based on 50 repeated experiments. Note that with more

calibrated samples for calibration, the estimated Kappa An-

gles had smaller standard deviations, which yielded smaller

angular errors, shown in Fig. 5. An obvious comparison

was found by the distribution maps between the subjects

with ID 7 and 16. The estimated Kappa Angle range of the

ID 7 subject was over 6◦ × 2◦, and the corresponding pre-

dicted angle error was 6.38◦, which was 64% higher than

the mean angular error over all subjects. However, the dis-

Methods
Mean Angle Error (Degree)

SP DP

Diff-NN 3.46±0.40 4.76±0.41

KAComp-Net 3.16±0.26 4.37±0.26

Table 2. Estimated mean angle errors given static (SP) and dy-

namic (DP) head pose data in EYEDIAP.

Diff-NN KAComp-Net

Params (M) 42.015 5.044

MACs (M) 89.148 28.581

Table 3. Complexity Comparison between the Differential Method

and Kappa Angle Compensation Method

tribution map of the ID 16 subject had less than a 2◦ × 2◦

area, which achieved 2.13◦ angular error (45% lower than

the mean angular error).

4.7. Impacts of Head Pose Variations

KAComp-Net is designed to remove the variance caused

by OCR, but it doesn’t depend on various head poses (or

rolls) to trigger OCR for estimating the Kappa Angle. This

is because OCR only affects whether it is needed to com-

pensate for the redistribution of the pitch and yaw of the

Kappa Angle before regressing this anatomical variable

within each subject’s data. Table 2 shows consistent im-

provements compared with Diff-NN under different levels

of head pose variations in EYEDIAP, which also proves the

importance of considering OCR.

4.8. Algorithm Complexity

Diff-Net and KAComp-Net share the same three-

convolutional-layer backbone, which aims at achieving

real-time gaze estimation. Table 3 compares the size of the

network and the number of multiply–accumulate (MAC)

operations. We observe that KAComp-Net reduced 87.99%
(67.94%) parameters (MACs) compared with Diff-NN.

5. Conclusion
In this work, we derived and proposed a pipeline to

regress the pitch and yaw of the Kappa Angle under the

head coordinate system given the ocular counter-rolling re-

sponse. This person-dependent Kappa Angle regression

works with an eye-image-based person-independent gaze

estimator trained with real and synthetic eye images for

person-dependent calibration with a few samples. Several

experiments on the benchmark datasets showed the effec-

tiveness and robustness of the proposed methods with lim-

ited calibration samples.
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