GazeCaps: Gaze Estimation with Self-Attention-Routed Capsules

Hengfei Wang1* Jun O Oh2,3* Hyung Jin Chang1 Jin Hee Na3 Minwoo Tae2 Zhongqun Zhang1 Sang-II Choi2

1University of Birmingham 2Dankook University 3VTouch, Inc

Abstract

Gaze estimation is the task of estimating eye gaze from facial features. People tend to infer gaze by considering different facial properties from the whole image and their relations. However, existing methods rarely consider these various properties. In this paper, we propose a novel GazeCaps framework that represents various facial properties as different capsules. The capsules respond sensitively to transforms of facial properties by vectorial expression, which is effective for gaze estimation in which many facial components are nonlinearly transformed according to the direction of the head in addition to the perspective. Furthermore, we propose a Self-Attention Routing (SAR) module which can dynamically allocate attention to different capsules that contain important information and can be optimized as a single process without iterations. Through rigorous experiments, we confirm that the proposed method achieves state-of-the-art performance on various benchmarks. We also detail the generalization performance of the proposed model through a cross-dataset evaluation.

1. Introduction

Gaze refers to the direction a person is looking at. It is a typical nonverbal human expression method used to understand human intention, attention, and interaction among people in a group. Gaze estimation can be employed in various fields such as human-computer interactions (HCI) [18], augmented reality/virtual reality (AR/VR) [12], and autonomous driving [14]. This topic has been actively studied in the field of computer vision recently.

Appearance-based gaze estimation becomes more and more popular with the rapid development of deep learning. However, the appearance of the face non-linearly changes according to the rotation of the head. Furthermore, the appearance of the eyes and the area around the eyes, which are most important to gaze estimation, also change accordingly.

*Equal contribution

Figure 1. Grad-CAM [17] visualization of attention maps. (a) Input images from ETH-XGaze dataset, (b) Attention maps from CNN-based method, (c) Attention maps from GazeCaps with self-attention routing.

The gaze can be inferred differently depending on gender, race, object occlusion, and lighting.

To deal with the changes in intrinsic and extrinsic elements of faces, several gaze estimation methods using deep learning have been proposed. Appearance-based gaze estimation can be broadly classified into two categories according to the type of image used as input for the network. The methods in the first category directly focus on the gaze itself; for this purpose, the gaze is inferred using the pupil and the area around the eyes [2, 3]. Although these methods have achieved a good performance on gaze estimation, the following problems exist: 1) along with eye labels, additional labeling of eye position and head orientation for separating eyes [6, 11, 22] is required; 2) under some scenarios (e.g., occlusion caused by extreme head orientation, dark areas in eye regions) where the module that separates eyes cannot work, the subsequent gaze estimation module will not work either [2, 6]; 3) because the eye segmentation module and the gaze estimation module learn independently and are sequentially combined to form a system, the final gaze estimation result does not guarantee a globally optimal solution [21].

Methods of the other category use an entire face image as the input of gaze estimation networks without segmenting eyes from faces. Early gaze estimation models extract features from an image using a convolution filter. Then, the
The gaze angle is estimated by regression analysis using a multilayer perceptron (MLP) [23]. However, CNN has two important issues. (1) It is hard for CNN to capture fine-grained features because of pooling and stride convolution operators. As shown in Figure 1, CNN tends to capture a large continuous area. But even a small change in eye region is quite important for gaze estimation since the area occupied by the eyes in facial images is relatively small. (2) CNN cannot reflect the spatial contextual information between partial areas of images (for example, correlation between eye and eyebrows). Randomly arranging the positions of different facial parts (like eyes, nose, mouth) does not form a recognizable face. Same to gaze estimation, knowing the relations between eyes and other facial elements is important for predicting gaze. As shown in Figure 1, the CNN-based method only watches a specific region while the proposed method watches several regions at the same time.

To utilize the contextual information from facial images, [4] attempts to do gaze estimation using a Transformer [5] which can effectively learn facial data with large variations while considering the context of entire faces. These methods achieve better gaze estimation performance compared to methods only using a convolutional neural network (CNN). However, although Transformer can effectively reflect the contextual facial information related to gaze estimation, applying it to gaze estimation still remains challenging. First, because facial images are high-dimensional, a large computation load is incurred when the self-attention operation of Transformers is directly used to grasp the entire context between pixels to images. To solve this problem, a method for embedding images to a lower dimension has been proposed. However, in gaze estimation, because the area occupied by eyes in entire images is very small, the information which is important to gaze estimation may be lost in the low-dimensional embedding process.

For gaze estimation, not only is the spatial contextual information included in face images important but also is the image-capturing conditions. For example, when looking from the front, the appearance of the eyes may vary depending on camera angles, expressions, the shadow caused by lighting, or whether glasses are worn. Therefore, to accurately estimate gaze directions, the correlation between eyes and gazes, and the correlation between various external characteristics, including the direction of heads, must be simultaneously learned. These characteristics can be defined as properties for gaze estimation. In fact, a human infers the gaze in an image by comprehensively considering these various properties. However, existing approaches for gaze estimation, including the methods using Transformers, do not consider these various properties.

The capsule network (CapsNet) [16] effectively utilizes the various properties included in an image. CNN’s internal data representation fails to consider the key “spatial hierarchy” between simple and complex entities while CapsNet emphasizes the hierarchical pose relationship between the object’s components for recognition and classification. The capsule is implicitly expressed by disentangling objects in images. Subsequently, a more complex aspect is represented by assembling these disentangled objects. Non-linear changes in the appearance of objects in images can be expressed by adjusting the capsules. The hierarchical structure between simple and complex capsules is learned in the process of establishing a relationship between capsules.

To this end, we propose a method for training capsules (GazeCaps) from face images and estimating the gaze accurately by effectively combining the learned capsules. Furthermore, to solve the high computational burden of vanilla CapsNet and improve performance, we adopt a self-attention mechanism [15] and redesign it for GazeCaps.

Our main contributions are as follows:

- We propose a novel framework that utilizes the capsule concept to solve the problem of gaze estimation. The capsules show a better representational ability compared with CNN-based and Transformer-based methods by encapsulating different facial properties which widely shift with the changes in various viewpoints, movements, and environmental conditions.

- We propose a new SAR module (self-attention routing) for gaze estimation, which does not require iterations to update the coupling coefficients.

- Our proposed GazeCaps achieves state-of-the-art performance in different benchmarks. We demonstrate the advantage of GazeCaps for generalization in gaze estimation through experiments.

2. Related Studies

Gaze estimation from facial images. Several deep-learning-based methods for automatic gaze estimation from facial images have been proposed. The most conventional approach is to extract an image’s regional spatial information using a CNN and perform gaze estimation using an MLP-based regression model from the extracted features. In [6], the gaze was estimated by independently training the preceding network for extracting eye patches and head directions, and the trailing network for estimating the gaze from the results of the preceding network. However, this method requires a module [8] for eye segmentation which increases the computational cost of the entire system and causes latency in the data transfer process. Gaze estimation networks capable of end-to-end learning using the whole face as input have also been proposed. [10] utilizes temporal information, in order to improve gaze inference, through the use of RNN which takes video input as opposed to individual images. The method proposed by [21] consists of
a region proposal network that segments the area around the
eyes in a face image, which acts as input for a separate
gaze inference network that independently estimates the
gaze. This method combines two networks in one frame-
work and performs end-to-end learning. However, because
this method uses only the segmented patches around the
eyes in the gaze estimation process, the global context of
the entire face cannot be utilized for gaze estimation.

Studies using attention. Studies have also been per-
formed using attention and self-attention [19], which can
effectively use the contextual information of data for com-
puter vision tasks. To overcome the computational burden
of applying the self-attention module to images, ViT [5] di-
vides the image into several patches and calculates context-
tual information per patch. In [4], two methods of applying
ViT to gaze estimation from face images are proposed.
The first involves dividing the face into multiple grids and
applying ViT to the image patches corresponding to each
grid. The second involves estimating the gaze by applying
a multi-layer Transformer encoder to the feature map ex-
tracted from the CNN backbone. This study shows that a
Transformer which handles the global context by refining
the features extracted from a CNN through attention could
improve the accuracy of gaze estimation.

Capsule networks. CapsNet [16] was proposed to solve
the limitations of max-pooling by dynamic routing and to
learn spatial hierarchical relationships between low-level
and complex entities. Several attempts have been made to
introduce the capsule concept to the gaze estimation prob-
lem. In [13], the authors change the gaze estimation prob-
lem into a classification problem in order to apply CapsNet,
a method designed for classification problems. However,
this structure cannot deal with the ambiguity of gazes lo-
cated at the boundary of each direction because the contin-
uous gaze direction is defined as discrete classes. In [1],
the authors design two types of gaze estimation networks in
which the capsule concept is applied: one estimates the gaze
by putting images restored from capsules into DenseNet and
the other estimates the gaze directly from the capsules. This
method however does not overcome the disadvantages of
the eye separation methods either, because only eye patches
are used as input. In contrast, our method receives the en-
tire face as input. In addition, problem transformation is not
required since we change the network structure to be suit-
able for gaze regression. To the best of our knowledge, our
method is the first attempt to estimate gaze using capsule
structures on entire face images.

3. Methodology
3.1. Preliminaries

CapsNet [16] parses an image as a combination of enti-
ties with various properties, which can include numerous
types of instantiation parameters such as pose (position,
size, orientation), deformation, velocity, albedo, hue, and
texture. As shown in Figure 3 (a), they propose a novel
connection mechanism called dynamic routing which takes
advantage of the vectorial representation of capsules. Dy-
namic routing between the two capsule layers performs iter-
ations to update the weights of the capsules from the last
layer by calculating similarities between the two capsule
layers. It ensures that the low-level capsules are connected
to the appropriate high-level capsules. In this process, high-
level capsules represent more complex entities with more
degrees of freedom, which increases the number of prop-
erties in the capsule.

The capsule network requires a new activation function
that operates on a vector to ensure nonlinearity instead of
the functions designed for a perceptron. Furthermore, the
output of the function is normalized between 0 and 1 to
consider the length of the vector constituting the capsule
as the existence probability of the entity represented by
the capsule. To satisfy these requirements, they proposed the
following “squashing” function:

\[
v_j = \text{squash}(s_j) = \frac{||s_j||^2}{1 + ||s_j||^2} s_j \tag{1}
\]

\[
s_j = \sum_{i=1}^{n} c_{ij} u_{j|i}, \quad u_{j|i} = W_{ij} v_i \tag{2}
\]

where \(v_j \) is the vector representing capsule \(j \), and \(s_j \) is its
total input. \(n \) is the number of capsules and \(c_{ij} \) is the
coupling coefficient that is determined by the iterative dynamic
routing process. For all but the first layer of capsules, the to-
tal input \(s_j \) to a capsule \(j \) is a weighted sum over all “predic-
tion vectors” \(u_{j|i} \) from the capsules in the layer below. The
prediction vectors are produced by multiplying the vector
\(v_i \) of capsule \(i \) in the layer below by a weight matrix \(W_{ij} \).
Coupling coefficients are used to indicate how “strongly”
the low-level capsules are coupled to a particular high-level
capsule. Coupling coefficients are critical learnable param-
eters that affect the performance of capsule networks. How-
ever, to determine their values, the network must go through
iterative updates in one batch, which leads to a large com-
putational workload.

3.2. Architecture of GazeCaps

The overall framework of GazeCaps is described in Fig-
ure 2. The framework consists of three parts: Feature Ex-
traction to obtain feature maps from an input image; Cap-
sule Formation to rearrange the feature maps into primary
capsules and route them to a capsule layer through a SAR
module for gaze estimation; Gaze Regression to conduct
gaze regression through a SAR module. We redesign the
architecture of the capsule network [16] which is proposed
for the image classification problem to solve gaze estimation, which is a regression problem. The proposed model is trained using angular gaze loss.

Given an input image, GazeCaps first use an image decoder to extract image features. CapsNet [16] contains a single convolution layer that transforms each pixel intensity into activations of local features, which can be used as input to create primary capsules. However, because only low-level features that correspond to very local information are extracted in a single convolution layer, we use a convolution-based feature extractor with deeper layers to extract the structural features of facial components as candidates for the construction of primary capsules (in the proposed model, we used ResNet18 [9], which is effective for image analysis). Given an image \(I \) consisting of three channels of size \(H \times W \), a feature map \(f \) of the shape of \(1 \times 1 \times 256 \) is generated by the feature extractor \(F(f = F(I)) \).

In Capsule Formation, the 256-dimensional vector is reshaped to create \(n_p \) capsules which are \(d_p \)-dimensional vectors as follows:

\[
V_p = \text{reshape}(\text{relu}(\text{conv}(f)), V_p \in \mathbb{R}^{n_p \times d_p}) \quad (3)
\]

where \(V_p = \{v_i|i = 1, ..., n_p\} \) (here, \(n_p = 64, d_p = 4 \)), \(v_i \) is the \(i \)-th capsule with dimension \(d_p \). \(V_p \) can be represented as an \(n_p \times d_p \) matrix, where each row is a capsule, and each column corresponds to an attribute at the same position. In the process of creating the primary capsules, information from an input image is no longer “place-coded” in the spatial feature domain. Instead, it is “rate-coded” in the capsule’s properties.

The capsules from the primary capsule layer are combined through a SAR module. The output is activated by a squash activation to create the intermediate capsule layer with higher-level capsules. Through this process, low-level capsules evolve into high-level capsules that can represent more complex entities with more degrees of freedom; we can obtain the intermediate capsules using the following routing function:

\[
v_i = \text{Routing}(V_p) \quad (4)
\]

where intermediate capsule layer \(V_i = \{v_j|j = 1, ..., n_i\} \) (here, \(n_i = 32, d_i = 8 \)) and \(V_i \in \mathbb{R}^{n_i \times d_i} \), \(v_j \) is the \(j \)-th capsule with dimension \(d_i \). To impart nonlinearity to the capsule layer, we used the squash function as the activation function.

After Capsule Formation, Gaze Regression adopts a SAR module to estimate a gaze capsule \(v_g \) directly. We do not apply the activation function to \(v_g \) because errors may occur when using the activation function if the ground truth is located at a distance greater than one from the origin.
can find agreements between the capsules that can effectively represent the interrelations among entities by self-attention; in other words, a capsule with more agreement with other capsules receives higher attention. The attention matrix gives weights to the prediction vectors as follows:

\[X_{l+1} = AU_{l+1}, \quad X_{l+1} \in \mathbb{R}^{n_l \times d_{l+1}} \]

(7)

where \(X_{l+1} = \{ x_i \}_{i = 1} \ldots n_l \) contains the weighted prediction vectors. Then, \(v_j \) in the \((l + 1)\)-th layer is obtained using the weighted sum of \(x_i \)'s from the \(l \)-th layers as \(v_j = \sum_{i=1}^{n_l} x_i \). Consequently, using self-attention, we conduct capsule routing much more economically and effectively than dynamic routing.

The number of capsules constituting the higher-level capsule layer may be one or more. The self-attention routing needs as many as the number of capsules in the higher-level layer for multiple capsules. Therefore, the self-attention routing process described above is extended to the multi-subspace (multi-head self-attention), and the number of heads is equal to the number of capsules in the next capsule layer.

3.4. Loss function for GazeCaps training

We use gaze error between estimated gaze and ground truth to train the proposed model. The gaze loss is calculated by the following equation:

\[L_{GazeCaps} = MSE(g_t, g_p) \]

(8)

where \(g_i \) is the ground truth of gaze, \(g_p \) is the predicted gaze direction, \(L_{GazeCaps} \) is the loss used in training. The loss is calculated as a mean squared error (MSE).

4. Experiments

4.1. Dataset for Evaluation

We use the ETH-XGaze dataset [20] for network pre-training. ETH-XGaze consists of 1.1M images collected from 110 subjects. We use a training set containing 765K images of 80 subjects to pre-train the model.

A total of four datasets, EYEDIAP [7], Gaze360 [10], MPIIFaceGaze [23], and RT-GENE [6], are selected from well-known public datasets to evaluate the gaze estimation performance. All datasets are labeled for 3D gaze estimation. The EYEDIAP dataset contains 94 videos with 237 minutes obtained from 16 subjects. We divide 16 people into four clusters to evaluate their performance with this dataset and performed 4-fold cross-validation for evaluation. The Gaze360 dataset includes 172K images from 238 subjects, with the widest head poses and gaze distribution. They pre-divide the dataset into 129K images for training, 17K images for validation, and 26K images for evaluation. We use the experimental setting in [10]. The MPIIFaceGaze
dataset contains 45K images obtained from 15 subjects. We use the leave-one-person-out evaluation to evaluate the performance of this dataset. The RT-GENE dataset contains 123K images from 15 subjects and specifies 13 subjects for training and two subjects for validation. To evaluate the performance of the dataset, we divide 15 people into three clusters and use 3-fold cross-validation.

4.2. Capsule and Attention Visualization

As shown in Figure 4, we visualize the primary capsules and the intermediate capsules in GazeCaps to show the proposed method can capture gaze features accurately. Since the positional information is lost in the formation of the primary capsules, we check which capsule is related to the eye region by calculating the difference map of capsules from the same layer between the eye-masked image and the original image. And we rescale the elements in difference maps and capsule attention maps to (0, 1). In this case, the capsules with a large difference in difference maps are related to the eye region. And we do the same for intermediate capsules. To show that GazeCaps can capture eye features accurately, we calculate the activation score by evaluating the similarity between the difference maps and the capsule attention maps with the following equation:

$$S = 1 - \sum_{i}^{n_{caps}} \frac{(c_{i} - c^d_{i})^2}{n_{caps}}$$ \hspace{1cm} (9)

where S is the activation score whose range is (0, 1), c_{i} is the attention weight from attention maps, c^d_{i} is the difference weight from difference maps, i is the index of capsules, n_{caps} is the total number of the capsules in maps. To make things clear, we also conduct the same visualization of other face regions.

As shown in Table 1, the activation score of eyes is higher than that of other face regions both in the primary capsules and the intermediate capsules, which means GazeCaps can capture eye features and give them more attention. And the activation score of eyes gets larger when the model goes deeper from primary capsules to intermediate capsules. That shows the proposed model focuses on eye region better with the network proceeding. The activation score of other face regions does not change much because GazeCaps also considers the influence from other regions except eyes.

4.3. Ablation Study

<table>
<thead>
<tr>
<th>Method</th>
<th>EYEDIAP</th>
<th>Gaze360</th>
<th>MPIIFaceGaze</th>
<th>RT-GENE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>6.18°</td>
<td>15.41°</td>
<td>5.21°</td>
<td>13.28°</td>
</tr>
<tr>
<td>Transformer</td>
<td>5.84°</td>
<td>11.79°</td>
<td>4.51°</td>
<td>8.00°</td>
</tr>
<tr>
<td>Capsules(w/o SA-Routing)</td>
<td>5.44°</td>
<td>11.32°</td>
<td>4.88°</td>
<td>7.65°</td>
</tr>
<tr>
<td>Capsules(w/ SA-Routing)</td>
<td>5.10°</td>
<td>10.04°</td>
<td>4.06°</td>
<td>6.92°</td>
</tr>
</tbody>
</table>

Table 2. Ablation Studies. We compare the performance by permitting the subsequent architecture while maintaining the structure of the feature extractor the same.

To validate the design of our proposed model, we perform an ablation study on capsule representation and self-
attention routing. To be specific, we compare our proposed model with a CNN baseline and a Transformer baseline to verify capsule representation, and compare with the vanilla CapsNet with dynamic routing to verify self-attention routing. The CNN baseline includes a ResNet-18 and two layers of MLP. The Transformer baseline contains a ResNet-18 and six Transformer encoder layers followed by a single MLP layer. The feature extractor in all models has the same ResNet-18 [9] structure. For a fair comparison, we control the amounts of parameters of all models to be the same.

As shown in Table 2, we conduct experiments on four datasets to verify the reliability of the results. CNN and Transformer methods are based on scalar representation while the last two models (including our proposed model) are based on vectorial representation (known as capsule). The results show that both of capsule models outperform scalar models on all selected datasets, which demonstrates the big advantage of capsule models on gaze estimation. And we also visualize the attention maps of the proposed GazeCaps and CNN-based method from Grad-CAM [17] as well as the predicted gaze direction from both models (see Figure 5). It shows that the proposed method captures eye region more accurately and has a better performance in gaze estimation.

Besides, our proposed model also shows a better performance than the default CapsNet with dynamic routing. That illustrates that the proposed self-attention routing works better in gaze estimation.

4.4. Cross-dataset Evaluation

Cross-dataset evaluation is well-known to analyze the generalization performance of models. Because our key components are based on capsules instead of neurons, we design the experiments to highlight the effectiveness of capsule representation for generalization performance. We select a CNN baseline which include a ResNet-18 and an MLP layer to represent the methods using neurons. We still control that the two models have a similar number of parameters. Table 3 shows the cross-dataset evaluation results of the two models on the benchmark datasets. Our GazeCaps shows better generalization performance in all cases, as shown in the table. These results show that the features extracted from the proposed capsule-based model are more robust on different datasets than the CNN-based model since it keeps more detailed information and takes the relations among different properties into consideration.

Figure 6 shows the qualitative results on various face images from different datasets. The stable performance on different datasets shows a good generalization ability of the proposed model.
4.5. Comparison with State-of-the-art Methods

Table 4 shows the number of parameters and the number of flops of each network used in the experiment to compare the efficiencies of the selected SOTA methods. Our proposed method has fewer parameters than most existing gaze estimation models and the lowest flops among all selected models due to the adoption of capsule representation and self-attention routing, which are 11.7M parameters and 1.82G flops. It shows that GazeCaps is a lightweight model compared with other models and lowers the computational requirement for gaze model training.

Table 5 shows the gaze estimation results of our method and those of other methods on the EYEDIAP, Gaze360, MPIIFaceGaze, and RT-GENE datasets. The reported metric is mean angular errors (in degrees).

5. Conclusions

In this paper, we analyze problems in CNN-based and Transformer-based gaze estimation methods and propose a novel capsule-based network for accurate gaze estimation. We introduce a novel SAR (Self-Attention Routing) module which combines with capsule representation to form a new gaze estimation framework. The final framework GazeCaps achieves state-of-the-art results with a small model size and low computation load. We believe that the capsule representation has great potential to be further explored for gaze estimation. For future work, we will study the interpretation of hierarchical capsules by visualizing capsules and their entities.

Acknowledgment

This work was supported in part by the National Research Foundation of Korea Grant by the Korean Government through the Ministry of Science and Information and Communication Technology (MSIT) under Grant 2021R1A2B5B01001412 and in part by the ICT Challenge and Advanced Network of Human Resource Development (HRD) (ICAN) Program, supervised by the Institute of Information and Communications Technology Planning and Evaluation (IITP), under Grant No.2020-0-01824 and No.2022-0-00608 (Artificial intelligence research about multi-modal interactions for empathetic conversations with humans). Also, the research utilised the Baskerville Tier 2 HPC service (https://www.baskerville.ac.uk/) funded by the Engineering and Physical Sciences Research Council (EPSRC) and UKRI through the World Class Labs scheme (EP/T022221/1) and the Digital Research Infrastructure programme (EP/W032244/1) operated by Advanced Research Computing at the University of Birmingham. Hengfei Wang and Zhongqun Zhang were supported by China Scholarship Council (CSC) Grant No. 202006210057 and No. 202208060266, respectively.
References

