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Abstract

In this paper, we propose a bidirectional style transfer
method by exchanging the style of inputs while preserv-
ing the structural information. The proposed bidirectional
style transfer network consists of three modules: 1) con-
tent and style extraction module that extracts the structure
and style-related features, 2) local feature transform mod-
ule that aligns locally extracted feature to its original coor-
dinate, and 3) reconstruction module that generates a newly
stylized image. Given two input images, we extract con-
tent and style information from both images in a global and
local manner, respectively. Note that the content extrac-
tion module removes style-related information by compress-
ing the dimension of the feature tensor to a single channel.
The style extraction module removes content information by
gradually reducing the spatial size of a feature tensor. The
local feature transform module exchanges the style informa-
tion and spatially transforms the local features to its origi-
nal location. By substituting the style information with one
another in both ways (i.e., global and local) bidirectionally,
the reconstruction module generates a newly stylized image
without diminishing the core structure. Furthermore, we en-
able the proposed network to control the degree of style to
be applied when exchanging the style of inputs bidirection-
ally. Through the experiments, we compare the bidirection-
ally style transferred results with existing methods quanti-
tatively and qualitatively. We show generation results by
controlling the degree of applied style and adopting various
textures to an identical structure.

1. Introduction

Visual imagination is one of the most remarkable as-
pects of human intelligence. For instance, by observing
the brown loafer, humans can easily think up a certain type
of bag with a brown texture. This imagination originates
from humans’ ability to separate the style and structure of
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Figure 1. The generation results of the proposed bidirectional style
transfer network. Based on an input pair, style information is ex-
changed with each other and generates newly stylized images bidi-
rectionally.

an object independently. Inspired by the ability, there has
been much progress regarding image generation algorithms
due to the advance of deep generative models. One of the
representative works is artistic style transfer [8, 14], which
refers to merging the content of a photo and the style of
a painting. Although the style transfer algorithms gener-
ated astonishing results, they mainly considered the style
of artistic paintings with a distinct style. Another approach
is image-to-image translation [16] that transforms an image
from one domain to have the style (or characteristics) of an-
other. After the introduction of adversarial [10] and cycle
consistency loss [41], the quality of translated images has
improved dramatically. However, handling the controllabil-
ity (i.e., the degree of the reference style to be applied) of a
generation network remained unresolved.

To overcome the aforementioned limitations, we pro-
pose a bidirectional style transfer network with local fea-
ture transform module that considers the multiple inputs
provided by a user, thus generating multiple outputs by ex-
changing styles with each other. Assuming a pair of input
images as depicted in Fig. 1, our network can generate a pair
of outputs that preserve the original structure and apply the
style of another bidirectionally. Specifically, the proposed
network consists of extraction and reconstruction modules.
The extraction module predicts two features related to the
style and content information from the two input images
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respectively. Based on the disentangled features, the recon-
struction module exchanges the styles and generates new
images bidirectionally (i.e., style-exchanged images). Fur-
thermore, we enable the proposed network to control the
effects of the style feature on the generated images by in-
troducing a weight parameter. With Edges2Handbag [40],
Edges2Shoes [16], and Clipart [33] datasets, we compared
the generation results with other methods in quantitative and
qualitative ways. Through the experiments, we validated
that our method could exchange the style of inputs with an-
other. Furthermore, we show that our method can apply
various styles and control the degree of stylization when
generating outputs.

2. Related Works
2.1. Artistic Style Transfer

Neural style transfer is referred to as an image genera-
tion method that applies the target style (e.g., style of artis-
tic paintings) to the input while preserving the main struc-
ture [23]. One of the early attempts to adopt a neural net-
work as a style transfer method was the work from Gatys et
al. [8]. They utilized the Frobenius norm of a gram matrix
as a style loss which is regarded as considering the correla-
tion of the features. Another approach was to generate syn-
thetic style transferred images by combining convolutional
networks and a Markov Random Field (MRF) to maintain
the local pattern of the style exemplar [25].

After the introduction of artistic neural style transfer
from Gatys et al. [8], Li et al. [26] provided a mathematical
explanation of style loss using Maximum Mean Discrep-
ancy. To accelerate the style transfer, Johnson et al. [18]
trained a style transfer network to synthesize images in a
real-time manner. However, the work of Johnson et al. [18]
required an additional training process when the target style
is modified. Eventually, Huang et al. [14] proposed real-
time style transfer using an adaptive instance normalization
layer. While previous methods mostly focused on applying
the style of artistic masterpieces, Luan et al. [29] proposed
a method to transfer the style of a photo. For further im-
provements, Penhout et al. [34] detached a salient object
from the background. This method performed style transfer
of salient object and background separately to prevent any
disruption occurring due to style difference of background
and object. Kim et al. [20] considered geometric informa-
tion between style and content images while applying the
texture information. Liao et al. [27] utilized semantic con-
text matching and applied texture information in a global
way after considering the local context.

2.2. Image-to-image Translation

The image-to-image translation refers to generating an
image from one domain to another. Unlike traditional com-

puter vision problems [1, 7, 12], Isola et al. [16] defined
image-to-image translation as a generalized representation
of many previous vision tasks. In this manner, Isola et
al. [16] proposed a generalized translation model referred
to as Pix2Pix which uses adversarial [10] loss while train-
ing. For further translation, Zhu et al. [42] proposed Bicy-
cleGAN to perform one-to-many generation. Although the
Pix2Pix [16] and BicycleGAN [42] showed impressive re-
sults, they require a pair of input and ground truth to be tar-
geted for translation. However, after the proposal of cycle-
consistency [21,41] loss, the pair of input with ground truth
was no longer required.

Hoffman et al. [13] proposed a simple method to obtain
real-world image datasets by translating virtual images to
real-world images. To obtain more user-guided images, a
style removal network was used to detach all the texture
information before applying a new type of texture [2,3]. In-
stead of removing the original style, Ge et al. [9] utilized
a segmentation map to generate separated regions. For fur-
ther efforts, attaching a refinement network referred to as
Pix2PixHD [36] was proposed to generate a higher resolu-
tion image. Since Pix2PixHD [36] considers the segmenta-
tion map as an input, it tends to wash away the information
of semantic masks. Therefore, Park et al. [31] proposed
a segmentation map-based denormalization layer that can
handle the feature map without washing out the semantic
information.

Zhu et al. [43] considered region adaptive normalization
in a class-wise manner instead of regarding the whole se-
mantic masks. For further improvements, Kim et al. [19]
added an attention layer to the extracted feature while gen-
erating the new translated image. Another approach was
to assume an intermediate domain that keeps both charac-
teristics of domains [15, 28]. While previous methods con-
sidered two domain translation, Choi et al. [4, 5] proposed
multiple domain image-to-image translator with the unified
generator. Park et al. [32] proposed a swapping autoen-
coder with co-occurrent patch statistics to encourage tex-
ture codes to represent the texture information of generated
images. Based on the above previous works, we consider
an image-to-image translation network that accepts various
target styles as many style transfer methods behave.

3. Methods

3.1. Bidirectional Style Transfer Network

Given two input images, we generate newly transferred
outputs by exchanging the style bidirectionally. To achieve
this goal, we propose a bidirectional style transfer network
that generates style-exchanged images for two arbitrary in-
put images sampled from the dataset X . The proposed bidi-
rectional style transfer network consists of three modules:
1) content and style feature extraction module, 2) recon-
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Figure 2. Network architecture of the proposed bidirectional style transfer network. The proposed network G consists of feature extractor,
feature transformer and reconstructor. The dashed line denotes the weight parameters share the identical value. The content feature
extraction module Fc, Pc removes style-related information and style feature extraction module Fs, Ps removes content information.
The reconstruction module R generates new images by merging the content and style feature. Lastly, the discriminator D predicts the
probability of whether the image is sampled from real dataset in global and local manner.

struction module and 3) Local Feature Transform (LFT)
module. As depicted in Fig. 2, the feature extraction module
has two separated branches for global and local feature ex-
tractions based on the shared encoder network E. The con-
tent and style feature extraction module provides features
extracted from the given input images, in a global and local
manner. The LFT module reallocates the local features into
their original location by using a spatial transformation net-
work. Finally, the reconstruction module generates style-
exchanged images with structural consistency based on the
extracted features.

For a given input pair (x1, x2) ∼ X × X , the shared
encoder network provides feature g1 and g2 which are given
as:

g1 = E(x1), (1)
g2 = E(x2). (2)

Based on these features, the content and style feature ex-
traction modules, Ec and Es, extract global content feature
fc and style feature fs which are given as:

fc = Fc(g1), (3)
fs = Fs(g2). (4)

To obtain local content lc and local style ls feature, we adopt
RoIAlign [11] layer before inferencing local-level features.
The local-level features are extracted using local content
and style feature extraction module Pc and Ps. The results

from feature extraction modules Pc, Ps are given as:

lc = Pc(RoIAlign(g1, b1)), (5)
ls = Ps(RoIAlign(g2, b2)), (6)

where b1, b2 ∈ R4 denotes coordinates of bounding boxes
which are sampled randomly. To consider various parts of
local features, we selected n RoIs while exchanging the
style of reconstructed images.

The content feature extraction module consists of con-
volution layer preventing any downsizing computations of
the output feature. Therefore, outputs from the content fea-
ture extraction module diminish all style-related details and
leave only the structural information. We design fc and lc to
be projected to a single channel space by reducing the out-
put channel of convolution filter gradually. The style feature
extraction module is composed of multiple convolution and
down-sampling layers. As a result, the style features fs and
ls preserve texture details and remove structural informa-
tion. That is, style features are designed to have a small
spatial size via down-sampling while ascending the channel
space to a higher dimension. Therefore, the dimensionalty
of the feature space is given as:

fc ∈ R1×H×W , (7)
lc ∈ R1×h×w, (8)

fs, ls ∈ RC×1×1, (9)

where C, H , and W denote the number of channels, height
and width of global feature maps and h, w denotes height
and width of local feature map.
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Based on the extracted features fc from x1 and fs from
x2, the reconstruction module R returns newly stylized im-
age x̂1, i.e., image with content of x1 and style of x2. The
newly generated images by exchanging the styles of mutual
inputs are represented as:

x̂1 = G(x1, x2)

= R(fc, fs,LFT(lc, ls)), (10)
x̂2 = G(x2, x1) (11)

where G is a composite function of the global and local
feature extractor, LFT, and reconstruction module. The G
generates x̂2, in the same manner as Eq. (10) while content
and style images are exchanged with each other. The re-
construction module has concatenation layer to merge fc,
lc and fs, ls to generate x̂1 and x̂2. In addition, the de-
gree of image style transfer can be controlled by a linear
combination of global and local style information f̄s, l̄s for
generalization as follows:

f̄s = αFs(g1) + (1− α)Fs(g2) (12)
l̄s = αPs(RoIAlign(g1, b1))

+(1− α)Ps(RoIAlign(g2, bw)) (13)

where α ∈ [0, 1] denotes a weight parameter to control the
effects of style feature on the generated images. In the case
of α = 1, the style of the generated image is fully ex-
changed with another image. In contrast, in the case of
α = 0, the original image is regenerated without style modi-
fication. Therefore, style interpolated images x̄1 is obatined
as:

x̄1 = R(fc, f̄s,LFT(lc, l̄s)) (14)

Furthermore, the proposed network has a discriminator D
that distinguishes whether the input is sampled from the
dataset domain X .

3.2. Local Feature Transform Module

The Local Feature Transform (LFT) module merges lo-
cal content feature lc extracted from x1 with replaced local
style feature ls obtained from x2. After exchanging the style
feature, we can obtain merged feature mi like:

mi = Rl(lci , lsi), (15)

where Rl denotes a reconstruction network for local content
and style features.

The spatial transformation network [17] as depicted in
Fig. 3, aligns mi based on the corresponding bounding box
location bi. As a result, the aligned feature m̂ is given as:

m̂ =
∑
i

TΘbi
(mi), (16)

LFT

…
 

{b1, b2, ..., bn}

Spatial 
Transformer

…
 

…
 …

 

+summation

m

lc ls

Rl

Figure 3. The architecture of Local Feature Transform (LFT) mod-
ule. The LFT module generates features mi by merging global and
local features. After generating mi, the LFT module transforms
the mi by utilizing the coordinate of bounding box bi.

where TΘbi
denotes spatial transformer with parameters for

scaling and translating corresponding to bounding box loca-
tion bi. After transforming the features, we added n features
to represent the global information.

3.3. Training Networks

Cycle Consistency Loss The generation network G is
trained by utilizing cycle consistency loss [41]. This loss
enables the generation of style-transferred images based on
two inputs in a cyclic manner without any ground truth su-
pervision. The cycle consistency loss Lcyc is given as:

Lcyc = E(x1,x2)∼X×X [||x1 −G(x̂1, x̂2)||2

+||x2 −G(x̂2, x̂1)||2]. (17)

The generated image x̂1 preserves the original structure of
the input image x1 and obtains the main style of x2. Like-
wise, the generated image x̂2 maintains the content of x2

and acquires the style of the x1. The generation network is
trained by the loss that the reconstructed images G(x̂1, x̂2)
and G(x̂2, x̂1) become the original x1, x2 images them-
selves.
Self-identity Loss When given content and style inputs are
identical, the generation result should have the same struc-
ture and style as the input provided. Therefore, we de-
vise the self-identity loss Lsid while training the generator,
which is defined as:

Lsid = Ex∼X [||x−G(x, x)||2], (18)

where G(x, x) denotes the self-identity generation. The
identity generation is the only ground truth that we can ob-
tain during the training procedure. Through this loss, we
compensate for the absence of the ground truth labels.
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Figure 4. Qualitative results of bidirectional style transfer results of our and other methods. Our method generates two output images by
exchanging the styles.

Adversarial Loss To improve the generation results, we
trained the both generator and discriminator using adver-
sarial loss [10]. With the global discriminator Dg and gen-
erator G, the global adversarial loss Lg.adv is formulated
as:

Lg.adv = Ex∼X [logDg(x)]

+E(x1,x2)∼X×X [log(1−Dg(G(x1, x2)))]

+E(x1,x2)∼X×X [log(1−Dg(G(x̂1, x̂2)))]

+Ex∼X [log(1−Dg(G(x, x)))] (19)

For local discriminator, we adopt co-occurrent patch statis-
tics [32] to induce style and content features to represent
the appropriate structure and texture information. For local
discriminator Dl is trained using the local adversarial loss

Ll.adv which is given as:

Ll.adv = Ex∼X [logDl(x)]

+E(x1,x2)∼X×X [log(1−Dl(G(x1, x2)))]

+E(x1,x2)∼X×X [log(1−Dl(G(x̂1, x̂2)))]

+Ex∼X [log(1−Dl(G(x, x)))] (20)

Therefore the total adversarial loss Ladv is formulated as
the summation of two losses which is given as:

Ladv = Lg.adv + λDLl.adv, (21)

where λD denotes the weight parameter for training whole
discriminator D. The adversarial loss Ladv trains dis-
criminator D to predict the probability of the input image
whether it is sampled from X . This loss also leads the gen-
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Figure 5. The test set of Edges2Shoes [16] and Edges2Handbag [40] dataset was used to generate new images. The multiple styles can be
applied to a fixed structure image.

erator G to generate output G(x1, x2) to have the same dis-
tribution as dataset X . The generator is trained to fool the
discriminator not only the generated output G(x1, x2) but
also reconstructed output G(x̂1, x̂2). Furthermore, the gen-
erator is also trained to fool the discriminator for the self-
identity generation.
Final Objective The networks G and D are trained by us-
ing the weighted sum of loss functions introduced in the
previous subsections. The total loss Ltotal is given as:

Ltotal = λ1Ladv + λ2Lcyc + λ3Lsid, (22)

where λ1, λ2, and λ3 are hyper-parameters that control the
balance for the total loss function. The final objective is
to find the optimal discriminator D∗ and generator G∗ via
adversarial learning as follows:

G∗, D∗ = argmin
G

max
D

Ltotal. (23)

After finding G∗, we obtain a generation network that can
transfer style information bidirectionally.

4. Experiments

4.1. Datasets

To train and validate our network, we used
Edges2Handbag [40] and Edges2Shoes [16] datasets.
The Edges2Handbag [40] dataset consists of 137k Ama-
zon handbag images with 200 validation images. For
Edges2Shoes [16] dataset, 50k images were used from UT
Zappos50k [38, 39] dataset. Both fore-mentioned datasets
provide edge detection results created by using HED [37]
detector. In this experiment, we only utilized images
without any edge detection results. Furthermore, we used
the Clipart [33] dataset to validate the proposed method
for complex images with many textures. The Clipart [33]
dataset is comprised of 34k training and 14k test images.
Among 14k test images, we randomly sampled 100 images
and utilized them as a test dataset for further experiments.

4.2. Training Details

We trained the proposed network using Adam [22] op-
timizer with an initial learning rate of 0.0001, β1 = 0.5,
β2 = 0.999 and weight decay value of 0.0001. The iteration
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Figure 6. The generation results of style transferred images based on a fixed content image with warious style images. The test set of
Clipart [33] dataset was used to generate new images.

persisted until it reached 20, 000 iterations, and the learning
rate decay strategy was not used. We set batch size as 200
and initialized all convolution layers using LeCun initial-
ization [24]. The input images were resized to 256 × 256
and normalized the pixel value. In addition, we selected
n = 8 random region of interests while obtaining local fea-
tures through RoIAlign [11]. All models were trained on
Intel®Xeon®CPU E5-2640 v4 @2.40GHz with 8 Titan Xp
GPUs, 256GB memory. To reach 20, 000 iterations, it took
about 14 hours on our machine. For Edges2Handbag [40]
and Edges2Shoes [16] datasets, the weight parameters were
set to λ1 = 1, λ2 = 10, and λ3 = 5. For the Clipart [33]
dataset, weight parameters were set to λ1 = 2, λ2 = 5,
and λ3 = 1. For all experiments, we set λD = 5. For
training stability, we adopted the least square loss instead
of log-likelihood as suggested in LSGAN [30].

4.3. Qualitative Results

We show the qualitative results of our method and com-
pared them with other algorithms. In Fig. 4, we show the
generation results that the styles of two input images were
transferred to each other. We observed that the proposed

method generated plausible transfer results with structural
consistency and style exchange. In contrast, other methods
were limited in preserving the structure while exchanging
the styles. Furthermore, we show the generation results ac-
cording to style changes for the proposed method in Figs. 5
and 6. Even for relatively complex Clipart [33] dataset,
we obtained promising results in which various styles with
complex textures were transferred without disturbing the
source structure. In addition, to verify the effect of the con-
trol parameter α introduced in Eq. (14), we visualized the
interpolation over style feature space in Fig. 7. Note that we
utilized the parameter α ∈ { 1

3 ,
2
3 , 1} while performing the

experiments for the test datasets.

4.4. Quantitative Results

We show quantitative results by comparing the top-1 and
top-5 classification scores on the test set. We provide the
classification accuracy score on Tab. 1. By comparing the
score, we measured how the network preserved the origi-
nal structural information while exchanging the style. Our
method outperformed the existing methods on both top-1
and top-5 classification accuracy scores in top-1 metric. Un-
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Figure 7. Qualitative results of interpolating style features with fixed value of content features. We provide bidirectional generation results
of interpolation over style feature with respect to the weight parameter α for Edges2Shoes [16], Edges2Handbag [40], and Clipart [33]
datasets.

Top-1 Top-5
Original dataset [16] 62.0% 89.0%

Ours 61.1% 81.2%
ImaGAN [2] 54.0% 80.5%

DiscoGAN [21] 51.0% 77.0%
U-GAT-IT [19] 49.5% 78.5%
CycleGAN [41] 49.0% 79.5%

AdaIN [14] 37.5% 65.5%

Table 1. The comparisons of top-1 and top-5 classification perfor-
mances for generated results with structure of Edges2Shoes [16]
with style of Edges2Handbag [40].

like any other methods, our network nearly achieved the
score of the original structures. To measure the score, we
exchanged the style of test sets from Edges2Shoes [16] with
the style of test samples from Edges2Handbag [40]. The
classification score of generation results was calculated us-
ing Inception V3 [35] network which was already trained
using ILSVRC [6] dataset. After obtaining the classifica-
tion score, we calculated top-1 and top-5 scores for all algo-
rithms. Based on the class labels of ILSVRC [6] dataset, we
regarded as correct generation results when the Inception
V3 [35] network predicts the class related to shoe. Com-
pared to other methods, ours achieved competitive classifi-
cation scores. Furthermore, our method showed competi-
tive results even compared to real dataset.

5. Conclusions

We proposed a bidirectional style transfer network that
accepts two inputs and generates two style transferred re-
sults. The network consists of three modules; 1) style

and content feature extraction module, 2) local Feature
Transform module, and 3) reconstruction module. The
style and content feature extraction modules extract two
features with different sizes. The content feature fc ∈
R1×H×W , lc ∈ R1×h×w with a single channel preserves
structural information while removing style-related infor-
mation. The style feature fs, ls ∈ RC×1×1 with a sin-
gle spatial size removes content information while preserv-
ing the textures. The LFT module transformed local fea-
tures to align with its global information. The reconstruc-
tion module generates a newly stylized image by combining
the content features with exchanged style information pro-
vided from the extraction module. We tested our network
on Edges2Shoes [16], Edges2Handbag [40] and Clipart [33]
datasets. We compared our results with other methods qual-
itatively and showed one-to-many generation based on a
single content image. We expect our network to motivate
many designers when choosing the appropriate texture of
an object.
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