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A. Dataset

A.1. Synthetic Eye Images

Synthetic eye images are normalized from the synthetic

face images generated by ST-ED [13]. ST-ED utilizes the

‘face’ gaze instead of the ‘eye’ gaze during gaze redirection.

The gaze directions are defined by the gazing target point

and source point. The main difference between the ‘face’

and ‘eye’ gaze comes from the source point’s 3D locations.

The source point of the ‘face’ gaze is the midpoint between

two eye centers. Thus we only have one ‘face’ gaze direction

for each face image. As for the ‘eye’ gaze, the corresponding

source point is the center of the eye, which means we have

two ‘eye’ gaze directions for each face image.

To make the redirection of the ‘face’ gaze consistent

with our ‘eye’ gaze estimation task, we calculate the gaz-

ing target location instead of the gaze direction during the

preprocessing and redirection processes. To be specific, we

first normalize face images given the preprocessing require-

ments of ST-ED. After normalization, in addition to saving

the normalized (rotated) gaze directions, we also keep the

normalized gazing target location. During the process of redi-

recting the gaze directions, we assume that the gazing target

maintains the same distance to the source point. Then we

normalize [11] the redirected face images given the ‘reposi-

tioned’ gazing target to acquire normalized eye images with

the ‘eye’ gaze directions. Fig. 1 shows several normalized

real and synthetic eye images with the dataset provided (left

three columns) or assigned ‘eye’ gaze directions (right three

columns).

A.2. Gaps between Real and Synthetic Data

The gap between real and synthetic data shown in Figure

4 does not provide conclusive evidence that the unobserved

Kappa Angle is the cause. To investigate further, we mixed

the real and synthetic data in training Diff-NN to determine

if the unobserved person-dependent component was elim-

inated. However, as illustrated in Section 4.4, the mixture

Figure 1. The comparison between real (left three columns) and

synthetic (right three columns) eye images. Columns (a) to (c) are

eye images from different persons in MPIIFaceGaze [12]. Columns

(a’) to (c’) are synthetic images generated from the three previous

columns, respectively. Rows (1) to (3) represent the gaze direction

with the same pitch (−5 degrees) and the changed yaw of 5, 10, 15
degrees, respectively.

of real and synthetic data performs even worse than real

data alone, providing further evidence of the absence of the

Kappa Angle of the synthetic data.

A.3. Roll Distribution

With the leave-one-subject-out protocol, each subject’s

data was viewed as the test subset one time. Thus we cal-

culated the distribution of the roll of the head pose before

normalization given the whole dataset. Fig. 2 presents the

distribution given MPIIFaceGaze [12] and EYEDIAP [1]

(SP and DP, respectively). We can notice that in EYEDIAP

(DP), the distribution of the roll of the head is wider com-

pared to MPIIFaceGaze. On the other hand, EYEDIAP (SP)

exhibits the smallest range of roll of the head.

B. Implementation Details

B.1. Network Architecture

The network only contains one single branch built with

three convolutional layers and three fully connected layers.

The convolutional part’s structure inherits from the Diff-NN
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Figure 2. Distribution maps of the roll of the head pose before normalization in two benchmark datasets. These distribution maps revealed

the presence of the OCR response when the roll of the head is not in a zero position. Since we utilized ‘leave-one-subject-out’ protocol, each

sample in MPIIFaceGaze and EYEDIAP was included in the test subset.

[6]. Each time, we feed only one eye image Ie ∈ R
H×W×C

into the network where (H,W,C) = (48, 72, 3). The ex-

tracted features from the convolutional part are fed into the

fully connected part. The corresponding head pose is con-

catenated with the output from the first fully connected layer.

Then the last two fully connected layers are applied to the

concatenated output to estimate the optical axis direction

with yaw and pitch components.

The proposed network architecture has several advan-

tages. The first point is the simple network structure. Instead

of accompanying several inputs and branches for one output,

our proposed network only takes one input but still has com-

parable prediction performance. The second point is overfit-

ting avoidance. The differential method needs a dropout layer

to avoid overfitting, which can cause bad performance on

the new participant data. However, the proposed KAComp-

Net could proactively prevent this obstacle by eliminating

dropout layers.

B.2. Training Parameters

We train KAComp-Net with 12 epochs and a batch size

of 128. The initial learning rate is set as 0.01. After each

epoch, the learning rate is divided by 2. The optimizer is

Adam [4], with a weight decay coefficient of 0.09. We use

the default momentum value of β1 = 0.9, β2 = 0.999.

B.3. Gaze Inference

In the testing phase, we randomly pick a certain num-

ber (M ) of calibrated samples F e with the gaze directions.

We first feed these samples into the KAComp-Net to es-

timate their optical axis directions. Then given the pro-

vided gazes and the OCR response, we can derive several

{κ̂i, i ∈ [1,M ]} from M calibrated images. We then utilize

their average to represent the estimated Kappa Angle,

κ̂ =
1

M

M∑
i=1

R−1
OCR,i ·

[
ggt(F e

i )− ψ(F e
i )
]
. (1)

Given the estimated Kappa Angle from calibrated samples,

we can predict the gaze. The predicted gaze error of eye

image Ie
j is

gerr(Ie
j) = ggt(Ie

j)−
[
ψ(Ie

j) +ROCR,j · κ̂
]
, (2)

where the κ̂ is derived from Eq. (1).

C. Discussion

C.1. Ambiguity from the Camera Pose

Head poses in images can be modified due to different

camera poses, even if the subject’s head pose remains invari-

ant. When using benchmark datasets, we can assume that

the camera was placed horizontally based on data collection

settings and clues from upper torsos, as discussed in Section

4.1. To ensure accurate estimation of head roll motion in

practical scenarios, it is crucial to determine the camera’s

roll pose with respect to the horizontal level. If the camera

can be placed statically, it can be manually calibrated to

ensure it is positioned horizontally.

A possible alternative is capturing high-resolution iris

images. Then the OCR response can be directly estimated

from these images without relying on the derivation from

head roll motion, as demonstrated in [7].

C.2. Why Rotation

In the normalization step, when the roll of the head is

normalized to an upright status, the ground truth gaze is

transformed by a rotation matrix instead of an affine transfor-

mation matrix, as illustrated in [11]. This process is similar

to our OCR compensation process. When OCR occurs, the

eyeball has an undesired roll after normalization, which redis-

tributes the pitch and yaw of the Kappa Angle. To counteract

this redistribution caused by various roll statuses within the

same subject’s data, we apply rotation matrices to compen-

sate, as shown in Eq. 4.



C.3. Listing’s Law and OCR

Ocular counter-roll (OCR) is a vestibulo-ocular reflex

characterized by torsional rotations of the eye in response to

lateral tilt of the head [8]. Listing’s law states that when the

head is fixed, there is an eye position called primary position,

such that the eye assumes only those orientations that can be

reached from primary position by a single rotation about an

axis in a plane called Listing’s plane [9]. Listing’s law holds

during fixation, saccades, smooth pursuit, and vergence, but

fails during sleep and vestibulo-ocular reflex [10], including

OCR.

When the head tilts to the side, OCR occurs, causing the

eye to rotate around the roll axis that is out of Listing’s plane.

This means that the orientation of Listing’s plane changes

when the head is tilted, as shown in [2]. However, if the head

maintains a static tilted posture, Listing’s Law still applies,

and eye rotation vectors are still confined to a plane. This

plane is shifted along the torsional axis in relation to the

upright position, proportional to the roll-tilt angle [3]. In this

case, the eye orientation can still be represented by pitch

and yaw components with a constant torsional bias. Our

proposed KAComp-Net considers the bias caused by the

OCR, and the remaining estimation processes are consistent

with the cases where OCR doesn’t happen.

C.4. Limitations and Plans

Our proposed method has several limitations, both from

the structural design perspective and the data perspective.

These limitations are viewed as research directions for future

work.

1) Synthetic Data: KAComp-Net requires synthetic data

to aid in the learning process of the optical axis direction.

Compared with the real data, synthetic data has less unob-

served person dependent components of gaze directions, as

shown in Section 3.2 and Section 4.4. Although we took

advantage of this property regardless of the gap, we still

need to get rid of the dependence on synthetic data. In the

future, the network can learn unified features directly from

real data without Siamese learning between data from differ-

ent domains. This could potentially improve the estimation

accuracy.

2) Static / Dynamic OCR: KAComp-Net only considers

static OCR response, which is related to the roll of the head.

However, during head tilt, dynamic OCR occurs with slow

phases away from and quick phases toward the head tilt [5].

With a sustained head tilt, the static OCR occurs, resulting in

a static change in torsional eye position in the direction away

from the head tilt [8]. In future work, if we have access to

consecutive frames, we can model the process by considering

both static and dynamic OCR.

3) High-Resolution Iris Images: In the KAComp-Net

pipeline, OCR needs to be derived from the roll motion of

the head, which is normally abandoned after normalization

due to the low resolution of eye images. However, if we have

high-resolution eye images, we don’t need to derive the OCR

response. Instead, we can measure the OCR directly given

the high-resolution iris images [7] for a more accurate gaze

estimation.
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