
Leveraging GANs for data scarcity of COVID-19: Beyond the hype

Hazrat Ali
College of Science and Engineering

Hamad Bin Khalifa University,
Qatar Foundation, Doha, Qatar.

haali2@hbku.edu.qa

Christer Grönlund
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Abstract

Artificial Intelligence (AI)-based models can help in di-
agnosing COVID-19 from lung CT scans and X-ray images;
however, these models require large amounts of data for
training and validation. Many researchers studied Gener-
ative Adversarial Networks (GANs) for producing synthetic
lung CT scans and X-Ray images to improve the perfor-
mance of AI-based models. It is not well explored how
good GAN-based methods performed to generate reliable
synthetic data. This work analyzes 43 published studies that
reported GANs for synthetic data generation. Many of these
studies suffered data bias, lack of reproducibility, and lack
of feedback from the radiologists or other domain experts.
A common issue in these studies is the unavailability of the
source code, hindering reproducibility. The included stud-
ies reported rescaling of the input images to train the ex-
isting GANs architecture without providing clinical insights
on how the rescaling was motivated. Finally, even though
GAN-based methods have the potential for data augmenta-
tion and improving the training of AI-based models, these
methods fall short in terms of their use in clinical practice.
This paper highlights research hotspots in countering the
data scarcity problem, identifies various issues as well as
potentials, and provides recommendations to guide future
research. These recommendations might be useful to im-
prove acceptability for the GAN-based approaches for data
augmentation as GANs for data augmentation are increas-
ingly becoming popular in the AI and medical imaging re-
search community.

1. Introduction

The healthcare systems worldwide faced an unprece-
dented challenge with the COVID-19 pandemic. As a re-
sult, the capacity of coping with faster testing and provid-
ing care was put to test. When COVID-19 spread wildly,
researchers were pushed to find quick ways for developing
AI techniques to aid in combating the pandemic through
early diagnosis. The most promising Artificial Intelligence
(AI) techniques mostly fall in the deep learning category –
models that consists of multiple layers of neural network
(for example, convolutional neural networks (CNNs) and
their variants). However, the potential of deep learning
models to learn from the data rely on very large data. For
image-based diagnosis and analysis, these models required
a large amount of lung radiology images data. Since the
data availability was meager, researchers rushed to use Gen-
erative Adversarial Networks (GANs) to generate synthetic
Computed Tomography (CT) scans or X-Ray images that
may capture the characteristics of real data with COVID-
19 signs. It is well understood that image data augmen-
tation is the most common application where GANs have
found promising use due to their ability to generate realistic-
looking images. Consequently, many studies reported the
use of GANs to combat the data scarcity problem in train-
ing AI models for COVID-19 diagnosis. In this work, we
identify 43 studies [1–43]. Typically, GANs serve as a sub-
module of the entire framework used explicitly as a data
augmentation method, while the diagnosis of COVID-19 is
made by using appropriate AI methods, for example, con-
volutional neural networks (ResNet, VGG16, etc) [44, 45].

Problem statement: While many reviews have been
published on the role of AI methods in COVID-19 diagno-
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sis [44–47], these reviews did not explicitly cover the short-
comings and risk of bias of the studies or did not explicitly
cover GAN methods. One particularly relevant work is the
review by Robert et al. [48]; however, it has a broad scope
as it covers various machine learning methods for COVID-
19. Besides, the focus in [48] is mainly the performance
of AI methods for the diagnosis of COVID-19 and does not
identify the limitations of the data augmentation methods
explicitly. Another relevant study is the review by Cruz
et al., [49] however, the focus of their work is on review-
ing X-ray datasets for COVID-19 and not on reviewing the
models. With the growing number of studies on GANs for
synthetic data for COVID-19, it is important to review the
reported methods and analyze them, particularly from the
perspectives of model generalization, data representation,
and clinical translation. Furthermore, to enhance the re-
search and developments on GAN-based methods, it is crit-
ical to understand the importance of the risk of data bias,
the challenges associated with the diagnostic accuracy, the
evaluation mechanisms, and the inclusion of radiologists or
domain experts in the loop when the research community
presents more developments on the topic.

This paper aims to appreciate the early attempts for
GAN-based methods to address the challenges related to
COVID-19 data scarcity and diagnosis. Besides, it seeks
to highlight the importance of addressing specific blights
and imperfections as overcoming these can help increase
the effectiveness and usability of the findings of these re-
search developments. Unlike previous reviews, that cover
a general description of the strengths of the AI methods
for COVID-19 diagnosis, this work provides a more in-
depth description of the various challenges that are associ-
ated with the GAN-based augmentation of data for COVID-
19. While the discussion is provided from the perspective of
COVID-19 disease, the findings would be useful for medi-
cal AI and medical data augmentation applications.

2. Methodology

We performed a literature search to retrieve relevant pub-
lished studies that reported the use of GANs for generating
lung CT scan or X-Ray image data. We retrieved the studies
from Pubmed, Scopus, IEEEXplore, and Google Scholar.
We found a total of 348 studies. In the first phase of study
selection, we removed 81 duplicates and then performed
title and abstract screening and removed 208 studies. We
performed the full-text reading in the second phase and ex-
cluded 16 studies that did not fulfill the inclusion criteria (as
identified in supplementary material). Finally, we included
43 studies in this mini-review. We cover only those stud-
ies that reported GANs for synthesis (data augmentation)
purposes. Appendix 1 provides the search terms used for
retrieval of the studies. Appendix 2 provides the criteria for

Figure 1. PRISMA flowchart for the selection of studies.

inclusion and exclusion of the studies.

3. Results and Discussion
Fig. 1 shows the PRISMA flowchart for the selection of

studies and Fig. 2 shows a summary of the demographics of
the included studies. The key findings of our analysis can
be categorized into the challenges related to:

1. Data proportion, such as the dataset size used for
model training, the underlying bias in the data or the
model training, and the associated data leakage prob-
lems.

2. The quality of the data such as the image resolution
and the data modality.

3. The applications in COVID-19 such as the lack of
demonstration of diagnostic performance.

4. The evaluation mechanism such as qualitative evalua-
tion by radiologists or the metrics used for quantitative
evaluation.

5. The potential clinical translations such as code avail-
ability and reproducibility.

Fig. 3 provides a summary of the challenges identified in
this analysis. We discuss these in the following text.
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(a)

(b) (c) (d)

Figure 2. Demographics of the studies. (a) Summary of country-wise and year-wise number of studies. (b) Summary of number of the
studies on the basis of venue. (c) Summary of number of studies on the basis of using different modalities of training data. (d) Summary
of studies on the basis of the number of images used for training.

3.1. Dataset size

Better representation of the data can be obtained from
large data. However, in the included studies, only four stud-
ies [17], [36], [39], [43] reported using more than ten thou-
sand images, and only two studies [12], [37] reported us-
ing more than 5000 images. In more than half of the stud-
ies [1–7, 14–16, 20–29, 31, 34, 35, 38, 40, 42], the number of
images reported for training was less than 1000. So, this
training data size raises concerns about the generalization
of GANs training. Similarly, in many studies, we found
a lack of information on the number of patients (individu-
als) from whom the images have been acquired. Besides,
we found that the number of individuals, even if reported
in the studies, was too small compared to what would be
recommended for training a GAN model. Only three stud-
ies [4], [7], [20] reported using data of more than 500 in-
dividuals. In addition, a common challenge in the crowd-
source data is mapping the number of images to the number
of individuals. Furthermore, the inclusion/exclusion of an
individual and the methods and criteria for recruiting indi-
viduals to record data may affect the data demographics,

bias, and imbalance, consequently influencing the model
training.

3.2. Risk of bias

Bias in data refers to the imbalanced representation of
different groups in the data. For example, there can be
gender bias, age bias, or sample bias, etc. If the original
data used for training GANs has a bias, then there is a high
risk that the bias will be carried to the synthetic data. It
is clear that the crowd-sourced datasets available publicly
lacked any such specifications, or the studies fail to report
to cater for the biases in the data. Eventually, the bias in
data will result in a bias in the training of the AI-based di-
agnosis model too. For example, Garcia et al. [49] reported
in their analysis of studies reporting X-ray images datasets
to diagnose COVID-19 that the models trained with chest
X-ray datasets were prone to high bias. The potential risk
of bias in training AI models is a critical bottleneck in the
generalization ability and robustness of the models. For ex-
ample, at the beginning of the pandemic, most of the posi-
tive cases were for adults only. On the other hand, a pneu-
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Figure 3. Key challenges identified in the studies reporting GAN-based data augmentation for COVID-19.

monia dataset may have more samples for lung X-ray im-
ages of children. A GANs model trained on such data will
carry forward a similar bias. Suppose we use the pneumonia
dataset with more young people/pediatrics samples and the
COVID-19 dataset with more examples for adults. In that
case, the training may end up in a model that has learned
to classify lung images of adults versus children instead
of classifying COVID-19 versus pneumonia. Some stud-
ies [4], [22], [29], [32] used the RSNA pneumonia dataset
available from Kaggle1. This particular dataset, as reported
by Kermany et al., [50] has image data for young people
between the age of one to five. Ablation studies and adver-
sarial tests are important to report to avoid such biases. So,
one may test the model for extreme cases such as samples
of adults with pneumonia or samples of young people that
were COVID-19 positive.

3.3. Data leakage

Some studies reported results for multiple datasets.
However, no cross-verification mechanism was reported to

1https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data

avoid data leakage. Hence, reporting results on two dif-
ferent public datasets does not necessarily imply valida-
tion/testing on independent samples as these datasets may
have borrowed from each other. For example, [11], [18],
[33] reported the use of three different datasets of chest
X-ray images including [44, 51]. However, the data in
Tawsif et al., [44] borrows images from Cohen et al., [51].
Amongst these, [18] reported deletion of duplicate images
though details were missing on how duplicate images were
identified). [11] reported that they used one dataset to train
the model and then used the trained model to label images
of the other dataset but did not identify that the two datasets
have overlapping entries. In summary, prevention of data
leakage is not guaranteed by the studies, and the studies lack
explicit details on addressing the confounders. The major-
ity of these studies (36 out of 43 studies) reported using a
publicly available dataset for CT and X-ray images. For
similar reasons as discussed above, many of the images in
these data were collected through crowdsourcing as an early
attempt to facilitate research on AI for COVID-19. Con-
sequently, the data collection (more often through crowd-
sourcing) was mostly uncontrolled and not well-curated.
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Hence, they lacked many details such as demographics or
guarantee to prevent data leakage. Only a few studies [7],
[12], [14], [15], [20], [31], [34] reported using privately col-
lected data where the researchers had more control over the
data collection mechanism.

3.4. Image resolution

A common pre-processing step used in the included
studies was rescaling the image data to a resolution
512×512 or 224×224 pixels. The motivation for resizing
the images was mostly model-driven and not driven by the
clinical objective. At least, the studies provided no insights
on how or why they chose this resolution. In some cases,
the rescaling seems quite an aggressive downsizing of the
input X-ray images from 2170×1953 pixels to 512×512.
Similarly, for volumetric CT scans, the studies had to re-
strict themselves to 2D images (individual scans) to train
the model. Insights on such choices are either missing or
very limited.

3.5. Data modality

In the 43 studies, we found that almost 60% of the stud-
ies (25 used X-ray images versus 16 used CT) reported us-
ing X-ray image data to train GANs models for data aug-
mentation to achieve diagnosis with AI models. However,
it is well understood that CT scan has higher sensitivity than
X-ray images for COVID-19 diagnosis [49].

3.6. Augmentation only

Some studies reported using GAN-based methods to
generate synthetic lung CT scans or X-ray images [1], [14],
[21], [22], [24], [25], [34], [35], [42]. For example, [14]
covers segmentation only). [25] reports the synthesis of vol-
umetric CT scans using a 3D conditional GAN however, the
study did not analyze the generated synthetic data for its
ability for diagnosing COVID-19, meaning the studies did
not explore the effectiveness of the generated synthetic data.

3.7. Diagnosis stage

A common trend in the studies was the staging of the
disease. Most of the image data shared during the earlier
days of the pandemic comprised cases of severe COVID-19
with a noticeable impact on the lungs. Consequently, the
GANs trained would generate synthetic images of the ex-
treme stage where the presence of the infection was already
established. Hence, GAN-based methods that can support
early diagnosis of the infection are limited.

3.8. Radiologists in the loop

In the included studies, none (but one study [22]) re-
ported an evaluation/rating of the synthesized data by pre-
senting it to radiologists. So, there remains an unclear in-
terpretation of the qualitative assessment of the synthesized

CT/X-Ray images. [22] reported qualitative analysis of syn-
thesized X-ray images by a radiologist that the radiologist
could distinguish from real X-ray images for COVID-19
positive cases. Besides, the qualitative analysis suggested
that the synthesized images fall short of diagnosis quality.

3.9. Evaluation Metrics

One common mechanism for quantitative evaluation of
synthetic CT scan or X-ray images was the use of metrics
such as Structure Similarity Index Measure (SSIM), Frechet
Inception Distance (FID), and Peak Signal-to-Noise Ratio
(PSNR). However, the evaluation with SSIM and FID with-
out input from radiologists can be overly optimistic as these
metrics are primarily derived from computer vision litera-
ture, and their suitability for medical images might be lim-
ited. Besides, the lack of evaluation by radiologists might
hinder the acceptability of these models being translated
into clinical practice and hence lose the very purpose of us-
ing AI to aid in combating the pandemic.

3.10. Code availability

To advance the developments in data augmentation, there
is a dire need to provide reproducible softwares or code.
We found the lack of reproducibility analysis as a common
trend in the studies. More specifically, only three studies
[14], [24], [39] provided links to publicly available Github
repositories for their code. Among these, one of the links
[14] was found broken.

3.11. Can the studies be translated to clinical appli-
cations?

We believe with the existing shortcomings in the stud-
ies, GAN-based studies are not yet ready to be translated
to clinical practice. Nevertheless, despite the shortcomings,
the potential impact of using GAN-based methods to im-
prove the training of AI models for COVID-19 diagnosis
cannot be denied. Therefore, future translation to clinical
applications is not futile.

4. Suggestions
In this section, we provide suggestions on handling the

GAN-based data augmentation for COVID-19. We believe
that these suggestions will provide a roadmap to the re-
search community and improve future study designs.

4.1. Large data

Since much more data is becoming available for lung
CT scan and X-Ray images; it is highly recommended that
any current and future research on GANs for COVID-19
is based on much larger datasets than those reported in the
earlier studies surveyed in this work. In addition, the report-
ing of data demographics should be encouraged as this will
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help mitigate challenges such as data leakage or risk of bias
in data.

4.2. Reproducibility

We urge the research community to publish their codes
for reproducibility to promote usability and utility. The
transparency in using the models will be a key to increas-
ing their acceptability and help the community gain better
insights into the model. In addition, it will also enable re-
producibility as well as future developments on top of ex-
isting works.

4.3. Adversarial test

A useful way to evaluate the model is to report aggres-
sive adversarial test strategies, for example, by generat-
ing GAN-based data from lung CT scans before 2020 and
then using the generating data to evaluate the AI model
for COVID-19 diagnosis. Any positive detection will pro-
vide an opportunity to investigate the model performance as
COVID-19 was only spreading in late 2020.

4.4. Evaluation methods

The research community (including the authors, the re-
viewers, and the readers) should consider evaluating their
work against the Radiological Society of North Amer-
ica Checklist (RSNA CLAIM) [52], assessment tools like
PROBAST [53], or similar metrics, that provide a com-
prehensive checklist for AI models from the perspective of
data, model training, and evaluation metrics. A lack of com-
pliance with the guidelines such as those in CLAIM [52]
or validation of the studies using assessment tools such as
PROBAST [53], will hamper the translation of these find-
ings into clinical applications.

4.5. Early feedback from radiologists

The research community should consider incorporating
the feedback and input from doctors and clinicians starting
from the earlier phase of the study design. Doing so will
help better understand the key challenges in handling lung
CT scans or X-ray images data, interpret the subtle informa-
tion in the data, and increase the opportunities for clinical
translation of the developed methods.

5. Limitations
Our analysis includes studies from four databases,

namely Pubmed, Scopus, IEEE Xplore, and Google
Scholar. So, studies that are not indexed in these databases
have been left out. We did not include pre-prints and un-
published literature in this analysis as they are not peer-
reviewed, but might contain good research outcomes. The
scope of our work is limited to images-based studies only.
The analysis does not directly compare the evaluation met-
rics as the included studies differ in terms of the dataset size,

choice of GAN architecture, the timeline of the study. The
research and developments on methods for COVID-19 oc-
cur extremely fast. Hence, it is possible that as this work is
being drafted, several additional studies might be published
which are not covered in this analysis.

6. Conclusion
This work provided a critical analysis of the shortcom-

ings of GAN-based methods for data augmentation in ap-
plications related to AI-based diagnosis of COVID-19. We
identified many areas where the research on using GAN-
based methods for data augmentation in COVID-19 could
be improved. We believe that the findings of this analysis
of studies reporting GAN-based synthetic data complement
findings of a previous study by [48] who reported the many
pitfalls in the use of machine learning methods for COVID-
19, and an earlier study by [49] that identified the risk of
bias in the reported AI models. The analysis in this work
will help the readers to understand the limitations of pub-
lished studies and design better studies in the future to over-
come the shortcomings.
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