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Abstract

Diffusion models have gained immense popularity in re-
cent years due to their impressive ability to generate high-
quality images. The opportunities that diffusion models pro-
vide are numerous, from text-to-image synthesis to image
restoration and enhancement, as well as image compression
and inpainting. However, expressing image style in words
can be a challenging task, making it difficult for diffusion
models to generate images with specific style without ad-
ditional optimization techniques. In this paper, we present
a novel method, Diffusion-Enhanced PatchMatch (DEPM),
that leverages Stable Diffusion for style transfer without any
finetuning or pretraining. DEPM captures high-level style
features while preserving the fine-grained texture details of
the original image. By enabling the transfer of arbitrary
styles during inference, our approach makes the process
more flexible and efficient. Moreover, its optimization-free
nature makes it accessible to a wide range of users.

1. Introduction
Style transfer has emerged as a popular research area

in computer vision [1, 6, 10, 12, 12, 19], enabling the syn-
thesis of visually appealing images by combining the con-
tent of one image with the style of another. Broadly, style
transfer techniques can be categorized into three types:
optimization-based [6, 10], neural network training-based
[12, 26], and arbitrary image style transfer [1, 19].

DEPM falls into the third category, which aims to pro-
vide a more flexible and efficient solution for transferring
arbitrary styles without the need for training. Existing meth-
ods for arbitrary style transfer have their own advantages
and disadvantages. For instance, optimization-based meth-
ods often produce high-quality results but are computation-
ally expensive, while neural network training-based meth-
ods require extensive training for each specific style. Our
method addresses these limitations by synergistically com-
bining diffusion models with style transfer techniques, en-
abling the transfer of arbitrary styles during the inference of
Stable Diffusion [22] without any finetuning or pretraining.

Recent works, such as those by Ho et al. [7] and Nichol et

Figure 1. Style trainfer with DEPM, for each pair of images the
content image is the left one with the style image in the top left
corner of it, and the stylized image is on the right.

al. [20], have demonstrated the potential of diffusion models
for a wide range of applications. Furthermore, researchers
have explored the use of diffusion models for tasks beyond
image synthesis, such as video synthesis [3, 15], audio syn-
thesis [16], and even reinforcement learning [11]. These
advances highlight the versatility and potential of diffusion
models for various domains and encourage further explo-
ration of their capabilities.

In this paper we propose a new approach for style trans-
fer by leveraging the generative power of diffusion models.
Some results can be found in Fig. 1.

Our contributions can be summarized as follows:

1. We utilize patch-based techniques with whitening and
coloring transformations in the latent space of Stable
Diffusion for high-quality arbitrary style transfer.

2. Our approach demonstrates superior performance in
terms of color transformation while preserving the
content details of the input image.

3. Our method enables arbitrary style transfer without the
need for any training, making it a highly flexible and
efficient solution for a wide range of applications.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. Related work

2.1. Style transfer

The field of style transfer has seen significant advance-
ments in computer vision research in recent years, with vari-
ous approaches proposed to tackle this problem [2,9,17,28].
In this section, we review some of the most notable works
in the area, highlighting their strengths and limitations.

One of the earliest and most widely cited works in this
field is Gatys et al. [6], which introduced a neural network-
based approach for style transfer. The approach leverages
a pre-trained convolutional neural network to separate the
content and style of an input image, before optimizing a
new image that preserves the content of the input image
while adopting the style of a target image. This method pro-
duces visually appealing results and has been used in many
artistic applications. However, it is computationally ex-
pensive, requiring iterative optimization over a large image
space, and it struggles to handle color transformation. To
address these limitations, several works have proposed al-
ternative optimization techniques, such as gradient descent
or more efficient neural network architectures, such as feed-
forward networks (Johnson et al., [12]). These approaches
achieve faster inference times and have less computational
cost, making them more practical for real-time applications.
However, they often sacrifice the quality of the results for
the sake of efficiency.

Another notable approach is introduced by Chen et al.
[1], which uses patch matching to align the textures between
the input and target style images. The method then trans-
fers the aligned texture patches to the input image to create
the final stylized image. This approach achieves impressive
results in preserving local texture details and has a faster
inference time than optimization-based methods. However,
it struggles to handle global style transfer and can result in
artifacts in the stylized image.

Whitening and Coloring Transform (WCT) by Li et al.
[19] is another popular approach that uses a whitening op-
eration to separate the content and style of an input image
before transferring the style using a coloring operation. This
method achieves high-quality results while preserving the
content of the input image. However, it is not as flexible as
other methods, as it requires pre-defined sets of styles for
training.

In recent years, Exact Feature Distribution Matching
for Arbitrary Style Transfer and Domain Generalization
by Zhang et al. [30], proposed a novel approach for ar-
bitrary style transfer that matches the distributions of fea-
tures between the content and style images. This method
achieves state-of-the-art results for arbitrary style transfer,
while also being effective for domain generalization, en-
abling the model to generalize to previously unseen styles.
However, it requires significant computational resources for

training and inference.
In the light of feature distributions: moment matching

for Neural Style Transfer by Kalischek et al. [13] also ad-
dresses the feature distribution matching problem in neu-
ral style transfer. By matching the first and second mo-
ments of feature maps from the content and style images,
the method achieves high-quality stylization results. How-
ever, it is not as effective for arbitrary style transfer and may
produce overly stylized images.

Domain-Aware Universal Style Transfer by Hong et al.
[8] proposes a method for universal style transfer that can
learn to transfer style across different domains. This method
achieves superior results for universal style transfer, while
also being flexible and efficient. However, it requires a large
number of styles for training, which can be time-consuming
and computationally expensive.

In summary, the style transfer field has seen significant
progress in recent years, with various approaches proposed
to tackle the problem. While each approach has its strengths
and limitations, recent approaches, such as Exact Feature
Distribution Matching for Arbitrary Style Transfer and Do-
main Generalization, Domain-Aware Universal Style Trans-
fer, and feature distribution moment matching methods, of-
fer promising avenues for more efficient, flexible, and ef-
fective style transfer.

2.2. Diffusion models

Diffusion models have emerged as a powerful class of
generative models that learn to generate images by simulat-
ing a diffusion process [7,25,27]. These models consist of a
series of noise-corrupted images, where the noise is gradu-
ally removed in a step-by-step manner. By learning this re-
verse diffusion process, diffusion models can generate high-
quality images that capture the underlying data distribution.
In this section, we provide an overview of diffusion mod-
els, their mathematical formulation, and their applications,
including Textual Inversion, Dreambooth, and others.

2.2.1 Applications

Diffusion models have been successfully applied to a wide
range of tasks, including image synthesis, inpainting, de-
noising, and more. Some notable applications and research
areas are discussed below:

Textual Inversion: Textual inversion [5] is a technique
that aims to generate images from textual descriptions by
inverting the diffusion process. By conditioning the dif-
fusion model on text embeddings, researchers have been
able to generate images that closely match the given tex-
tual descriptions. This demonstrates the potential of diffu-
sion models for text-to-image synthesis and their ability to
capture complex semantic information.

Dreambooth: Dreambooth [24] is an interactive image
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synthesis application that allows users to generate images
by providing textual descriptions and adjusting various pa-
rameters. By leveraging diffusion models, Dreambooth
enables users to generate high-quality images with fine-
grained control over the content and style. This showcases
the flexibility and expressiveness of diffusion models for
creative applications.

Style Transfer: Diffusion models can be combined with
style transfer techniques to enable the transfer of arbitrary
styles during the inference step without any finetuning or
pretraining. This integration not only enhances the per-
formance of style transfer but also allows for text-guided
style transfer, providing users with greater control and cus-
tomization over the generated output [18].

3. Method
Our approach synergistically combines diffusion models

with style transfer techniques, leveraging the power of gen-
erative diffusion models to capture high-level style features
while ensuring that the fine-grained texture details of the
original image are preserved.

3.1. Background

3.1.1 Diffusion models

The diffusion process can be described as a Markov chain,
where each step involves adding noise to an image. Given
an initial image x0, the diffusion process can be defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (2)

where
√
1− βtxt−1 and βt are the mean and variance of

the Gaussian distribution, respectively. The goal of diffu-
sion models is to learn the parameters of this conditional
distribution, which can be achieved using a denoising score
matching objective. The reverse diffusion or denoising pro-
cess is defined as:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

One notable class of diffusion models is the Latent
Diffusion models by Rombach [23]. Latent diffusion
models simplify the diffusion process by projecting high-
dimensional input into a smaller latent space. To achieve
this, an encoder network is used to encode the input into

Figure 2. C0 and S0 are the latent representations of content and
style images at timestamp t = 0. Initially, we perform t = 15
steps of deterministic forward pass with LMSDiscreteScheduler
to get C15 and S15 (total number of steps is T = 100), then we
start the reverse diffusion process. At t = 15 we perform PM or
PM followed by WCT to get the latent representation Ĉ15. We
finish the process by performing t = 15 reverse diffusion steps on
Ĉ15 resulting in Ĉ0, the latent representation of the stylized image.

a latent representation, which is then processed by a stan-
dard diffusion model to generate new data. This reduces
the computational demands of training diffusion models by
processing the input in a lower dimensional space. The re-
sulting data is then upsampled by a decoder network.

Stability AI has open-sourced the weights of its own La-
tent Diffusion model: Stable Diffusion which is used for the
experiments in this paper.

3.1.2 Patch Match (PM)

The primary component of PM involves a patch-based op-
eration that constructs target activations in a single layer,
utilizing both style and content images [1]. The style swap
procedure comprises the following steps:

1. Extract a collection of patches from both content and
style activations.

2. For every content activation patch, identify the most
closely-matching style patch using the normalized cross-
correlation measure.

3. Replace each content activation patch with its nearest-
matching style patch.

4. Reassemble the entire content activations by averag-
ing overlapping regions that may possess different values
due to step 3.

3.1.3 WCT

In the whitening step, the content image’s feature maps
are transformed to remove the original style information
by making the covariance matrix of the content features
close to an identity matrix. This is achieved by applying
a decorrelation operation, which involves eigendecomposi-
tion of the content covariance matrix followed by rescal-
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ing the content features using the inverse square root of the
eigenvalues. The coloring step, on the other hand, involves
transferring the style information from the reference image
to the whitened content features. This is accomplished by
computing the covariance matrix of the style features and
then applying a correlation operation, which involves mul-
tiplying the whitened content features with the square root
of the style eigenvalues and the style eigenvectors. The re-
sulting feature maps, which now possess the style of the
reference image and the content structure of the original im-
age, are then passed through a decoder network to generate
the final stylized output [19].

3.2. Diffusion-Enhanced PatchMatch (DEPM)

In our experiments, we utilize the publicly available Sta-
ble Diffusion model1. We begin by performing t = 15 (the
total number of steps is T = 100) steps of deterministic
forward pass with LMSDiscreteScheduler [14] to C0, the
latent representation of the content image. The resulting
latent code is hence denoted by C15. For a 100-step infer-
ence process, we determine that 15 steps were optimal for
content preservation. Similarly for the style image S0, we
get the latent representation S15. Then, we apply the patch
match transformation to the latent variables of the corre-
sponding content and style images at step t = 15 resulting
in a latent representation Ĉ15. Finally, we perform t = 15
backward diffusion steps on Ĉ15 (with the scheduler LMS-
DiscreteScheduler) resulting in the Ĉ0, latent representation
of the stylized image. To get the stylized image it remains
to pass Ĉ0 to the decoder of Stable Diffusion. The overview
of our method is shown in Fig. 2.

In our experiments, we focused on the style transfer
application and left the text prompt empty to concentrate
solely on the transfer of artistic styles between images. This
allowed us to thoroughly evaluate the performance of our
method in terms of color transformation, artistic style trans-
fer, and content preservation. Nevertheless, there is am-
ple room for further research, where the textual prompt can
be utilized for content image modification, combined with
style transfer.

We explored various combinations of transformations,
including PM only, WCT only, and PM followed by WCT.
After implementing the PM, the transformed latent code’s
pixels do not exhibit a Gaussian distribution, leading to a
denoising process that produces output from a distinct dis-
tribution compared to the input. Consequently, we employ
WCT to bring the covariance matrix of the transformed la-
tent code closer to the Identity matrix. This approach sub-
stantially enhances the results, as demonstrated in Fig. 4 of
the Ablation study section. Moreover, we empirically came

1Stable Diffusion weights https : / / huggingface . co /
CompVis/stable- diffusion- v- 1- 4- original/tree/
main.

to the conclusion that by multiplying the style latent with
constant σ = 1.5886 hyperparameter right before the PM
transformation, the results are getting better compared with
just PM. Our experiments indicate that multiplying the la-
tent with sigma expands its distribution tails, which in turn
facilitates the style transfer process by enabling a more ef-
fective transfer of the style characteristics from the style im-
age to the content image. This observation highlights the
importance of carefully tuning the hyperparameters in our
method to achieve optimal style transfer results. For our
experiments, we employed the LMSDiscreteScheduler [14]
scheduler, but any other scheduler can be used for our tech-
nique. This approach demonstrates the flexibility and ef-
fectiveness of our method in achieving high-quality style
transfer results while preserving the content details of the
input image.

4. Experiments
In this section, we present a series of experiments de-

signed to evaluate the performance of our proposed method
and compare it with three other state-of-the-art style trans-
fer techniques. Our goal is to demonstrate the effectiveness
of our approach in achieving high-quality style transfer re-
sults while preserving the content details of the input image.
We provide a brief introduction to the experimental setup,
followed by a detailed analysis of the results and compar-
isons with the selected methods. In this section, we provide
a qualitative comparison of our proposed method with the
three selected baseline methods: EFDM (Example-based
Feature-driven Diffusion Model), CMD (In the light of fea-
ture distributions), and DSTN (Domain-Aware Universal
Style Transfer). We focus on the ability of each method to
transform colors and artistic styles, preserve content com-
ponents, and distribute style effects across unique objects in
the generated images.

4.1. Implementation details

The experiments were conducted on a diverse set of con-
tent and style images, covering various artistic styles and
image content. We used images from PascalVOC [4] and
WikiArt [21] datasets for style transfer. Throughout the ex-
periments, we set 512x512 as the default image resolution.
We set the LMSDiscreteScheduler to T = 100 timestamps
and used t = 15 steps to add noise to the content image.
During the denoising steps we perform PM and WCT trans-
formations at step t = 15. Our code is implemented with
PyTorch and inference is done on a single GeForce GTX
1080 Ti.

4.2. Qualitative comparison

For our experiments, we selected three representative
style transfer methods from the literature to serve as base-
lines for comparison. These methods encompass a diverse
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(a) Content (b) Style (c) DEPM (Ours) (d) CMD [13] (e) EFDM [30] (f) DSTN [8]

Figure 3. Comparison of different methods for image style transfer.
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range of approaches. By comparing our method with these
baselines, we aim to showcase the advantages of our ap-
proach in terms of flexibility and efficiency. Fig. 3 shows
the various content and style images (columns 1,2 respec-
tively), our approach (column 3), CMD (column 4), EFDM
(column 5) and DSTN (column 6). One can see that our
approach works stably on transfering colors and artistic el-
ements of style images.

Our approach demonstrates a superior performance in
terms of color transformation and artistic style transfer.
Compared to EFDM, our method better preserves the con-
tent components of the content image, ensuring that the
fine-grained details and structural information are main-
tained throughout the style transfer process. This results
in synthesized images that exhibit a more accurate and vi-
sually appealing transfer of style while maintaining the in-
tegrity of the original content. Rows 4,5 and 7 are expres-
sive examples of the above points.

When compared to CMD, our method produces images
with more well-defined artistic components. The overall
style is not uniformly distributed across the image, allow-
ing for a more nuanced and context-aware transfer of style
that better affects unique objects within the content image
(more expressive in Row 1,4,7). This leads to a more en-
gaging and visually striking output that effectively captures
the essence of both the content and style images.

Finally, in comparison to DSTN, our approach performs
better in both artistic style transfer and content preservation.
By synergistically combining diffusion models with style
transfer techniques, we are able to achieve a more accurate
and visually appealing transfer of style while ensuring that
the content details of the input image are preserved.

In summary, our method demonstrates a strong qualita-
tive performance in comparison to the selected baselines,
excelling in color transformation, artistic style transfer, and
content preservation. The resulting images exhibit a high
degree of visual appeal and fidelity, highlighting the ef-
fectiveness of our approach in achieving high-quality style
transfer results.

4.3. Quantitative comparison

In addition to the qualitative analysis, we performed a
quantitative comparison of our proposed method with the
selected baseline methods using Perceptual Similarity Loss
[29]. This metric evaluates the perceptual similarity be-
tween the generated images and the target content images,
providing an objective measure of the effectiveness of the
style transfer process.

To compute the Perceptual Similarity Loss, we employed
a pre-trained VGG model, which has been widely used in
the literature for evaluating style transfer methods. We con-
ducted our quantitative evaluation on a diverse set of over
100 images, ensuring a comprehensive assessment of the

DEPM(ours) CMD EFDM DSTN
LPIPS 0.596 0.719 0.606 0.615

Table 1. Quantitative results. Average values of LPIPS Loss
(lower is better) are calculated across the 100 images.

performance of our method and the baselines. The results of
the quantitative comparison are presented in Tab. 1, which
shows the mean Perceptual Similarity Loss values across
the 100 images for each method. Our method outperforms
the baseline methods, indicating that our approach is more
effective in transferring the desired style while preserving
the content details of the input image.

5. Ablation study

In this section, we present an ablation study to inves-
tigate the impact of various components of our proposed
method on the style transfer results. We conducted ex-
tensive experiments by including and excluding the Patch
Match (PM), Whitening and Coloring Transform (WCT)
whitening and coloring, and constant σ components in dif-
ferent combinations. We also experimented with different
versions of the Stable Diffusion model and the application
of PM at multiple steps of the denoising process.

The ablation study comprises the following configura-
tions: PM only, PM + WCT, PM * constant σ, and PM
* constant σ + WCT, shown in Fig. 4. As discussed in
Section 3.2, we implemented the forward diffusion process
with t = 15 steps of noise to obtain C15 and S15 and subse-
quently, during the reverse diffusion, we applied the afore-
mentioned configurations at t = 15. Our experiments reveal
that the combination of PM multiplied with sigma provides
the best balance between artistic style transfer and content
preservation. We experimented with Stable Diffusion ver-
sions 1.4, 1.5, and 2, and observed no significant differences
in the style transfer results across these versions. This indi-
cates that our method is robust to variations in the underly-
ing diffusion model and can be applied to different versions
with consistent performance.

Additionally, we explored the application of PM at mul-
tiple steps of the denoising process. Fig. 5 Illustrates the
visual results of the experiment. Applying PM at multiple
steps resulted in increasing deviations of latent codes from
Gaussian distribution. A single application of PM near the
beginning of the denoising process is optimal for achieving
the desired style transfer effects.

Furthermore, we investigated the impact of applying the
PM transformation at various steps of the denoising process.
Our experiments revealed that the best results were obtained
when the PM transformation was applied near the beginning
steps, as this allowed for a more accurate and visually ap-
pealing transfer of style while preserving the content details
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(a) Content (b) Style (c) PM (d) PM + WCT (e) PM ∗σ (f) PM ∗σ + WCT

Figure 4. Comparison of different techniques of DEPM transfers at t = 15.

of the input image.
In summary, our ablation study provides valuable in-

sights into the contributions of different components of
our proposed method and their impact on the style trans-
fer results. These findings demonstrate the effectiveness of
our approach in achieving high-quality style transfer while
maintaining the content details of the input image, and high-
light the potential for further optimization and refinement of
our method.

6. Conclusion
In this paper, we have presented a novel approach to style

transfer that synergistically combines diffusion models with
style transfer techniques, enabling the transfer of arbitrary

styles during the inference step without any finetuning or
pretraining. Our method leverages the power of generative
diffusion models to capture high-level style features while
ensuring that the fine-grained texture details of the original
image are preserved.

Through a series of experiments and comparisons with
state-of-the-art style transfer methods, we demonstrated
the effectiveness of our approach in achieving high-quality
style transfer results while preserving the content details of
the input image. Our ablation study provided valuable in-
sights into the contributions of different components of our
method, such as Patch Match, Whitened Color Transform,
and constant sigma, and their impact on the style transfer
results.
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(a) Content (b) PM at step t = 15 (c) PM at step t = 14, 15 (d) PM at step t = 5, 15

(e) Style (f) PM at step t = 13, 15, 17 (g) PM at step t = 3, 10, 17 (h) PM at step t = 3, 5, 7

Figure 5. Applining PM ∗σ at multiple steps of the denoising process.

Our method offers significant advantages over existing
style transfer techniques, such as improved flexibility, ef-
ficiency, and the ability to handle arbitrary styles without
the need for training. This makes our approach a more
accessible and versatile tool for artists, designers, and re-
searchers alike, and encourages further exploration of the
potential applications of diffusion models and style transfer
techniques.

In conclusion, our work contributes to the growing body
of research on diffusion models and style transfer, and
opens up new avenues for future research in this area. By
building upon the successes of previous works and address-
ing their limitations, our approach has the potential to ad-
vance the state-of-the-art in style transfer research and pro-
vide a more effective and efficient solution for a wide range
of applications.
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