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Abstract

Gaze estimation is the task of estimating eye gaze from
facial features. People tend to infer gaze by considering dif-
ferent facial properties from the whole image and their rela-
tions. However, existing methods rarely consider these vari-
ous properties. In this paper, we propose a novel GazeCaps
framework that represents various facial properties as dif-
ferent capsules. The capsules respond sensitively to trans-
forms of facial properties by vectorial expression, which is
effective for gaze estimation in which many facial compo-
nents are nonlinearly transformed according to the direc-
tion of the head in addition to the perspective. Furthermore,
we propose a Self-Attention Routing (SAR) module which
can dynamically allocate attention to different capsules that
contain important information and can be optimized as a
single process without iterations. Through rigorous experi-
ments, we confirm that the proposed method achieves state-
of-the-art performance on various benchmarks. We also de-
tail the generalization performance of the proposed model
through a cross-dataset evaluation.

1. Introduction

Gaze refers to the direction a person is looking at. It is
a typical nonverbal human expression method used to un-
derstand human intention, attention, and interaction among
people in a group. Gaze estimation can be employed in
various fields such as human-computer interactions (HCI)
[18], augmented reality/virtual reality (AR/VR) [12], and
autonomous driving [14]. This topic has been actively stud-
ied in the field of computer vision recently.

Appearance-based gaze estimation becomes more and
more popular with the rapid development of deep learning.
However, the appearance of the face non-linearly changes
according to the rotation of the head. Furthermore, the ap-
pearance of the eyes and the area around the eyes, which are
most important to gaze estimation, also change accordingly.
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Figure 1. Grad-CAM [17] visualization of attention maps. (a)
Input images from ETH-XGaze dataset, (b) Attention maps from
CNN-based method, (c) Attention maps from GazeCaps with self-
attention routing.

The gaze can be inferred differently depending on gender,
race, object occlusion, and lighting.

To deal with the changes in intrinsic and extrinsic ele-
ments of faces, several gaze estimation methods using deep
learning have been proposed. Appearance-based gaze esti-
mation can be broadly classified into two categories accord-
ing to the type of image used as input for the network. The
methods in the first category directly focus on the gaze it-
self; for this purpose, the gaze is inferred using the pupil
and the area around the eyes [2, 3]. Although these meth-
ods have achieved a good performance on gaze estimation,
the following problems exist: 1) along with eye labels, ad-
ditional labeling of eye position and head orientation for
separating eyes [6, 11, 22] is required; 2) under some sce-
narios (e.g., occlusion caused by extreme head orientation,
dark areas in eye regions) where the module that separates
eyes cannot work, the subsequent gaze estimation module
will not work either [2, 6]; 3) because the eye segmenta-
tion module and the gaze estimation module learn indepen-
dently and are sequentially combined to form a system, the
final gaze estimation result does not guarantee a globally
optimal solution [21].

Methods of the other category use an entire face image
as the input of gaze estimation networks without segment-
ing eyes from faces. Early gaze estimation models extract
features from an image using a convolution filter. Then, the
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gaze angle is estimated by regression analysis using a multi-
layer perceptron (MLP) [23]. However, CNN has two im-
portant issues. (1) It is hard for CNN to capture fine-grained
features because of pooling and stride convolution opera-
tors. As shown in Figure 1, CNN tends to capture a large
continuous area. But even a small change in eye region is
quite important for gaze estimation since the area occupied
by the eyes in facial images is relatively small. (2) CNN can
not reflect the spatial contextual information between partial
areas of images (for example, correlation between eye and
eyebrows). Randomly arranging the positions of different
facial parts (like eyes, nose, mouth) does not form a rec-
ognizable face. Same to gaze estimation, knowing the re-
lations between eyes and other facial elements is important
for predicting gaze. As shown in Figure 1, the CNN-based
method only watches a specific region while the proposed
method watches several regions at the same time.

To utilize the contextual information from facial images,
[4] attempts to do gaze estimation using a Transformer [5]
which can effectively learn facial data with large varia-
tions while considering the context of entire faces. These
methods achieve better gaze estimation performance com-
pared to methods only using a convolutional neural network
(CNN). However, although Transformer can effectively re-
flect the contextual facial information related to gaze esti-
mation, applying it to gaze estimation still remains chal-
lenging. First, because facial images are high-dimensional,
a large computation load is incurred when the self-attention
operation of Transformers is directly used to grasp the en-
tire context between pixels to images. To solve this prob-
lem, a method for embedding images to a lower dimension
has been proposed. However, in gaze estimation, because
the area occupied by eyes in entire images is very small, the
information which is important to gaze estimation may be
lost in the low-dimensional embedding process.

For gaze estimation, not only is the spatial contextual
information included in face images important but also is
the image-capturing conditions. For example, when look-
ing from the front, the appearance of the eyes may vary de-
pending on camera angles, expressions, the shadow caused
by lighting, or whether glasses are worn. Therefore, to ac-
curately estimate gaze directions, the correlation between
eyes and gazes, and the correlation between various exter-
nal characteristics, including the direction of heads, must
be simultaneously learned. These characteristics can be de-
fined as properties for gaze estimation. In fact, a human
infers the gaze in an image by comprehensively considering
these various properties. However, existing approaches for
gaze estimation, including the methods using Transformers,
do not consider these various properties.

The capsule network (CapsNet) [16] effectively utilizes
the various properties included in an image. CNN’s inter-
nal data representation fails to consider the key “spatial hi-

erarchy” between simple and complex entities while Cap-
sNet emphasizes the hierarchical pose relationship between
the object’s components for recognition and classification.
The capsule is implicitly expressed by disentangling objects
in images. Subsequently, a more complex aspect is rep-
resented by assembling these disentangled objects. Non-
linear changes in the appearance of objects in images can be
expressed by adjusting the capsules. The hierarchical struc-
ture between simple and complex capsules is learned in the
process of establishing a relationship between capsules.

To this end, we propose a method for training cap-
sules (GazeCaps) from face images and estimating the gaze
accurately by effectively combining the learned capsules.
Furthermore, to solve the high computational burden of
vanilla CapsNet and improve performance, we adopt a self-
attention mechanism [15] and redesign it for GazeCaps.

Our main contributions are as follows:

• We propose a novel framework that utilizes the capsule
concept to solve the problem of gaze estimation. The
capsules show a better representational ability com-
pared with CNN-based and Transformer-based meth-
ods by encapsulating different facial properties which
widely shift with the changes in various viewpoints,
movements, and environmental conditions.

• We propose a new SAR module (self-attention routing)
for gaze estimation, which does not require iterations
to update the coupling coefficients.

• Our proposed GazeCaps achieves state-of-the-art per-
formance in different benchmarks. We demonstrate the
advantage of GazeCaps for generalization in gaze esti-
mation through experiments.

2. Related Studies
Gaze estimation from facial images. Several deep-

learning-based methods for automatic gaze estimation from
facial images have been proposed. The most conventional
approach is to extract an image’s regional spatial informa-
tion using a CNN and perform gaze estimation using an
MLP-based regression model from the extracted features.
In [6], the gaze was estimated by independently training the
preceding network for extracting eye patches and head di-
rections, and the trailing network for estimating the gaze
from the results of the preceding network. However, this
method requires a module [8] for eye segmentation which
increases the computational cost of the entire system and
causes latency in the data transfer process. Gaze estimation
networks capable of end-to-end learning using the whole
face as input have also been proposed. [10] utilizes tempo-
ral information, in order to improve gaze inference, through
the use of RNN which takes video input as opposed to in-
dividual images. The method proposed by [21] consists of
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a region proposal network that segments the area around
the eyes in a face image, which acts as input for a separate
gaze inference network that independently estimates the
gaze. This method combines two networks in one frame-
work and performs end-to-end learning. However, because
this method uses only the segmented patches around the
eyes in the gaze estimation process, the global context of
the entire face cannot be utilized for gaze estimation.

Studies using attention. Studies have also been per-
formed using attention and self-attention [19], which can
effectively use the contextual information of data for com-
puter vision tasks. To overcome the computational burden
of applying the self-attention module to images, ViT [5] di-
vides the image into several patches and calculates contex-
tual information per patch. In [4], two methods of apply-
ing ViT to gaze estimation from face images are proposed.
The first involves dividing the face into multiple grids and
applying ViT to the image patches corresponding to each
grid. The second involves estimating the gaze by applying
a multi-layer Transformer encoder to the feature map ex-
tracted from the CNN backbone. This study shows that a
Transformer which handles the global context by refining
the features extracted from a CNN through attention could
improve the accuracy of gaze estimation.

Capsule networks. CapsNet [16] was proposed to solve
the limitations of max-pooling by dynamic routing and to
learn spatial hierarchical relationships between low-level
and complex entities. Several attempts have been made to
introduce the capsule concept to the gaze estimation prob-
lem. In [13], the authors change the gaze estimation prob-
lem into a classification problem in order to apply CapsNet,
a method designed for classification problems. However,
this structure cannot deal with the ambiguity of gazes lo-
cated at the boundary of each direction because the contin-
uous gaze direction is defined as discrete classes. In [1],
the authors design two types of gaze estimation networks in
which the capsule concept is applied: one estimates the gaze
by putting images restored from capsules into DenseNet and
the other estimates the gaze directly from the capsules. This
method however does not overcome the disadvantages of
the eye separation methods either, because only eye patches
are used as input. In contrast, our method receives the en-
tire face as input. In addition, problem transformation is not
required since we change the network structure to be suit-
able for gaze regression. To the best of our knowledge, our
method is the first attempt to estimate gaze using capsule
structures on entire face images.

3. Methodology

3.1. Preliminaries

CapsNet [16] parses an image as a combination of enti-
ties with various properties, which can include numerous

types of instantiation parameters such as pose (position,
size, orientation), deformation, velocity, albedo, hue, and
texture. As shown in Figure 3 (a), they propose a novel
connection mechanism called dynamic routing which takes
advantage of the vectorial representation of capsules. Dy-
namic routing between the two capsule layers performs it-
erations to update the weights of the capsules from the last
layer by calculating similarities between the two capsule
layers. It ensures that the low-level capsules are connected
to the appropriate high-level capsules. In this process, high-
level capsules represent more complex entities with more
degrees of freedom, which increases the number of proper-
ties in the capsule.

The capsule network requires a new activation function
that operates on a vector to ensure nonlinearity instead of
the functions designed for a perceptron. Furthermore, the
output of the function is normalized between 0 and 1 to
consider the length of the vector constituting the capsule
as the existence probability of the entity represented by the
capsule. To satisfy these requirements, they proposed the
following “squashing” function:

vj = squash(sj) =
∥sj∥2

1 + ∥sj∥2
sj

∥sj∥
(1)

sj =
n∑

i=1

cijuj|i, uj|i = Wijvi (2)

where vj is the vector representing capsule j, and sj is its
total input. n is the number of capsules and cij is the cou-
pling coefficient that is determined by the iterative dynamic
routing process. For all but the first layer of capsules, the to-
tal input sj to a capsule j is a weighted sum over all “predic-
tion vectors” uj|i from the capsules in the layer below. The
prediction vectors are produced by multiplying the vector
vi of capsule i in the layer below by a weight matrix Wij .
Coupling coefficients are used to indicate how ”strongly”
the low-level capsules are coupled to a particular high-level
capsule. Coupling coefficients are critical learnable param-
eters that affect the performance of capsule networks. How-
ever, to determine their values, the network must go through
iterative updates in one batch, which leads to a large com-
putational workload.

3.2. Architecture of GazeCaps

The overall framework of GazeCaps is described in Fig-
ure 2. The framework consists of three parts: Feature Ex-
traction to obtain feature maps from an input image; Cap-
sule Formation to rearrange the feature maps into primary
capsules and route them to a capsule layer through a SAR
module for gaze estimation; Gaze Regression to conduct
gaze regression through a SAR module. We redesign the
architecture of the capsule network [16] which is proposed
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Figure 2. Overall Structure. The framework of GazeCaps is divided into three parts: Feature Extraction, Capsule Formation, and
Gaze Regression. (a) We first extract image features from the input image through an image encoder which is based on CNN. (b) Then
the output features are reshaped to get primary capsules. The SAR module takes the primary capsules to do self-attention for generating
the intermediate capsule layer. Then the squash activation is applied to activate the capsules. (c) The gaze direction is estimated by a SAR
module.

for the image classification problem to solve gaze estima-
tion, which is a regression problem. The proposed model is
trained using angular gaze loss.

Given an input image, GazeCaps first use an image de-
coder to extract image features. CapsNet [16] contains a
single convolution layer that transforms each pixel inten-
sity into activations of local features, which can be used
as input to create primary capsules. However, because
only low-level features that correspond to very local in-
formation are extracted in a single convolution layer, we
use a convolution-based feature extractor with deeper lay-
ers to extract the structural features of facial components
as candidates for the construction of primary capsules (in
the proposed model, we used ResNet18 [9], which is ef-
fective for image analysis). Given an image I consisting
of three channels of size H × W , a feature map (f ) of the
shape of 1× 1× 256 is generated by the feature extractor F
(f = F (I)).

In Capsule Formation, the 256-dimensional vector is re-
shaped to create np capsules which are dp-dimensional vec-
tors as follows:

Vp = reshape(relu(conv(f))), Vp ∈ Rnp×dp (3)

where Vp = {vi|i = 1, ..., np} (here, np = 64, dp = 4),
vi is the i-th capsule with dimension dp. Vp can be repre-
sented as an np × dp matrix, where each row is a capsule,
and each column corresponds to an attribute at the same po-

sition. In the process of creating the primary capsules, in-
formation from an input image is no longer “place-coded”
in the spatial feature domain. Instead, it is “rate-coded” in
the capsule’s properties.

The capsules from the primary capsule layer are com-
bined through a SAR module. The output is activated by
a squash activation to create the intermediate capsule layer
with higher-level capsules. Through this process, low-level
capsules evolve into high-level capsules that can represent
more complex entities with more degrees of freedom; we
can obtain the intermediate capsules using the following
routing function:

vi = Routing(Vp) (4)

where intermediate capsule layer Vi = {vj |j = 1, ..., ni}
(here, ni = 32, di = 8) and Vi ∈ Rni×di , vj is the j-th
capsule with dimension di. To impart nonlinearity to the
capsule layer, we used the squash function as the activation
function.

After Capsule Formation, Gaze Regression adopts a
SAR module to estimate a gaze capsule vg directly. We do
not apply the activation function to vg because errors may
occur when using the activation function if the ground truth
is located at a distance greater than one from the origin.
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(b) Self-Attention Routing
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Figure 3. Illustration of Dynamic Routing and Self-attention
Routing. (a) illustration of dynamic routing which conducts sev-
eral iterations to update capsule weights C by calculating the sim-
ilarities between the capsules from the former and latter layers. (b)
illustration of self-attention routing which gets capsule weights C
directly by adopting a self-attention mechanism.

3.3. Capsule-routing using self-attention

In the proposed model, a novel capsule routing method
(SAR) using self-attention [15] is redesigned to effectively
construct high-level capsules from low-level capsules. As
shown in Figure 3 (b), by applying self-attention to low-
level capsules, we use an inter-capsule routing to represent
the interrelations among entities of a face image based on
the spatial contextual information of the capsules. Further-
more, unlike dynamic routing [16] (shown in Figure 3 (a)),
the proposed routing method does not require computation-
ally expensive iteration and is designed to be compatible
with the gradient-based optimization process. We used the
attention matrix for low-level capsules as the coupling co-
efficient for high-level capsules.

SAR module in Figure 2 shows a schematic diagram of
the proposed routing using self-attention. A prediction ma-
trix Ul+1 for creating a high-level capsule (vl+1) from low-
level capsules (vl) is obtained as follows.

Ul+1 = WVl, W ∈ Rdl×dl+1 (5)

Ul+1 is composed of the prediction vectors (ul
i) generated

by multiplying the capsule layer matrix Vl by a weight ma-
trix W , where dl+1 represents the dimensions of prediction
vectors that equals with the higher-level capsule. In general,
to express more complex properties, dl+1 is larger than dl.

We generate the attention matrix for capsule routing be-
tween the l-th capsule layer and (l + 1)-th capsule layer by
matrix multiplication between prediction vectors as follows:

A = softmax(
Ul+1Ul+1

T√
dl+1

), A ∈ Rnl×nl . (6)

The attention matrix is used as coupling coefficients for
capsules in the l-th layer. Using the attention matrix, we

can find agreements between the capsules that can effec-
tively represent the interrelations among entities by self-
attention; in other words, a capsule with more agreement
with other capsules receives higher attention. The attention
matrix gives weights to the prediction vectors as follows:

Xl+1 = AUl+1, Xl+1 ∈ Rnl×dl+1 (7)

where Xl+1 = {xi|i = 1, ..., nl} contains the weighted
prediction vectors. Then, vj in the (l + 1)-th layer is ob-
tained using the weighted sum of xis from the l-th layers
as vj =

∑nl

i=1 xi. Consequently, using self-attention, we
conduct capsule routing much more economically and ef-
fectively than dynamic routing.

The number of capsules constituting the higher-level
capsule layer may be one or more. The self-attention
routing needs as many as the number of capsules in the
higher-level layer for multiple capsules. Therefore, the self-
attention routing process described above is extended to the
multi-subspace (multi-head self-attention), and the number
of heads is equal to the number of capsules in the next cap-
sule layer.

3.4. Loss function for GazeCaps training

We use gaze error between estimated gaze and ground
truth to train the proposed model. The gaze loss is calcu-
lated by the following equation:

LGazeCaps = MSE(gt, gp) (8)

where gt is the ground truth of gaze, gp is the predicted gaze
direction, LGazeCaps is the loss used in training. The loss
is calculated as a mean squared error (MSE).

4. Experiments
4.1. Dataset for Evaluation

We use the ETH-XGaze dataset [20] for network pre-
training. ETH-XGaze consists of 1.1M images collected
from 110 subjects. We use a training set containing 765K
images of 80 subjects to pre-train the model.

A total of four datasets, EYEDIAP [7], Gaze360 [10],
MPIIIFaceGaze [23], and RT-GENE [6], are selected from
well-known public datasets to evaluate the gaze estimation
performance. All datasets are labeled for 3D gaze estima-
tion. The EYEDIAP dataset contains 94 videos with 237
minutes obtained from 16 subjects. We divide 16 people
into four clusters to evaluate their performance with this
dataset and performed 4-fold cross-validation for evalua-
tion. The Gaze360 dataset includes 172K images from 238
subjects, with the widest head poses and gaze distribution.
They pre-divide the dataset into 129K images for training,
17K images for validation, and 26K images for evaluation.
We use the experimental setting in [10]. The MPIIFaceGaze
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Figure 4. Capsule and Attention visualization. The images
with blue background are the visualization of capsule attention
weights and the brightness of the block represents the active in-
tensity, while the images with purple background are the visual-
ization of the capsule weights’ differences between masked im-
ages and original images and the brightness of the block represents
the degree of the differences. The square images and the rectan-
gle images correspond to 64 primary capsules and 32 intermediate
capsules, respectively. The similarity score is to evaluate the sim-
ilarity between difference maps and the attention maps from the
original image.

dataset contains 45K images obtained from 15 subjects. We
use the leave-one-person-out evaluation to evaluate the per-
formance of this dataset. The RT-GENE dataset contains
123K images from 15 subjects and specifies 13 subjects for
training and two subjects for validation. To evaluate the
performance of the dataset, we divide 15 people into three
clusters and use 3-fold cross-validation.

4.2. Capsule and Attention Visualization

As shown in Figure 4, we visualize the primary capsules
and the intermediate capsules in GazeCaps to show the pro-
posed method can capture gaze features accurately. Since
the positional information is lost in the formation of the pri-
mary capsules, we check which capsule is related to the eye
region by calculating the difference map of capsules from
the same layer between the eye-masked image and the orig-
inal image. And we rescale the elements in difference maps
and capsule attention maps to (0, 1). In this case, the cap-
sules with a large difference in difference maps are related
to the eye region. And we do the same for intermediate
capsules. To show that GazeCaps can capture eye features
accurately, we calculate the activation score by evaluating
the similarity between the difference maps and the capsule
attention maps with the following equation:

S = 1−
∑ncaps

i

(
ci − cdi

)2
ncaps

(9)

where S is the activation score whose range is (0, 1), ci is
the attention weight from attention maps, cdi is the differ-

Capsule type
Masked region

eyes face

Primary Caps 0.83 0.77
Intermediate Caps 0.90 0.77

Table 1. Activation score. The activation score is averaged over
10 subjects from ETH-XGaze.

(a) (b) (c) (d) (e) (f)

Figure 5. Grad-CAM [17] and predicted gaze visualization of
GazeCaps and CNN-based method. (a) Input images, (b) Grad-
CAM visualization of CNN-based method, (c) Grad-CAM visual-
ization of GazeCaps, (d) Ground truth, (e) Prediction from CNN-
based method, (f) Prediction from GazeCaps.

ence weight from difference maps, i is the index of cap-
sules, ncaps is the total number of the capsules in maps. To
make things clear, we also conduct the same visualization
of other face regions.

As shown in Table 1, the activation score of eyes is
higher than that of other face regions both in the primary
capsules and the intermediate capsules, which means Gaze-
Caps can capture eye features and give them more atten-
tion. And the activation score of eyes gets larger when the
model goes deeper from primary capsules to intermediate
capsules. That shows the proposed model focuses on eye
region better with the network proceeding. The activation
score of other face regions does not change much because
GazeCaps also considers the influence from other regions
except eyes.

4.3. Ablation Study

Method EYEDIAP Gaze360 MPIIFaceGaze RT-GENE

CNN 6.18° 15.41° 5.21° 13.28°
Transformer 5.84° 11.79° 4.51° 8.00°
Capsules(w/o SA-Routing) 5.44° 11.32° 4.88° 7.65°
Capsules(w/ SA-Routing) 5.10° 10.04° 4.06° 6.92°

Table 2. Ablation Studies. We compare the performance by per-
muting the subsequent architecture while maintaining the structure
of the feature extractor the same.

To validate the design of our proposed model, we per-
form an ablation study on capsule representation and self-
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Figure 6. Qualitative results. The first row images are input images, and the second and third rows are the ground truth and the estimated
result from the proposed method, respectively.

attention routing. To be specific, we compare our proposed
model with a CNN baseline and a Transformer baseline to
verify capsule representation, and compare with the vanilla
CapsNet with dynamic routing to verify self-attention rout-
ing. The CNN baseline inludes a ResNet-18 and two lay-
ers of MLP. The Transformer baseline contains a ResNet-
18 and six Transformer encoder layers followed by a single
MLP layer. The feature extractor in all models has the same
ResNet-18 [9] structure. For a fair comparison, we control
the amounts of parameters of all models to be the same.

As shown in Table 2, we conduct experiments on four
datasets to verify the reliability of the results. CNN and
Transformer methods are based on scalar representation
while the last two models (including our proposed model)
are based on vectorial representation (known as capsule).
The results show that both of capsule models outperform
scalar models on all selected datasets, which demonstrates
the big advantage of capsule models on gaze estimation.
And we also visualize the attention maps of the proposed
GazeCaps and CNN-based method from Grad-CAM [17]
as well as the predicted gaze direction from both models
(see Figure 5). It shows that the proposed method captures
eye region more accurately and has a better performance in
gaze estimation.

Besides, our proposed model also shows a better perfor-
mance than the default CapsNet with dynamic routing. That
illustrates that the proposed self-attention routing works
better in gaze estimation.

4.4. Cross-dataset Evaluation

Cross-dataset evaluation is well-known to analyze the
generalization performance of models. Because our key
components are based on capsules instead of neurons, we

Train
Test

EYEDIAP Gaze360 MPIIFaceGaze RT-GENE

EYEDIAP [7] - 34.1°/20.8° 20.0°/11.4° 17.9°/13.5°
Gaze360 [10] 13.8°/9.2° - 17.1°/9.2° 28.0°/17.2°
MPIIFaceGaze [23] 16.4°/11.4° 36.1°/22.4° - 18.5°/12.0°
RT-GENE [6] 29.1°/16.9° 35.9°/24.0° 13.7°/8.8° -

Table 3. Cross-dataset evaluation. We perform a cross-dataset
validation of the CNN-based model and the proposed capsule-
based model. In this experiment, the feature extractor is the
same for both methods. For direct comparisons, we put the re-
sults of CNN-based and Capsule-based methods side by side:
(CNN/GazeCaps)

design the experiments to highlight the effectiveness of cap-
sule representation for generalization performance. We se-
lect a CNN baseline which include a ResNet-18 and an
MLP layer to represent the methods using neurons. We
still control that the two models have a similar number of
parameters. Table 3 shows the cross-dataset evaluation re-
sults of the two models on the benchmark datasets. Our
GazeCaps shows better generalization performance in all
cases, as shown in the table. These results show that the
features extracted from the proposed capsule-based model
are more robust on different datasets than the CNN-based
model since it keeps more detailed information and takes
the relations among different properties into consideration.

Figure 6 shows the qualitative results on various face im-
ages from different datasets. The stable performance on dif-
ferent datasets shows a good generalization ability of the
proposed model.
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Method # of Params. # of FLOPs Backbone

FullFace [23] 196.6M 2.99G CNN
RT-GENE [6] 82.0M 30.81G CNN
Dilated-Net [2] 3.9M 3.14G CNN
Gaze360 [10] 14.6M 12.78G RNN
CA-Net [3] 34.1M 15.6G CNN
GazeTR-Pure [4] 227.3M 58.32G Transformer
GazeTR-Hybrid [4] 11.4M 1.82G CNN+Transformer
Vanilla CapsNet [4] 11.8M 2.5G Caps
GazeCaps(Proposed) 11.7M 1.82G Caps

Table 4. Specifications of gaze estimation methods. Our pro-
posed method is based on capsule networks, which is different
from other existing gaze estimation methods.

Method
Dataset

EYEDIAP Gaze360 MPIIFaceGaze RT-GENE

FullFace [23] 6.53° 14.99° 4.93° 10.00°
RT-GENE [6] 6.02° 12.26° 4.66° 8.00°
Dilated-Net [2] 6.19° 13.73° 4.42° 8.38°
Gaze360 [10] 5.36° 11.04° 4.06° 7.06°
CA-Net [3] 5.27° 11.20° 4.27° 8.27°
GazeTR [4] 5.33° 11.00° 4.18° 7.12°
GazeCaps(Proposed) 5.10° 10.04° 4.06° 6.92°

Table 5. Comparison with the SOTA methods. We compare
GazeCaps with other SOTA gaze estimation methods on EYE-
DIAP, Gaze360, MPIIFaceGaze, and RT-GENE datasets. The re-
ported metric is mean angular errors (in degrees).

4.5. Comparison with State-of-the-art Methods

Table 4 shows the number of parameters and the number
of flops of each network used in the experiment to com-
pare the efficiencies of the selected SOTA methods. Our
proposed method has fewer parameters than most existing
gaze estimation models and the lowest flops among all se-
lected models due to the adoption of capsule representation
and self-attention routing, which are 11.7M parameters and
1.82G flops. It shows that GazeCaps is a lightweight model
compared with other models and lowers the computational
requirement for gaze estimation model training.

Table 5 shows the gaze estimation results of our method
and those of other methods on the EYEDIAP, Gaze360,
MPIIFaceGaze, and RT-GENE datasets. FullFace [23], RT-
GENE [6], Dilated-Net [2], and CA-Net [3] are CNN-based
methods, whereas Gaze360 [10] combines CNN with RNN.
GazeTR [4] is a hybrid method that uses CNN features
as input for the Transformer1. This table indicates that
GazeCaps exhibits the best results among all methods on
all datasets. Notably, Gaze360 and GazeTR-Hybrid show
better results than other previous approaches. Therefore,
we can conclude that combining CNN with different types

1We retrained the GazeTR model, so the results reported here are dif-
ferent from [4].

of networks can improve the accuracy of gaze estimation.
GazeCaps is also a hybrid approach that uses CNN fea-
tures as the input for the capsule network. Compared with
other hybrid methods, we adopt capsules instead of neu-
rons to design the layers, which give the best performance.
In addition, our method can effectively mitigate the com-
putational burden by applying the attention mechanism to
capsule routing. The results in Table 4 and Table 5 show
that our method is a better hybrid approach than previous
methods in terms of accuracy and efficiency.

5. Conclusions
In this paper, we analyze problems in CNN-based and

Transformer-based gaze estimation methods and propose a
novel capsule-based network for accurate gaze estimation.
We introduce a novel SAR (Self-Attention Routing) module
which combines with capsule representation to form a new
gaze estimation framework. The final framework GazeCaps
achieves state-of-the-art results with a small model size and
low computation load. We believe that the capsule repre-
sentation has great potential to be further explored for gaze
estimation. For future work, we will study the interpretation
of hierarchical capsules by visualizing capsules and their
entities.
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