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Abstract

Typical diffusion models are trained to accept a particu-
lar form of conditioning, most commonly text, and cannot be
conditioned on other modalities without retraining. In this
work, we propose a universal guidance algorithm that en-
ables diffusion models to be controlled by arbitrary guidance
modalities without the need to retrain any use-specific com-
ponents. We show that our algorithm successfully generates
quality images with guidance functions including segmenta-
tion, face recognition, object detection, and classifier signals.
Code is available at github.com/arpitbansal297/Universal-
Guided-Diffusion.

1. Introduction
Diffusion models are powerful tools for creating digital

art and graphics. Much of their success stems from our
ability to carefully control their outputs, customizing re-
sults for each user’s individual needs. Most models today
are controlled through conditioning. With conditioning, the
diffusion model is built from the ground up to accept a par-
ticular modality of input from the user, be it descriptive text,
segmentation maps, class labels, etc. While conditioning is
a powerful tool, it results in models that are handcuffed to a
single conditioning modality. If another modality is required,
a new model needs to be trained, often from scratch. Unfor-
tunately, the high cost of training makes this prohibitive for
most users.

A more flexible approach to controlling model outputs is
to use guidance. In this approach, the diffusion model acts
as a generic image generator, and is not required to under-
stand a user’s instructions. The user pairs this model with
a guidance function that measures whether some criterion
has been met. For example, one could guide the model to
minimize the CLIP score between the generated image and
a text description of the user’s choice. During each iteration
of image creation, the iterates are nudged down the gradient
of the guidance function, causing the final generated image

to satisfy the user’s criterion.
In this paper, we study guidance methods that enable

any off-the-shelf model or loss function to be used as guid-
ance for diffusion. Because guidance functions can be used
without re-training or modification, this form of guidance is
universal in that it enables a diffusion model to be adapted
for nearly any purpose.

From a user perspective, guidance is superior to con-
ditioning, as a single diffusion network is treated like a
foundational model that provides universal coverage across
many use cases, both commonplace and bespoke. Unfor-
tunately, it is widely believed that this approach is infeasi-
ble. While early diffusion models relied on classifier guid-
ance [6], the community quickly turned to classifier-free
schemes [9] that require a model to be trained from scratch
on class labels with a particular frozen ontology that cannot
be changed [2, 18, 22].

The difficulty of using guidance stems from the domain
shift between the noisy images used by the diffusion sam-
pling process and the clean images on which the guidance
models are trained. When this gap is closed, guidance can be
performed successfully. For example, [18] successfully use
a CLIP model as guidance, but only after re-training CLIP
from scratch using noisy inputs. Noisy retraining closes the
domain gap, but at a very high financial and engineering cost.
To avoid the additional cost, we study methods for closing
this gap by changing the sampling scheme, rather than the
model.

To this end, our contributions are summarized as follows:
• We propose an algorithm that enables universal guid-

ance for diffusion models. Our proposed sampler eval-
uates the guidance models only on denoised images,
rather than noisy latent states. By doing so, we close
the domain gap that has plagued standard guidance
methods. This strategy provides the end-user with the
flexibility to work with a wide range of guidance modal-
ities and even multiple modalities simultaneously. The
underlying diffusion model remains fixed and no fine-
tuning of any kind is necessary.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 1. Diffusion guided by off-the-shelf networks.

• We demonstrate the effectiveness of our approach for a
variety of different constraints such as classifier labels,
human identities, segmentation maps, annotations from
object detectors, and constraints arising from inverse
linear problems.

2. Background

We first briefly review the recent literature on the core
framework behind diffusion models. Then, we define the
problem setting of controlled image generation and discuss
previous related works.

2.1. Diffusion Models

Diffusion models are strong generative models that
proved powerful even when first introduced for image gener-
ation [8, 25]. The approach has been successfully extended
to a number of domains, such as audio and text genera-
tion [1, 11, 13, 14].

We introduce (unconditional) diffusion formally, as it is
helpful in describing the nuances of different types of models.
A diffusion model is defined as a combination of a T -step
forward process and a T -step reverse process. Conceptually,
the forward process gradually adds Gaussian noise of differ-
ent magnitudes to a clean data point z0, while the reverse
process attempts to gradually denoise a noisy input in hopes
of recovering a clean data point. More concretely, given an
array of scalars representing noise scales {αt}Tt=1 and an
initial, clean data point z0, applying t steps of the forward
process to z0 yields a noisy data point

zt =
√
αtz0 + (

√
1− αt)ϵ, ϵ ∼ N (0, I). (1)

A diffusion model is a learned denoising network ϵθ. It is
trained so that for any pair (z0, t) and any sample of ϵ,

ϵθ(zt, t) ≈ ϵ =
zt −

√
αtz0√

1− αt
. (2)

The reverse process takes the form q(zt−1|zt, z0) with
various detail definitions, where q(·|·) is generally parame-
terized as a Gaussian distribution. Different works also stud-
ied different approximations of the unknown q(zt−1|zt, z0)
used to perform sampling. For example, denoising diffusion
implicit model (DDIM) [24] first computed a predicted clean
data point

ẑ0 =
zt − (

√
1− αt)ϵθ(zt, t)√

αt
, (3)

and sample zt−1 from q(zt−1|zt, ẑ0) by replacing unknown
z0 with ẑ0. On the other hand, while the details of individ-
ual sampling methods vary, all sampling methods produce
zt−1 based on current sample zt, current time step t and a
predicted noise ϵ̂. To ease the notation burden, we define a
function S(·, ·, ·) as an abstraction of the sampling method,
where zt−1 = S(zt, ϵ̂, t).

2.2. Controlled Image Generation

In this paper, we focus on controlled image generation
with various constraints. Consider a differentiable guidance
function f , for example a CLIP feature extractor or a seg-
mentation network. When applied to an image, we obtain
a vector c = f(x). We also consider a function ℓ(·, ·) that
measures the closeness of two vectors c and c′. Given a
particular choice of c, which we call a prompt, the corre-
sponding constraint (based on c, ℓ, and f ) is formalized as
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ℓ(c, f(z)) ≈ 0, and we aim to generate a sample z from the
image distribution satisfying the constraint. In plain words,
we want to generate an in-distribution image that matches
the prompt.

Prior work that studied controlled generative diffusion
mainly falls into two categories. We refer to the first category
as conditional image generation, and the second category as
guided image generation. Next, we discuss the character-
istics of each category and better situate our work among
existing methods.

Conditional Image Generation. Methods from this cate-
gory require training new diffusion models that accept the
prompt as an additional input [2, 9, 18, 27, 29]. For exam-
ple, [9] proposed classifier-free guidance using class labels
as prompts, and trained a diffusion model by linear interpo-
lation between unconditional and conditional outputs of the
denoising networks. [2] studied the case where the guidance
function is a known linear degradation operator, and trained
a conditional model to solve linear inverse problems. [18]
further extended classifier-free guidance to text-conditional
image generation with descriptive phrases as prompts, and
trained a diffusion model to enforce the similarity between
the CLIP [20] representations of the generated images and
the text prompts. These methods are successful across differ-
ent types of constraints, however the requirement to retrain
the diffusion model makes them computationally intensive.

Guided Image Generation. Works in this category em-
ployed a frozen pre-trained diffusion model as a foundation
model, but modify the sampling method to guide the im-
age generation with feedback from the guidance function.
Our method falls into this category. Prior work that studied
guided image generation did so with a variety of restrictions
and external guidance functions [3, 4, 6, 7, 12, 16, 28]. For ex-
ample, [6] proposed classifier guidance, where they trained a
classifier on images of different noise scales as the guidance
function f , and included gradients of the classifier during
the sampling process. However, a classifier for noisy images
is domain-specific and generally not readily available – an
issue our method circumvents. [28] assumed the external
guidance functions to be linear operators, and generated the
component of images residing in the null space of linear op-
erators with the foundation model. Unfortunately, extending
that method to handle non-linear guidance functions is non-
trivial. [3] studied general guidance functions, and modified
the sampling process with the gradient of guidance function
calculated on the expected denoised images. Nevertheless,
the authors only presented results with simpler non-linear
guidance functions such as non-linear blurring.

In this work, we study universal guidance algorithms for
guided image generation with diffusion models using any

off-the-shelf guidance functions f , such as object detection
or segmentation networks.

3. Universal Guidance
We propose a guidance algorithm that augments the image

sampling method of a diffusion model to include guidance
from an off-the-shelf auxiliary network. Our algorithm is
motivated by an empirical observation that the reconstructed
clean image ẑ0 obtained by Eq. (3), while naturally imper-
fect, is still appropriate for a generic guidance function to
provide informative feedback to guide the image generation.
In Sec. 3.1, we motivate our forward universal guidance by
extending classifier guidance [6] to leverage this observation
and handle generic guidance functions. In Sec. 3.2, we pro-
pose a supplementary backward universal guidance to help
enforce the generated image to satisfy the constraint based
on the guidance function f . In Sec. 3.3, we discuss a simple
yet helpful self-recurrence trick to empirically improve the
fidelity of generated images.

3.1. Forward Universal Guidance

To guide the generation with information from the exter-
nal guidance function f and the loss function ℓ, an immediate
thought is to extend classifier guidance [6] to accept any gen-
eral guidance function. Concretely, given a class prompt c,
classifier guidance performs classification-guided sampling
by replacing ϵθ(zt, t) in each sampling step S(zt, t) with

ϵ̂θ(zt, t) = ϵθ(zt, t)−
√
1− αt∇zt log p(c|zt). (4)

Defining ℓce(·, ·) to be the cross-entropy loss and fcl to be
the guidance function that outputs classification probability,
Eq. (4) can be re-writtern as

ϵ̂θ(zt, t) = ϵθ(zt, t) +
√
1− αt∇ztℓce(c, fcl(zt)). (5)

However, directly replacing fcl and ℓce with any off-the-shelf
guidance and loss functions does not work in practice, as f
is most likely trained on clean images and fails to provide
meaningful guidance when the input is noisy.

To address the issue, we leverage the fact that ϵθ(zt, t) pre-
dicts the noise added to the data point, and we can therefore
obtain a predicted clean image ẑ0 by Eq. (3). We propose to
instead calculate the guidance based on the predicted clean
data point as

ϵ̂θ(zt, t) = ϵθ(zt, t) + s(t) · ∇ztℓ(c, f(ẑ0)) (6)

where s(t) controls the guidance strength for each sampling
step and

∇ztℓ(c, f(ẑ0)) = ∇ztℓ

(
c, f

(
zt −

√
1− αtϵθ(zt, t)√

αt

))
as in Eq. (3). We term Eq. (6) forward universal guidance,
or forward guidance in short. In practice, applying forward

845



Algorithm 1 Universal Guidance

Parameter: Recurrent steps k, gradient steps m for back-
ward guidance and guidance strength s(t),
Required: zT sampled from N (0, I), diffusion model ϵθ,
noise scales {αt}Tt=1, guidance function f , loss function
ℓ, and prompt c
for t = T, T − 1, . . . , 1 do

for n = 1, 2, . . . , k do
Calculate ẑ0 as Eq. (3)
Calculate ϵ̂θ using forward universal guidance as
Eq. (6)
if m > 0 then

Calculate ∆z0 by minimizing Eq. (7) with m steps
of gradient descent
Perform backward universal guidance by
ϵ̂θ ← ϵ̂θ −

√
αt/(1− αt)∆z0 ( Eq. (9))

end if
zt−1 ← S(zt, ϵ̂θ, t)
ϵ′ ∼ N (0, I)
zt ←

√
αt/αt−1zt−1 +

√
1− αt/αt−1ϵ

′

end for
end for

guidance effectively brings the generated image closer to
the prompt while keeping the generation trajectory in the
data manifold. We note that a related approach is also stud-
ied in [3], where the guidance step is computed based on
E[z0|zt]. The approach drew inspiration from the score-
based generative framework [26], but resulted in a different
update method.

3.2. Backward Universal Guidance

As will be shown in Sec. 4.2, we observe that forward
guidance sometimes over-prioritizes maintaining the “real-
ness” of the image, resulting in an unsatisfactory match with
the given prompt. Simply increasing the guidance strength
s(t) is suboptimal, as this often results in instability as the
image moves off the manifold faster than the denoiser can
correct it.

To address the issue, we propose backward universal
guidance, or backward guidance in short, to supplement
forward guidance and help enforce the generated image to
satisfy the constraint. The key idea of backward guidance is
to optimize for a clean image that best matches the prompt
based on ẑ0, and linearly translate the guided change back
to the noisy image space at step t. Concretely, instead of
directly calculating ∇ztℓ(c, f(ẑ0)), we compute a guided
change ∆z0 in clean data space as

∆z0 = argmin
∆

ℓ(c, f(ẑ0 +∆)). (7)

Empirically, we solve Eq. (7) with m-step gradient descent,
where we use ∆ = 0 as a starting point. Since ẑ0+∆z0 min-

Figure 2. An example of how self-recurrence helps segmentation-
guided generation. The left-most figure is the given segmentation
map, and the images generated with recurrence steps of 1, 4 and 10
follow in order.

imizes ℓ(c, f(z)) directly, ∆z0 is the change in clean data
space that best enforces the constraint. Then, we translate
∆z0 back to the noisy data space of zt by calculating the
guided denoising prediction ϵ̃ that satisfies

zt =
√
αt(ẑ0 +∆z0) +

√
1− αtϵ̃. (8)

Reusing Eq. (3), we can rewrite ϵ̃ as an augmentation to the
original denoising prediction ϵθ(zt, t) by

ϵ̃ = ϵθ(zt, t)−
√
αt/(1− αt)∆z0. (9)

Comparing to forward guidance, backward guidance (as
Eq. (9)) produces an optimized direction for the generated
image to match the given prompt, and hence prioritizes
enforcing the constraint. Furthermore, calculation of a
gradient step for Eq. (7) is computationally cheaper than
forward guidance (Eq. (6)), and we can therefore afford to
solve Eq. (7) with multiple gradient steps, further improving
the match with the given prompt.

We note that the names “forward” and “backward” are
used analogously to the forward and backward Euler meth-
ods.

3.3. Per-step Self-recurrence

Unfortunately, when we apply our universal guidance to
standard generation pipelines, we often find images with
artifacts and strange behaviors that clearly separate them
from natural images. Similar observations have been made
in [16, 28], where linear guidance functions are studied. Our
attempts to prioritize realness by decreasing s(t) proved
ineffective; the sweet spot that both ensures the realness
and guidance constraint satisfaction doesn’t always exist,
especially for complex guidance functions. We conjecture
that the guidance direction produced by our universal method
is not always related to the realness of the images when
the guidance function creates too much information loss,
causing the image to stray from the natural image sampling
trajectory.

Inspired by [16, 28], we address the issue by applying
per-step self-recurrence. More concretely, after zt−1 =
S(zt, ϵ̂t, t) is sampled, we re-inject random Gaussian noise
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ϵ′ ∼ N (0, I) to zt−1 to obtain z′t by

z′t =
√

αt/αt−1 · zt−1 +
√
1− αt/αt−1 · ϵ′. (10)

Eq. (10) ensures z′t to have proper noise scale for input at
time step t. We repeat the self-recurrence k times before
continuing the sampling for step t− 1. Intuitively, the self-
recurrence allows exploration of different regions of the data
manifold at the same noise scale, allowing more budget to
find a solution that satisfies both guidance and image qual-
ity. Empirically, we find that our self-recurrence can keep
the realness of the generated image with a proper guidance
strength s(t) that ensures the match with the given prompt.
We illustrate an example of how self-recurrence improves
the harmony of generated images in Fig. 2.

We summarize our universal guidance algorithm com-
posed of forward universal guidance, backward universal
guidance and per-step self-recurrence in Algorithm 1. For
simplicity, the algorithm assumes only one guidance func-
tion, but can be easily adapted to handle multiple pair of
(f, l). Additionally, the objectives of the forward and back-
ward guidance do not have to be identical, allowing different
ways to simultaneously utilize multiple guidance functions.

4. Experiments
In this section, we present results testing our proposed

universal guidance algorithm against a wide variety of guid-
ance functions. Specifically, we experiment with Stable
Diffusion [22], a diffusion model that is able to perform
text-conditional generation by accepting text prompt as ad-
ditional input, and experiment with a purely unconditional
diffusion model trained on ImageNet [5], where we use pre-
trained model provided by OpenAI [6]. We note that Stable
Diffusion, while being a text-conditional generative model,
can also perform unconditional image generation by simply
using an empty string for the text prompt. We first present
the experiment on Stable Diffusion for different guidance
functions in Sec. 4.1, and present the results on ImageNet
diffusion model in Sec. 4.2.

4.1. Results for Stable Diffusion

In this section, we present the results of guided image gen-
eration using Stable Diffusion as the foundation model. The
guidance functions we experiment with include the CLIP
feature extractcor [20], a segmentation network, a face recog-
nition network and an object detection network. For experi-
ments on Stable Diffusion, we discover that applying forward
guidance already produce high-quality images that match
the given prompt, and hence set m = 0. To perform for-
ward guidance on Stable Diffusion, we forward the predicted
clean latent variable computed by Eq. (3) through the image
decoder of Stable Diffusion to obtain predicted clean images.
We discuss the results and implementation details for each
guidance function in its corresponding subsection.

Conditional Stable-Diffusion Guided Stable-Diffusion

A photograph of an astronaut riding a horse.

An oil painting of a corgi wearing a party hat.

Figure 3. We compare the ability to match given text prompts be-
tween our universal guidance algorithm and text-conditional model
trained from scratch. The results demonstrate that our universal
algorithm is comparable to specialized conditional model on the
ability to generate quality images that satisfy the text constraints.

CLIP Guidance. CLIP [20] is a state-of-the-art text-to-
image similarity model developed by OpenAI. To apply
our algorithm to text-guided image generation, we use the
image feature extractor of CLIP as the guidance function.
We construct a loss function that calculates the negative
cosine similarity between an image embedding and the CLIP
text embedding produced by a given text prompt. We use
s(t) = 10

√
1− αt and k = 8 and use Stable Diffusion as

an unconditional image generator.
We generate images guided by a number of text prompts.

To further assess our universal guidance algorithm and com-
pare guidance and conditioning, we also generate images
using classical, text-conditional generation by Stable Dif-
fusion with identical prompts as inputs, and summarize the
results in Fig. 3. The results in Fig. 3 show that our algorithm
can guide the generation to produce high-quality images that
match the given text description, and are comparable with
images generated by the specialized text-conditioning model.

Segmentation Map Guidance. To perform guided image
generation using a segmentation map as prompt, we use a
MobileNetV3-Large [10] with a segmentation head, and a
publicly available pre-trained model in PyTorch [19]. As
the segmentation network outputs per-pixel classification
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Guide
Prompt Walker hound,

Walker foxhound
under water.

Walker hound,
Walker foxhound
on snow.

Walker hound,
Walker foxhound
as an oil painting.

(N/A)

Figure 4. In addition to matching the text prompts (above each col-
umn), these images are guided by an image segmentation pipeline.
Each column contains examples of images generated to match the
prompt and the segmentation map in the left-most column. The
top-most row contains examples generated without guidance.

probability, we construct a loss function ℓ as the sum of
per-pixel cross-entropy loss between a given prompt and
the predicted segmentation of generated images. We set
s(t) = 400 ·

√
1− αt and k = 10.

In our experiment, we combine segmentation maps that
depict objects of different shapes with new text prompts.
We use the text prompt as a fixed additional input to Stable
Diffusion to perform text-conditional sampling, and guide
the text-conditional generated images to match the given
segmentation maps. Results are presented in Fig. 4. From
Fig. 4, we see that the generated images show a clear separa-
tion between object and background that matches the given
segmentation map nearly perfectly. The generated object
and background also each match their descriptive text (i.e.
dog breed and environment description). Furthermore, the
generated images are overall highly realistic.

Face Recognition Guidance. To guide image generation
to resemble the face of a given person, we compose a guid-
ance function that combines a face detection module and
a face recognition module. This setup produces a facial
attribute embedding from an input face image. We use
multi-task cascaded convolutional networks (MTCNN) [30]
as the face detection module, and use facenet [23] as the

Guide
Prompt

Headshot of a
person with
blonde hair
with space
background.

Headshot of a
woman made
of marble.

A headshot of
a woman looking
like Lara Croft.

(N/A)

Figure 5. In addition to matching the text prompts (above each
column), these images are guided by a facial recognition system.
Each column contains examples of images generated to match the
prompt and the identity of the images in the left-most column. The
top-most row contains examples generated without guidance.

face recognition module. The guidance function f hence
crops out the detected face and outputs a facial attribute
embedding as prompt, while we use l1-loss between embed-
ding as the loss function ℓ. We note that to compute the
guidance direction in our algorithm, we only backpropagate
through the facenet and treat the face cropping mask pro-
duced by MTCNN as an oracle input, as MTCNN utilizes
non-maximum suppression [17] which is non-differentiable.
Here we set s(t) = 20000 ·

√
1− αt and and k = 2.

We explore different combinations of face guidance and
text prompts. Similarly to the segmentation case, we use
the text prompt as a fixed additional conditioning to Stable
Diffusion and guide this text-conditional trajectory with our
algorithm so that the face in the generated image looks sim-
ilar to the face prompt. In Fig. 5, we clearly see that the
facial characteristics of a given face prompt are reproduced
almost perfectly on the generated images. The descriptive
text of either background, material, or style is also realized
correctly and blends nicely with the generated faces.

Object Location Guidance For Stable Diffusion, we also
present the results guiding image generation with an ob-
ject detection network. For this experiment, we use Faster-
RCNN [21] with Resnet-50-FPN backbone [15], a publicly
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Guide
Prompt Headshot of a

woman with
a dog.

Headshot of a
woman with a
dog on beach.

An oil painting of
a headshot of a
women with a dog.

(N/A)

Figure 6. In addition to matching the text prompts (above each
column), these images are guided by an object detector. Each
column contains examples of images generated to match the prompt
and the bounding boxes used for guidance. The top row contains
examples generated without guidance.

available pre-trained model in Pytorch, as our object detector.
We use bounding boxes with class labels as our object loca-
tion prompt. We construct a loss function ℓ by the sum of
three individual losses, namely (1) anchor classification loss,
(2) bounding box regression loss and (3) region label classi-
fication loss, where (1) and (2) are computed on the region
proposal head while (3) is computed on the region classi-
fication head. We note that, compared to standard R-CNN
training, we drop the additional bounding box alignment
loss on region classification head. We found that our loss
construction helps to produce objects of correct categories
for each location prompt. We set s(t) = 100 ·

√
1− αt and

k = 3.
We again experiment with different combinations of text

prompt and object location prompt, and similarly use the text
prompt as a fixed conditioning to Stable Diffusion. Using
our proposed guidance algorithm, we perform guided image
generation that generates and matches the objects presented
in the text prompt to the given object locations. The results
are presented in Fig. 6. We observe from Fig. 6 that objects
in the descriptive text all appear in the designated location
with the appropriate size indicated by the given bounding
boxes. Each location is filled with appropriate, high-quality
generations that align with varied image content prompts,
ranging from “beach” to “oil painting”.

Style
Prompt A colorful

photo of an
Eiffel Tower

A fantasy photo
of volcanoes

A portrait of
a woman

(N/A)

Figure 7. In addition to matching the text prompts (above each
column), these images are guided by a style image. Each column
contains examples of images generated to match the text prompt
and the style image used for guidance. The top-most row contains
examples generated without style guidance.

Style Guidance Finally, we conclude our experiments on
Stable Diffusion by guiding the image generation based on
a reference style given by a style image. To achieve so,
we capture the reference style from the style image by the
image feature extractor from CLIP, and use the resulting
image embedding as prompts. The loss function calculates
the negative cosine similarity between the embedding of
generated images and the embedding of the style image.
Similar to previous experiments, we control the content using
text input as additional conditioning to the Stable Diffusion
model. We experiment with combinations of different style
images and different text prompts, and present the results in
Fig. 7. From Fig. 7, we can see that the generated images
contain contents that match the given text prompts, while
exhibiting style that matches the given style images. In
this experiment we set s(t) = 6 ·

√
1− αt and k = 6.

Furthermore, in order to control the amount of content we
set the scale γ, a parameter of Stable Diffusion that balances
the text-conditional generation and unconditional generation,
as 3.0, 3.0, and 4.0 respectively for each column.

4.2. Results for ImageNet Diffusion

In this section, we present results for guided image gen-
eration using an unconditional diffusion model trained on
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Object Location Forward Only Forward + Backward

Figure 8. Generation guided by object detection with the uncondi-
tional ImageNet model. Images generated with both forward and
backward guidance are realistic and have the desired objects in
the designated locations. In contrast, images generated using only
forward guidance exhibit objects of the incorrect category or with
inaccurate position/size.

ImageNet. We experiment with object location guidance
and a hybrid guided image generation task which we term
segmentation-guided inpainting. We also include additional
experiments where we use CLIP guidance in the appendix.
We will discuss results of each guidance separately.

Object Location Guidance. Similar to object location
guidance for Stable Diffusion, we also use the same net-
work architecture and the same pre-trained model as our
object detection network, and construct an identical loss
function ℓ for our guidance algorithm. However, unlike Sta-
ble Diffusion, object locations are the only prompts available
for guided image generation. For this experiment, we use
s(t) = 100

√
1− αt and k = 3. We experiment with dif-

ferent object location prompts using either (1) only forward
universal guidance and (2) both forward and backward uni-
versal guidance. We observe from Fig. 10 that applying both
forward and backward guidance generates images that are
realistic and the objects matches the prompt nicely. On the
other hand, while images generated using only forward guid-
ance remain realistic, they feature objects with mismatching
categories and locations. The results demonstrate the ef-
fectiveness of our universal guidance algorithm, and also
validate the necessity of our backward guidance.

Segmentation-Guided Inpainting. In this experiment, we
aim to explore the ability of our algorithm to handle multiple
guidance functions. We perform guided image generation
with combined guidance from an inpainting mask, a classi-
fier and a segmentation network. We first generate images
with masked regions as the prompt for inpainting. We then
pick an object class c as the prompt for classification and
generate a segmentation mask where the masked regions are

Masked Image Clf. Guided Clf. + Seg. Guided

Figure 9. Our guidance algorithm can incorporate feedback from
multiple guidance functions. The first column shows the prompt for
inpainting. The second column shows classifier-guided inpainting,
where dog images with close matches to inpainting prompt are
generated. The third column shows images generated with both
classifier and segmentation guidance, where realistic dogs are gen-
erated exactly on the masked regions. The results show that our
algorithm handles multiple guidance functions effectively.

considered foreground objects of the same class c. We use
ℓ2 loss on the non-masked region as the loss function for
inpainting, and set the corresponding s(t) = 0, or equiva-
lently only use backward guidance for inpainting. We use
the same segmentation network as described in Sec. 4.1
with s(t) = 200

√
1− αt. For classification guidance, we

use the classifier that accepts noisy input [6], and perform
the original classifier guidance Eq. (4) instead of our for-
ward guidance. The results summarized in Fig. 9 show
that when using both inpainting and classifier as guidance,
our algorithm generates realistic images that both match
the inpainting prompt and can be classified correctly to the
given object class. Adding in segmentation guidance, our
algorithm further improves the generated images with a near-
perfect match to both the segmentation map and inpainting
prompt while maintaining realism. This demonstrates that
our algorithm can effectively combine the feedback from
individual guidance functions.

5. Conclusion
In this paper, we propose a universal guidance algorithm

that is able to perform guided image generation with any
off-the-shelf guidance function based on a fixed foundation
diffusion model. Our algorithm only requires guidance and
loss functions to be differentiable, and avoids any retraining
to adapt either the guidance function or the foundation model
to a specific type of prompt. We demonstrate promising
results with our algorithm on complex guidance including
segmentation, face recognition and object detection systems.
Even multiple guidance functions can be combined and used
in conjunction.
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