Diffusion-Enhanced PatchMatch: A Framework for Arbitrary Style Transfer with Diffusion Models

Mark Hamazaspyan1,2, Shant Navasardyan1,3
1 Yerevan State University (YSU), 2 Metric, 3 Picsart AI Research (PAIR)

Abstract

Diffusion models have gained immense popularity in recent years due to their impressive ability to generate high-quality images. The opportunities that diffusion models provide are numerous, from text-to-image synthesis to image restoration and enhancement, as well as image compression and inpainting. However, expressing image style in words can be a challenging task, making it difficult for diffusion models to generate images with specific style without additional optimization techniques. In this paper, we present a novel method, Diffusion-Enhanced PatchMatch (DEPM), that leverages Stable Diffusion for style transfer without any finetuning or pretraining. DEPM captures high-level style features while preserving the fine-grained texture details of the original image. By enabling the transfer of arbitrary styles during inference, our approach makes the process more flexible and efficient. Moreover, its optimization-free nature makes it accessible to a wide range of users.

1. Introduction

Style transfer has emerged as a popular research area in computer vision [1, 6, 10, 12, 12, 19], enabling the synthesis of visually appealing images by combining the content of one image with the style of another. Broadly, style transfer techniques can be categorized into three types: optimization-based [6, 10], neural network training-based [12, 26], and arbitrary image style transfer [1, 19].

DEPM falls into the third category, which aims to provide a more flexible and efficient solution for transferring arbitrary styles without the need for training. Existing methods for arbitrary style transfer have their own advantages and disadvantages. For instance, optimization-based methods often produce high-quality results but are computationally expensive, while neural network training-based methods require extensive training for each specific style. Our method addresses these limitations by synergistically combining diffusion models with style transfer techniques, enabling the transfer of arbitrary styles during the inference of Stable Diffusion [22] without any finetuning or pretraining.

Recent works, such as those by Ho et al. [7] and Nichol et al. [20], have demonstrated the potential of diffusion models for a wide range of applications. Furthermore, researchers have explored the use of diffusion models for tasks beyond image synthesis, such as video synthesis [3, 15], audio synthesis [16], and even reinforcement learning [11]. These advances highlight the versatility and potential of diffusion models for various domains and encourage further exploration of their capabilities.

In this paper we propose a new approach for style transfer by leveraging the generative power of diffusion models. Some results can be found in Fig. 1.

Our contributions can be summarized as follows:

1. We utilize patch-based techniques with whitening and coloring transformations in the latent space of Stable Diffusion for high-quality arbitrary style transfer.

2. Our approach demonstrates superior performance in terms of color transformation while preserving the content details of the input image.

3. Our method enables arbitrary style transfer without the need for any training, making it a highly flexible and efficient solution for a wide range of applications.
2. Related work

2.1. Style transfer

The field of style transfer has seen significant advancements in computer vision research in recent years, with various approaches proposed to tackle this problem \[2,9,17,28\]. In this section, we review some of the most notable works in the area, highlighting their strengths and limitations.

One of the earliest and most widely cited works in this field is Gatys et al. \[6\], which introduced a neural network-based approach for style transfer. The approach leverages a pre-trained convolutional neural network to separate the content and style of an input image, before optimizing a new image that preserves the content of the input image while adopting the style of a target image. This method produces visually appealing results and has been used in many artistic applications. However, it is computationally expensive, requiring iterative optimization over a large image space, and it struggles to handle color transformation. To address these limitations, several works have proposed alternative optimization techniques, such as gradient descent or more efficient neural network architectures, such as feed-forward networks (Johnson et al., \[12\]). These approaches achieve faster inference times and have less computational cost, making them more practical for real-time applications. However, they often sacrifice the quality of the results for the sake of efficiency.

Another notable approach is introduced by Chen et al. \[1\], which uses patch matching to align the textures between the input and target style images. The method then transfers the aligned texture patches to the input image to create the final stylized image. This approach achieves impressive results in preserving local texture details and has a faster inference time than optimization-based methods. However, it struggles to handle global style transfer and can result in artifacts in the stylized image.

Whitening and Coloring Transform (WCT) by Li et al. \[19\] is another popular approach that uses a whitening operation to separate the content and style of an input image before transferring the style using a coloring operation. This method achieves high-quality results while preserving the content of the input image. However, it is not as flexible as other methods, as it requires pre-defined sets of styles for training.

In recent years, Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization by Zhang et al. \[30\], proposed a novel approach for arbitrary style transfer that matches the distributions of features between the content and style images. This method achieves state-of-the-art results for arbitrary style transfer, while also being effective for domain generalization, enabling the model to generalize to previously unseen styles. However, it requires significant computational resources for training and inference.

In the light of feature distributions: moment matching for Neural Style Transfer by Kalischek et al. \[13\] also addresses the feature distribution matching problem in neural style transfer. By matching the first and second moments of feature maps from the content and style images, the method achieves high-quality stylization results. However, it is not as effective for arbitrary style transfer and may produce overly stylized images.

Domain-Aware Universal Style Transfer by Hong et al. \[8\] proposes a method for universal style transfer that can learn to transfer style across different domains. This method achieves superior results for universal style transfer, while also being flexible and efficient. However, it requires a large number of styles for training, which can be time-consuming and computationally expensive.

In summary, the style transfer field has seen significant progress in recent years, with various approaches proposed to tackle the problem. While each approach has its strengths and limitations, recent approaches, such as Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization, Domain-Aware Universal Style Transfer, and feature distribution moment matching methods, offer promising avenues for more efficient, flexible, and effective style transfer.

2.2. Diffusion models

Diffusion models have emerged as a powerful class of generative models that learn to generate images by simulating a diffusion process \[7,25,27\]. These models consist of a series of noise-corrupted images, where the noise is gradually removed in a step-by-step manner. By learning this reverse diffusion process, diffusion models can generate high-quality images that capture the underlying data distribution.

In this section, we provide an overview of diffusion models, their mathematical formulation, and their applications, including Textual Inversion, Dreambooth, and others.

2.2.1 Applications

Diffusion models have been successfully applied to a wide range of tasks, including image synthesis, inpainting, denoising, and more. Some notable applications and research areas are discussed below:

Textual Inversion: Textual inversion \[5\] is a technique that aims to generate images from textual descriptions by inverting the diffusion process. By conditioning the diffusion model on text embeddings, researchers have been able to generate images that closely match the given textual descriptions. This demonstrates the potential of diffusion models for text-to-image synthesis and their ability to capture complex semantic information.

Dreambooth: Dreambooth \[24\] is an interactive image
3. Method

Our approach synergistically combines diffusion models with style transfer techniques, leveraging the power of generative diffusion models to capture high-level style features while ensuring that the fine-grained texture details of the original image are preserved.

3.1. Background

3.1.1 Diffusion models

The diffusion process can be described as a Markov chain, where each step involves adding noise to an image. Given an initial image \(x_0 \), the diffusion process can be defined as:

\[
q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I) \tag{1}
\]

\[
q(x_{1:T} | x_0) = \prod_{t=1}^{T} q(x_t | x_{t-1}) \tag{2}
\]

where \(\sqrt{1 - \beta_t} x_{t-1} \) and \(\beta_t \) are the mean and variance of the Gaussian distribution, respectively. The goal of diffusion models is to learn the parameters of this conditional distribution, which can be achieved using a denoising score matching objective. The reverse diffusion or denoising process is defined as:

\[
p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \tag{3}
\]

\[
p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mathbf{\mu}_t(\mathbf{x}_t, t), \mathbf{\Sigma}_t(\mathbf{x}_t, t)) \tag{4}
\]

One notable class of diffusion models is the Latent Diffusion models by Rombach [23]. Latent diffusion models simplify the diffusion process by projecting high-dimensional input into a smaller latent space. To achieve this, an encoder network is used to encode the input into a latent representation, which is then processed by a standard diffusion model to generate new data. This reduces the computational demands of training diffusion models by processing the input in a lower dimensional space. The resulting data is then upsampled by a decoder network.

Stability AI has open-sourced the weights of its own Latent Diffusion model: Stable Diffusion which is used for the experiments in this paper.

3.1.2 Patch Match (PM)

The primary component of PM involves a patch-based operation that constructs target activations in a single layer, utilizing both style and content images [1]. The style swap procedure comprises the following steps:

1. Extract a collection of patches from both content and style activations.
2. For every content activation patch, identify the most closely-matching style patch using the normalized cross-correlation measure.
3. Replace each content activation patch with its nearest-matching style patch.
4. Reassemble the entire content activations by averaging overlapping regions that may possess different values due to step 3.

3.1.3 WCT

In the whitening step, the content image’s feature maps are transformed to remove the original style information by making the covariance matrix of the content features close to an identity matrix. This is achieved by applying a decorrelation operation, which involves eigendecomposition of the content covariance matrix followed by rescal-
ing the content features using the inverse square root of the
eigenvalues. The coloring step, on the other hand, involves
transferring the style information from the reference image
to the whitened content features. This is accomplished by
computing the covariance matrix of the style features and
then applying a correlation operation, which involves multi-
plying the whitened content features with the square root
of the style eigenvalues and the style eigenvectors. The re-
sulting feature maps, which now possess the style of the
reference image and the content structure of the original im-
age, are then passed through a decoder network to generate
the final stylized output [19].

3.2. Diffusion-Enhanced PatchMatch (DEPM)

In our experiments, we utilize the publicly available Sta-
ble Diffusion model\(^1\). We begin by performing \(t = 15 \) (the
total number of steps is \(T = 100 \)) steps of deterministic
forward pass with LMDSDiscreteScheduler [14] to \(C_0 \), the
latent representation of the content image. The resulting
latent code is hence denoted by \(C_{15} \). For a 100-step inference
process, we determine that 15 steps were optimal for
content preservation. Similarly for the style image \(S_0 \), we
get the latent representation \(S_{15} \). Then, we apply the patch
match transformation to the latent variables of the corre-
spending content and style images at step \(t = 15 \) resulting
in a latent representation \(C_{15} \). Finally, we perform \(t = 15 \)
backward diffusion steps on \(C_{15} \) (with the scheduler LMS-
DiscreteScheduler) resulting in the \(C_0 \), latent representation
of the stylized image. To get the stylized image it remains
to pass \(C_0 \) to the decoder of Stable Diffusion. The overview
of our method is shown in Fig. 2.

In our experiments, we focused on the style transfer
application and left the text prompt empty to concentrate
solely on the transfer of artistic styles between images. This
allowed us to thoroughly evaluate the performance of our
method in terms of color transformation, artistic style trans-
fer, and content preservation. Nevertheless, there is am-
ple room for further research, where the textual prompt can be utilized for content image modification, combined with
style transfer.

We explored various combinations of transformations,
including PM only, WCT only, and PM followed by WCT.
After implementing the PM, the transformed latent code’s
pixels do not exhibit a Gaussian distribution, leading to a
denoising process that produces output from a distinct dis-
tribution compared to the input. Consequently, we employ
WCT to bring the covariance matrix of the transformed la-
ten code closer to the Identity matrix. This approach sub-
stantially enhances the results, as demonstrated in Fig. 4 of
the Ablation study section. Moreover, we empirically came
to the conclusion that by multiplying the style latent with
constant \(\sigma = 1.5886 \) hyperparameter right before the PM
transformation, the results are getting better compared with
just PM. Our experiments indicate that multiplying the la-
tent with sigma expands its distribution tails, which in turn
facilitates the style transfer process by enabling a more ef-
effective transfer of the style characteristics from the style im-
age to the content image. This observation highlights the
importance of carefully tuning the hyperparameters in our
method to achieve optimal style transfer results. For our
experiments, we employed the LMDSDiscreteScheduler [14]
scheduler, but any other scheduler can be used for our tech-
nique. This approach demonstrates the flexibility and ef-
effectiveness of our method in achieving high-quality style
transfer results while preserving the content details of the
input image.

4. Experiments

In this section, we present a series of experiments de-
digned to evaluate the performance of our proposed method
and compare it with three other state-of-the-art style trans-
fer techniques. Our goal is to demonstrate the effectiveness
of our approach in achieving high-quality style transfer re-
results while preserving the content details of the input image.
We provide a brief introduction to the experimental setup,
followed by a detailed analysis of the results and compar-
isons with the selected methods. In this section, we provide
a qualitative comparison of our proposed method with the
three selected baseline methods: EFDM (Example-based
Feature-driven Diffusion Model), CMD (In the light of fea-
ture distributions), and DSTN (Domain-Aware Universal
Style Transfer). We focus on the ability of each method to
transform colors and artistic styles, preserve content com-
ponents, and distribute style effects across unique objects in
the generated images.

4.1. Implementation details

The experiments were conducted on a diverse set of con-
tent and style images, covering various artistic styles and
image content. We used images from PascalVOC [4] and
WikiArt [21] datasets for style transfer. Throughout the ex-
periments, we set 512×512 as the default image resolution.
We set the LMSDiscreteScheduler to \(T = 100 \) timestamps
and used \(t = 15 \) steps to add noise to the content image.
During the denoising steps we perform PM and WCT trans-
formations at step \(t = 15 \). Our code is implemented with
PyTorch and inference is done on a single GeForce GTX
1080 Ti.

4.2. Qualitative comparison

For our experiments, we selected three representative
style transfer methods from the literature to serve as base-
lines for comparison. These methods encompass a diverse

\(^1\)Stable Diffusion weights https://huggingface.co/
CompVis/stable-diffusion-v-1-4-original/tree/
main.
Figure 3. Comparison of different methods for image style transfer.
range of approaches. By comparing our method with these baselines, we aim to showcase the advantages of our approach in terms of flexibility and efficiency. Fig. 3 shows the various content and style images (columns 1,2 respectively), our approach (column 3), CMD (column 4), EFDM (column 5) and DSTN (column 6). One can see that our approach works stably on transferring colors and artistic elements of style images.

Our approach demonstrates a superior performance in terms of color transformation and artistic style transfer. Compared to EFDM, our method better preserves the content components of the content image, ensuring that the fine-grained details and structural information are maintained throughout the style transfer process. This results in synthesized images that exhibit a more accurate and visually appealing transfer of style while maintaining the integrity of the original content. Rows 4,5 and 7 are expressive examples of the above points.

When compared to CMD, our method produces images with more well-defined artistic components. The overall style is not uniformly distributed across the image, allowing for a more nuanced and context-aware transfer of style that better affects unique objects within the content image (more expressive in Row 1,4,7). This leads to a more engaging and visually striking output that effectively captures the essence of both the content and style images.

Finally, in comparison to DSTN, our approach performs better in both artistic style transfer and content preservation. By synergistically combining diffusion models with style transfer techniques, we are able to achieve a more accurate and visually appealing transfer of style while ensuring that the content details of the input image are preserved.

In summary, our method demonstrates a strong qualitative performance in comparison to the selected baselines, excelling in color transformation, artistic style transfer, and content preservation. The resulting images exhibit a high degree of visual appeal and fidelity, highlighting the effectiveness of our approach in achieving high-quality style transfer results.

4.3. Quantitative comparison

In addition to the qualitative analysis, we performed a quantitative comparison of our proposed method with the selected baseline methods using Perceptual Similarity Loss [29]. This metric evaluates the perceptual similarity between the generated images and the target content images, providing an objective measure of the effectiveness of the style transfer process.

To compute the Perceptual Similarity Loss, we employed a pre-trained VGG model, which has been widely used in the literature for evaluating style transfer methods. We conducted our quantitative evaluation on a diverse set of over 100 images, ensuring a comprehensive assessment of the performance of our method and the baselines. The results of the quantitative comparison are presented in Tab. 1, which shows the mean Perceptual Similarity Loss values across the 100 images for each method. Our method outperforms the baseline methods, indicating that our approach is more effective in transferring the desired style while preserving the content details of the input image.

<table>
<thead>
<tr>
<th>Method</th>
<th>LPIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPM(ours)</td>
<td>0.596</td>
</tr>
<tr>
<td>CMD</td>
<td>0.719</td>
</tr>
<tr>
<td>EFDM</td>
<td>0.606</td>
</tr>
<tr>
<td>DSTN</td>
<td>0.615</td>
</tr>
</tbody>
</table>

Table 1. Quantitative results. Average values of LPIPS Loss (lower is better) are calculated across the 100 images.

5. Ablation study

In this section, we present an ablation study to investigate the impact of various components of our proposed method on the style transfer results. We conducted extensive experiments by including and excluding the Patch Match (PM), Whitening and Coloring Transform (WCT) whitening and coloring, and constant σ components in different combinations. We also experimented with different versions of the Stable Diffusion model and the application of PM at multiple steps of the denoising process.

The ablation study comprises the following configurations: PM only, PM + WCT, PM * constant σ, and PM * constant σ + WCT, shown in Fig. 4. As discussed in Section 3.2, we implemented the forward diffusion process with $t = 15$ steps of noise to obtain C_{15} and S_{15} and subsequently, during the reverse diffusion, we applied the aforementioned configurations at $t = 15$. Our experiments reveal that the combination of PM multiplied with sigma provides the best balance between artistic style transfer and content preservation. We experimented with Stable Diffusion versions 1.4, 1.5, and 2, and observed no significant differences in the style transfer results across these versions. This indicates that our method is robust to variations in the underlying diffusion model and can be applied to different versions with consistent performance.

Additionally, we explored the application of PM at multiple steps of the denoising process. Fig. 5 illustrates the visual results of the experiment. Applying PM at multiple steps resulted in increasing deviations of latent codes from Gaussian distribution. A single application of PM near the beginning of the denoising process is optimal for achieving the desired style transfer effects.

Furthermore, we investigated the impact of applying the PM transformation at various steps of the denoising process. Our experiments revealed that the best results were obtained when the PM transformation was applied near the beginning steps, as this allowed for a more accurate and visually appealing transfer of style while preserving the content details.
of the input image.

In summary, our ablation study provides valuable insights into the contributions of different components of our proposed method and their impact on the style transfer results. These findings demonstrate the effectiveness of our approach in achieving high-quality style transfer while maintaining the content details of the input image, and highlight the potential for further optimization and refinement of our method.

6. Conclusion

In this paper, we have presented a novel approach to style transfer that synergistically combines diffusion models with style transfer techniques, enabling the transfer of arbitrary styles during the inference step without any finetuning or pretraining. Our method leverages the power of generative diffusion models to capture high-level style features while ensuring that the fine-grained texture details of the original image are preserved.

Through a series of experiments and comparisons with state-of-the-art style transfer methods, we demonstrated the effectiveness of our approach in achieving high-quality style transfer results while preserving the content details of the input image. Our ablation study provided valuable insights into the contributions of different components of our method, such as Patch Match, Whitened Color Transform, and constant sigma, and their impact on the style transfer results.
Our method offers significant advantages over existing style transfer techniques, such as improved flexibility, efficiency, and the ability to handle arbitrary styles without the need for training. This makes our approach a more accessible and versatile tool for artists, designers, and researchers alike, and encourages further exploration of the potential applications of diffusion models and style transfer techniques.

In conclusion, our work contributes to the growing body of research on diffusion models and style transfer, and opens up new avenues for future research in this area. By building upon the successes of previous works and addressing their limitations, our approach has the potential to advance the state-of-the-art in style transfer research and provide a more effective and efficient solution for a wide range of applications.

References

[1] Tian Qi Chen and Mark Schmidt. Fast patch-based style transfer of arbitrary style, 2016. 1, 2, 3
[10] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normalization, 2017. 1
[12] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution, 2016. 1, 2

[16] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion model for audio synthesis, 2020. 1

[19] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal style transfer via feature transforms, 2017. 1, 2, 4

[22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models, 2021. 1

[26] Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and Björn Ommer. A style-aware content loss for real-time hd style transfer, 2018. 1

[28] Jinchao Yang, Fei Guo, Shuo Chen, Jun Li, and Jian Yang. Industrial style transfer with large-scale geometric warping and content preservation, 2022. 2

[29] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric, 2018. 6