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Abstract

Normalizing flows are generative models that show poor
performance on out-of-distribution (OOD) detection tasks
with a likelihood-based test. In this study we focus on the
”approximate mass” metric. We show that while it im-
proves OOD detection performance, it has limitations under
a maximum likelihood training. To solve this limitation we
modify the training objective by incorporating the approxi-
mate mass. It smooths the learnt distribution in the vicinity
of training in-distribution data. We measure an average of
97.6% AUROC in our experiments on different benchmarks,
showing an improvement of 16% with respect to the best
baseline we tested against.

1. Introduction
Out-of-distribution (OOD) detection [1] is a binary

classification problem where a model assesses whether a
data point belongs to a given data distribution (the ”in-
distribution”) or not (if it falls in an ”out-distribution”). This
problem occurs when deploying machine learning models
as they would face unexpected data and should handle OOD
inputs properly. Therefore, such systems would greatly ben-
efit from assessing the quality and relevance of the input
data beforehand. In this case, generative models are espe-
cially interesting because some of them can estimate the

likelihood of input data. Normalizing flows (or invertible
neural networks) [2] in particular show unique characteris-
tics: not only they can generate samples following the target
data distribution but they can also evaluate the exact log-
likelihood of data unlike GANs [3] or VAEs [4].

It was shown by previous studies [5–8] that normaliz-
ing flows perform poorly on out-of-distribution detection
with a likelihood metric: they assign higher likelihood on
certain out-distributions than to their training data [5]. Al-
though current explanations of this phenomenon either in-
volve mismatch in entropy between the ID and OOD dis-
tributions [8] or overfitting [7], the ”typical set hypothesis”
(TSH) [5] interpretation was one of the first proposed mech-
anism to explain the OOD detection problem. The authors
of [9] suggested that input data are most likely coming from
the typical set which is disjoint from the set of most likely
data, thereby making the likelihood irrelevant to OOD de-
tection. Instead, they replace it with a test statistics based
on entropy to assess whether a point belongs to the typical
set or not. This mechanism was later interpreted in [10] as
the model not spreading out the mass of the learnt prob-
ability distribution efficiently across the input space, cre-
ating abrupt variations around OOD samples. This study
gave rise to the approximate mass [10], the metric we focus
on in this study. This metric is argued to be more efficient
in OOD detection than likelihood, the OOD values having
higher approximate mass than ID values in normal condi-
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tions. However, the link with the typical set is not clear.
This paper presents several contributions:

• an empirical test of the hypothesis that OOD data are
assigned higher approximate mass than ID data on im-
age data as well as an observation that the maximum
likelihood objective overfits and reverses the behavior
of the approximate mass,

• a modification of the training objective by adding a pe-
nalization term proportional to the approximate mass,

• improvements with respect to the state-of-the-art on
OOD detection and an exploration of the limits of this
metric by assessing the nature of the distribution shifts
the approximate mass detects.

• a methodological contribution by correcting how the
ROC curve-based metrics are usually reported in the
previous works, by balancing the ID and OOD classes.
This treatment, as far as we are aware of, is rarely ap-
plied in most papers of the OOD detection field.

2. Related works
Normalizing flows learn an invertible transformation T

that maps input data x to and from a latent space parame-
terized by a known distribution. This transformation yields
a latent representation that can easily be manipulated [4].
Normalizing flows compute the target distribution by ap-
plying the change of variable formula:

log(pX(x)) = log(pU (T (x))) + log(|det(∂T
∂x

)|)

The latent space is parameterized by a fixed tractable dis-
tribution, such as a normal distribution, chosen to be eas-
ily evaluated and to sample data easily. The transforma-
tion T is designed in a way that the determinant of its Ja-
cobian is tractable which is achieved with coupling layers
and other invertible transformations as in the RealNVP [11],
Glow [12] and NICE [13] models.

The problem of OOD detection can be formulated in
different ways, as stated in [1] in a general OOD detec-
tion framework. It is defined as a binary detection prob-
lem where the aim is to detect shifts in underlying data dis-
tribution: covariate shift (shift on the feature distribution
p(x)) or semantic shift (shift on the label distribution p(y))
or a combination of both. In this paper we address both
problems: OOD detection (covariate and semantic shifts)
and anomaly detection (semantic shift). For OOD detec-
tion the training set is drawn from the in-distribution while
the OOD distribution is any distribution with different fea-
tures and underlying semantic. For anomaly detection the
model learns one class of a dataset (ID distribution) while
the other classes of the dataset make up the OOD distribu-
tion. It is more common in the literature to focus on the

anomaly detection and OOD detection tasks [1] while the
pure covariate shift detection is mostly studied within the
adversarial attacks context [14].

If the likelihood is used as a metric to detect OOD sam-
ples, it performs poorly when applied to normalizing flows
[5–8]. The ”typical set hypothesis” (TSH) [9] attempts to
give an explanation to this phenomenon. It assumes that ID
data does not originate from sets of high likelihood in the
input space but rather comes from the typical set, which is
the set of sequences, which probability distribution is on av-
erage close to the entropy of the data source. The authors
of [9] therefore propose to build a new OOD detection test
based on typicality instead of likelihood. This idea was fur-
ther developed in [10] where the typicality test is replaced
by a metric called ”approximate mass” which corresponds
to the norm of the gradient of the log-likelihood with re-
spect to input data: ∥ ∂L(x;θ)

∂x ∥, where x is the input, L
is the log-likelihood evaluated by the model with parame-
ters θ and ||.|| is the euclidean norm. The authors interpret
the TSH as meaning that normalizing flows map ID data to
regions of high mass while OOD data is mapped to lower
mass regions. According to the authors, this metric shows
better results than the log-likelihood in OOD detection. It
is expected to have smaller values for ID data than to OOD
data.

3. Model improvement

3.1. Observations about normalizing flow training

For most of the models (as well as for our model), no
OOD data is available during the training, thus there is no
way of controlling how the approximate mass would behave
on ID data relatively to OOD inputs. The model might over-
fit in a way that would not be visible on the likelihood but
variations around input points may increase. This sensitiv-
ity to input variations was already discussed in [15] where
authors first suggested the idea of double backpropagation.

In order to check the evolution of the approximate mass
during training, we train the RealNVP model [11] following
the same architecture and training settings as in [6] with
CIFAR-10 [16] as ID and with SVHN [17] as OOD. At the
end of each epoch, we check the approximate mass for both
datasets.

We observe in Figure 1 that at first the approximate mass
behaves as expected as the model assigns a higher score to
OOD data than to ID data. However, after several epochs,
the trend reverses and the model ends up assigning higher
scores to ID data and lower scores to OOD data, thus mak-
ing the approximate mass an unreliable metric.

To understand this phenomenon, we break down the ap-
proximate mass in the following way:
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(a) Epoch 60

(b) Epoch 100

Figure 1. Evolution of the approximate mass with the vanilla Re-
alNVP model trained on CIFAR-10 (red) and tested on SVHN
(blue).

∥ ∂L(x; θ)
∂x

∥= 1

p(x; θ)
∥ ∂p(x; θ)

∂x
∥ (1)

knowing that p(x; θ) is a density function therefore
|p(x; θ)| = p(x; θ). This expression shows that the ap-
proximate mass translates the relative changes in the values
of the probability density around input x. The maximum
likelihood training objective of normalizing flows naturally
minimizes the term 1

p(x;θ) . However, one may wonder how
the approximate mass of in-distribution data evolves during
training. Our observations in Figure 1 suggest that this mass
of density (the term ∥ ∂p(x;θ)

∂x ∥) might increase quicker
than the term p(x; θ) during training. Intuitively, this means
the model is overfitting: during training, the gap between
likelihood values assigned by the model to the training in-
puts and neighboring points increases too much, resulting in
a higher-magnitude derivative. This means that the model
doesn’t generalize well on the ID distribution.

(a) Epoch 60

(b) Epoch 100

Figure 2. Evolution of the log-likelihood distribution with the
vanilla RealNVP model trained on CIFAR-10 (red) and tested on
SVHN (blue).

3.2. Penalizing the gradient of the log-likelihood

To improve the metric and fix this silent overfitting issue,
we add the approximate mass as a term in the loss function.

Denoting L(x; θ) = log(p(x; θ)) the average log-
likelihood the model parameterized by θ on a batch of input
data x, we write our new training objective as follows:

min
θ

− L(x; θ) + α ∥ ∂L(x; θ)
∂x

∥ (2)

where α > 0 is a hyperparameter which represents the
trade-off between locally increasing the likelihood and de-
creasing the gradient.

We apply our approach to the image data, as is usually
done in OOD detection. We proceed as follows:

1. compute the gradient of the model log-likelihood with
respect to the input data,

2. flatten the gradient then compute its norm for each
batch of data,

3. average the norms with respect to the batches of data.
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Adding this term to the training objective can be com-
pared to other OOD detection methods such as ODIN [18]
and Generalized ODIN [19] which smooth the softmax out-
put distribution of a neural network with temperature scal-
ing and add noise to the input. This additional noise is cho-
sen in an adversarial direction [14] to increase the softmax
score for any input. The authors argue this perturbation has
a stronger effect on in-distribution than out-of-distribution
samples, thus making them more separable.

In our approach, the addition of the approximate mass al-
lows the smoothing of the output distribution to be isotropic
instead of favoring one specific direction (the direction of
optimal uncertainty given by adversarial attacks). This in-
terpretation can be put in parallel with the VAT method [20]
where, similarly, the KL divergence between the learned
perturbed distribution and the true distribution in a semi-
supervised training framework. Another way of interpret-
ing the approximate mass penalization would be by seeing
it as the variation of the likelihood around any given data
input, similarly to the score function in the Fisher infor-
mation metric. This score function with respect to the in-
put gives information about how much the log-likelihood
changes around the input data. Ideally, as stated above, this
variation shouldn’t be too high as that would be a sign of
overfitting. It would also mean that the model gives too
much importance to this specific data sample. Penalizing
the model with the approximate mass is expected to make it
covariate-shift invariant.

Some concerns can be raised about the complexity of
the method as it requires two backpropagation computations
per batch during training instead of only one. Further anal-
ysis were conducted in [21] regarding complexity and opti-
mization of the double backpropagation family of penaliza-
tion methods (up to a third of improvement in computation).
We chose to focus our work on the results of the application
of our newly introduced training objective by relying on the
automatic gradient computation methods given by common
deep learning libraries.

4. Experiments

4.1. Experimental set-up

We conduct several experiments using RealNVP archi-
tecture following the setting in [6]. The models are trained
with an Adam optimizer for 200 epochs. When describing
models, we refer to the number of blocks and scales fol-
lowing the nomenclature in [6]. A scale, in a multi-scale
RealNVP architecture, refers to a block composed of three
coupling layers with checkerboard masking, a squeeze op-
eration then three coupling layers with channel-wise mask-
ing. A block is a residual block composing the ResNet in
the underlying st-network in each coupling layer. Finally, in
our experiments we studied the results dependence on the

value of the hyperparameter α as introduced in equation 2.
We found that α = 2 yields the best results. We noticed that
there is a range of α where the model behaves reasonably.
This range becomes smaller as the model’s size decreases
for a fixed number of input dimensions.

4.2. Ablation study: removal of the penalization

In order to test out the effect of our penalization on the
training of normalizing flows, we perform an ablation study
where we compare two modes of training for the RealNVP
model, the vanilla training (maximum likelihood) and the
penalized training (our loss function as defined in 2). We
then compare the results in OOD detection with the approx-
imate mass of both models to assess the impact of approxi-
mate mass penalization on OOD detection performance.

Metrics: We report the AUROC on an OOD detection
task for all our models.

Datasets: We use classic datasets widely used in the
OOD detection setting, namely CIFAR-10 [16] and Fash-
ionMNIST [22] as ID datasets and SVHN [17] and MNIST
[23] as their respective OOD datasets.

Models: We train RealNVP models on the ID datasets.
For grayscale images (FashionMNIST and MNIST), we use
a RealNVP model with 4 blocks and 2 scales (≈10 million
parameters) and for color pictures (CIFAR-10 and SVHN)
we train a RealNVP model with 6 blocks and 3 scales (≈60
million parameters).

Discussion: In table 1 we report the AUROC values for
both training modes, on both ID/OOD dataset pairs intro-
duced above. The results show that the observed overfitting
in section 3 impacts the OOD detection results. Indeed, the
penalized models systematically performs better than their
vanilla counterpart. Moreover, we observe that the values
of approximate mass of the vanilla models are out of order
between ID and OOD data (higher approximate mass for ID
than OOD data in both cases). However, the consequences
are far more visible for the model trained on CIFAR-10 as
the model is almost always perfectly wrong in its classifi-
cation and systematically ranks ID data higher than OOD
data with the approximate mass . This inconsistent behav-
ior observed between the vanilla models trained Fashion-
MNIST and CIFAR-10 shows that the approximate mass is
unreliable when not trained with our penalization. Further-
more, it shows that the addition of our penalization effec-
tively changes the behavior of our model as it makes the
approximate mass more consistent and systematically per-
form better than the maximum likelihood objective alone.

4.3. Out-of-distribution detection

Approximate mass illustration: To begin the study of
OOD detection, we show both metrics for penalized Real-
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Model Training dataset (ID) OOD dataset AUROC
Vanilla FashionMNIST MNIST 0.977

Approximate mass FashionMNIST MNIST 0.994
Vanilla CIFAR-10 SVHN 0.0008

Approximate mass CIFAR-10 SVHN 0.969

Table 1. Results on OOD classification for a vanilla model and a penalized model.

Figure 3. Approximate mass distribution of a penalized RealNVP
model trained on FashionMNIST (in-distribution, red) and tested
with MNIST (out-distribution, blue). Approximate mass values on
the x-axis, number of occurrences on the y-axis.

Figure 4. Log-likelihood distribution of a penalized RealNVP
model trained on FashionMNIST (in-distribution, red) and tested
with MNIST (out-distribution, blue). Log-likelihood values on the
x-axis, number of occurrences on the y-axis.

NVP model: approximate mass and log-likelihood in Fig-
ure 3 and 4 respectively. The approximate mass shows more
clear separation, even visually, than log-likelihood. At the
same time it reflects the expected ordering of OOD and ID
data, with OOD data having greater values than ID one.

Metrics: To assess the performance of our model on
OOD detection, we report common metrics: AUROC (area
under the ROC curve), AUPR (area under the precision-

recall curve) and TNR at 95% TPR (True Negative Rate
at a fixed level of 95% True Positive Rate).

Baselines: To compare the results we chose state-of-
the-art methods that are commonly used in OOD detection
benchmarks: Generalized ODIN [19], an extension of the
original ODIN [18], Mahalanobis [24] and Energy-based
OOD detection [25]. The ODIN family of methods rely on
adversarial perturbations and smoothing the output distribu-
tion, which we will put in parallel to our approach in the fol-
lowing section. The Mahalanobis and energy-based meth-
ods use the feature-space to assess whether data samples are
ID or OOD. The former uses Gaussian discriminant analy-
sis while the latter uses an energy-based interpretation (dif-
ferent from Joint Energy-based Model [10]). The energy-
based model also requires the use of OOD data to train its
upper energy bound. We therefore train the energy-based
model with both CIFAR-10/FashionMNIST as ID data and
SVHN/MNIST as OOD data.

Datasets: We test our approach in a classic OOD de-
tection setting with the CIFAR-10 [16] and FashionMNIST
[22] datasets as in-distribution sets. For the models trained
on FashionMNIST, we use the MNIST [23] KMINST [26]
and EMNIST [27] datasets as OOD distributions while the
models trained on CIFAR-10 are tested against the SVHN
[17], DTD [28], GTSRB [29], Places365 [30] and iNatural-
ist [31] (split into ”Animalia” and ”Plantae” parts) datasets
as out-of-distribution sets. We chose these datasets as they
are semantically distat enough from the ID and the other
OOD datasets.

Methodology: The methods are tested with a similar
number of parameters, which we change with the dimen-
sion of data. We keep the same models as the ones trained
in section 4.2 and make the other models in our benchmark
match this number of parameters. Finally, the number of
OOD and ID data are equalized in order to have meaningful
AUROC and TNR measures as the ROC curve is sensitive to
class imbalance [32]. This attention we brought on the class
balance and the number of parameters is rarely done in the
field of OOD detection. If this balance is not present, the
models are not strictly comparable with each other, making
the interpretation of results impossible.

Results: The results reported in Table 2 show state-of-
the-art performance for the penalized model. We report an
average AUROC of 97.0% on the CIFAR-10 benchmarks,
98.7% on the FashionMNIST benchmarks and a global av-
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erage AUROC of 97.6% on all datasets. On the other hand,
we measure an average AUROC of 62.4% for Generalized
ODIN, 83.8% for Mahalanobis and 84.0% for Energy (or
79.44% when not taking into account MNIST and SVHN
as these datasets are used during training to tune the energy
bounds).

Discussion: Our state-of-the-art results on OOD detec-
tion show that the approximate mass regularization per-
forms well when there is both a covariate shift and a
semantic shift between the in-distribution and the out-
distributions. Our results surpass by 16% on average the
AUROC of the best baseline, Energy with OOD datasets in-
cluded. Furthermore, we note a more consistent behavior of
our model than the baseline as our penalized training yields
good performance on all datasets in the benchmark while
other models are more irregular in their classification per-
formance depending on the OOD dataset. Finally, a gap can
be observed between TNR@95%TPR values and the AU-
ROC values for the other models in the benchmark. We in-
vestigated this discrepancy by plotting their respective ROC
curve where we observe that lowering the value of the TPR
increases the TNR (for example, TNR@95%TPR is greater
than TNR@99%TPR but lower than TNR@90%TPR).

In the following section, we assess its applicability in se-
mantic shift detection as the features used to detect OOD
data might not transfer similarly to every class of distribu-
tional shifts.

4.4. Anomalous class detection

Anomaly detection or anomalous class detection is a task
where the model is trained on a single class in a dataset
(corresponding to its in-distribution) while the remaining
classes of the dataset are treated as the out-distribution. The
goal of this study is to assess the applicability of the ap-
proximate mass in a semantic shift scenario. We evaluate
our model in a similar setting to [33]:

Metrics: The AUROC is usually reported for this task.
Baselines: We compare our approach to two state-of-

the-art models in the domain: OCGAN [34] and GradCon
[33]. The former is based on the features extracted in the
latent space by a GAN [3] while the latter is based on a
gradient metric with respect to the model’s features (instead
of the input) of the reconstruction loss of a VAE [4].

Datasets: Simiarly to [33], we use the MNIST [23] and
CIFAR-10 [16] datasets to test performance in an anoma-
lous class setting.

Methodology: We split a dataset in an ID set made of
only one class of the dataset while the other classes are
OOD. In order to evaluate the model, we train it on a single
class of the MNIST (or CIFAR-10) training data then test it
on a split of the test set between the ID class and anomalous
classes (the remaining classes).

Results: Tables 3 and 4 respectively show the AUROC
obtained on a RealNVP model on MNIST and CIFAR-10
in an anomalous class detection setting. We report an av-
erage AUROC of 75.2% on MNIST and 76.1% on CIFAR-
10 with a penalized RealNVP. The results reported in [33]
are an average AUROC of 97.3% on MNIST and 66.4%
CIFAR-10 for GradCon, and 97.5% on MNIST and 65.7%
CIFAR-10 for OCGAN. This experiment shows that the ap-
proximate mass penalized model is sensitive to the seman-
tic of data to some extent as it is able to detect label shifts.
The gap in performance between the MNIST and CIFAR-10
datasets is much lower than the one measured for OCGAN
or GradCon, consistently with results in section 4.3. How-
ever, the AUROC is distributed unevenly across classes in
the datasets, some classes being seemingly less distinguish-
able by the model than others (e.g.: class 1 in the MNIST
dataset in Table 3).

Discussion: We explain this result by looking at the in-
formation extracted by the model: the approximate mass
takes the gradient with respect to the input instead of the
features, as is performed by GradCon. Thus the model ex-
tracts information much closer to the input image, making
it more sensitive to feature level information than semantic
information. Furthermore, taking the norm rather than the
angle of the gradient with respect to some reference vector,
by opposition to GradCon, may also explain the disparity in
performance as cosine similarity is most often used when
measuring similarity between different semantics.

5. Conclusion
We show that normalizing flows trained with maximum

likelihood assign higher approximate mass to ID data than
to OOD data. This change of behavior of the approximate
mass during training may be due to a displacement of the
probability mass around input data. We propose a solu-
tion based on simultaneous optimization of the approximate
mass and likelihood, yielding better results than the state-
of-the-art OOD detection models, improving the baseline
by 16% relatively to the best model. This method isotropi-
cally smoothes the log-likelihood around in-distribution in-
put data. We show the approximate mass metric is more
sensitive to covariate shifts as it allows for OOD detection
(covariate and semantic shifts) while not being the best met-
ric for semantic shift detection. Our method generalizes bet-
ter for different OOD datasets compared to state-of-the-art
models. In a follow up work, we aim to integrate this train-
ing objective in an adversarial context to test out covariate
shift sensitivity.
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Model Training dataset OOD dataset AUROC AUPR TNR @95%TPR
G-ODIN CIFAR-10 SVHN 0.810 0.804 0.355

Mahalanobis CIFAR-10 SVHN 0.936 0.926 0.758
Energy CIFAR-10 SVHN 0.999 1.0 1.0

Approximate mass CIFAR-10 SVHN 0.969 0.969 1.0
G-ODIN CIFAR-10 iNaturalist 0.581 0.552 0.124

Mahalanobis CIFAR-10 iNaturalist 0.745 0.715 0.290
Energy CIFAR-10 iNaturalist 0.647 0.902 0.872

Approximate mass CIFAR-10 iNaturalist 0.968 0.906 0.994
G-ODIN CIFAR-10 iNaturalist (plants) 0.581 0.552 0.124

Mahalanobis CIFAR-10 iNaturalist (plants) 0.731 0.706 0.166
Energy CIFAR-10 iNaturalist (plants) 0.587 0.881 0.077

Approximate mass CIFAR-10 iNaturalist (plants) 0.968 0.799 0.991
G-ODIN CIFAR-10 DTD 0.882 0.887 0.53

Mahalanobis CIFAR-10 DTD 0.857 0.788 0.576
Energy CIFAR-10 DTD 0.734 0.912 0.341

Approximate mass CIFAR-10 DTD 0.978 0.979 1.0
G-ODIN CIFAR-10 Places365 0.616 0.577 0.157

Mahalanobis CIFAR-10 Places365 0.522 0.518 0.08
Energy CIFAR-10 Places365 0.753 0.937 0.177

Approximate mass CIFAR-10 Places365 0.968 0.936 0.978
G-ODIN CIFAR-10 GTSRB 0.411 0.450 0.072

Mahalanobis CIFAR-10 GTSRB 0.764 0.681 0.356
Energy CIFAR-10 GTSRB 0.890 0.975 0.582

Approximate mass CIFAR-10 GTSRB 0.970 0.970 1.0
G-ODIN FashionMNIST MNIST 0.535 0. 611 0.008

Mahalanobis FashionMNIST MNIST 0.995 0.995 0.994
Energy FashionMNIST MNIST 1.0 1.0 1.0

Approximate mass FashionMNIST MNIST 0.994 0.971 1.0
G-ODIN FashionMNIST EMNIST 0.870 0.885 0.425

Mahalanobis FashionMNIST EMNIST 0.995 0.995 0.982
Energy FashionMNIST EMNIST 0.990 0.998 0.955

Approximate mass FashionMNIST EMNIST 0.969 0.969 1.0
G-ODIN FashionMNIST KMNIST 0.328 0.391 0.019

Mahalanobis FashionMNIST KMNIST 0.990 0.990 0.948
Energy FashionMNIST KMNIST 0.981 0.995 0.917

Approximate mass FashionMNIST KMNIST 1.0 0.996 1.0

Table 2. Results on OOD classification for different state-of-the-art models. The energy model is trained with the CIFAR-10 (resp.
FashionMNIST) as ID data and SVHN (resp. MNIST) datasets as OOD data.

Model 0 1 2 3 4 5 6 7 8 9
GradCon 0.995 0.999 0.952 0.973 0.969 0.977 0.994 0.979 0.919 0.973
OCGAN 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981

Approximate mass 0.969 0.064 0.629 0.924 0.796 0.946 0.977 0.682 0.969 0.572

Table 3. AUROC results on anomalous class detection on MNIST for different models.

Model Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck
GradCon 0.760 0.598 0.648 0.586 0.733 0.603 0.684 0.567 0.784 0.678
OCGAN 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554

Approximate mass 0.855 0.605 0.756 0.835 0.574 0.801 0.797 0.862 0.871 0.656

Table 4. AUROC results on anomalous class detection on CIFAR-10 for different models.
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