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Abstract

Generative Adversarial Networks (GANs) have shown
an outstanding ability to generate high-quality images with
visual realism and similarity to real images. This paper
presents a new architecture for thermal image enhance-
ment. Precisely, the strengths of architecture-based vision
transformers and generative adversarial networks are ex-
ploited. The thermal loss feature introduced in our ap-
proach is specifically used to produce high-quality im-
ages. Thermal image enhancement also relies on fine-
tuning based on visible images, resulting in an overall im-
provement in image quality. A visual quality metric was
used to evaluate the performance of the proposed architec-
ture. Significant improvements were found over the origi-
nal thermal images and other enhancement methods estab-
lished on a subset of the KAIST dataset. The performance
of the proposed enhancement architecture is also verified on
the detection results by obtaining better performance with
a considerable margin regarding different versions of the
YOLO detector.

1. Introduction
Thermal images are often used in a variety of appli-

cations, including building inspection [22], medical imag-
ing [3], and military surveillance [28]. However, these im-
ages may suffer from a lower signal-to-noise ratio, making
denoising more challenging. Additionally, thermal images
may have limited dynamic range, which can make it dif-
ficult to perform contrast enhancement without losing im-
portant information. Therefore, there is a need for develop-
ing new methods that specifically address the unique char-
acteristics of thermal images. In order to deal with these
limitations, many methods designed to improve the qual-

Original image TE-VGAN

Figure 1. Thermal images enhancement TE-VGAN.

ity of visible images are applied, such as image denoising,
contrast enhancement, and super-resolution. Nevertheless,
these methods are not always suitable for thermal images
owing to their differentiation from visible images, since
they are captured using infrared radiation.
Recently, the investigation of the enhancement process
has been intensified, owing to the development of new
deep learning architectures, including Generative Adversar-
ial Networks (GANs) [10, 18, 30] and Vision Transformers
(ViT) [20,31], a type of neural network designed to process
images by attending to different regions of the input image.
Although the advancement in the enhancement image pro-
cess, only a few research are addressed improving the qual-
ity of thermal image [1, 14, 19, 30]. For example, authors
in [19] introduced a GAN-based approach for enhancing the
contrast and eliminating the noise with a post-process step
for edge enhancement.

The combination of GANs and ViT models has received
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significant attention in recent research for its potential to
improve the quality of image generation with rich spatial
information [9, 11, 34]. Typically, the fusion of these mod-
els involves using the generative network to produce images
and then applying the self-attention mechanism of the ViT
model to refine the images by capturing and leveraging the
spatial relationships between different image features. In
the same context, we propose a hybrid approach that com-
bines GANs and ViT models to introduce a novel model
for improving the quality of thermal images. Our pro-
posed model distinguishes itself from previous techniques
by leveraging GANs, with a CNN as the generator compo-
nent, and ViT models as both global and local discrimina-
tors with the aim of improving the performance of object
detection algorithms by improving object visibility, reduc-
ing false positives, and highlighting important features. To
the best of our knowledge, this practice has not been ex-
plored in the context of combining GANs and ViT tech-
niques. The overall architecture is referred to as the Ther-
mal Enhancement Vision Generative Adversarial Network
(TE-VGAN). Fig. 8 demonstrates the effectiveness of our
TE-VGAN on two samples from the KAIST dataset.

2. Related works for thermal image enhance-
ment

As already discussed in section 1, thermal images are
characterized by low-contrast, low-resolution, and blurred
details, which can limit their usefulness in many video an-
alytic applications including object detection, which is our
primary goal in this study. To handle thermal image issues,
many traditional methods are used for visible imaging in or-
der to enhance thermal image quality. Among these meth-
ods, Histogram Equalization (HE) can be employed. For in-
stance, in [25], a multi-objective HE model was suggested
to enhance the contrast while preserving the brightness of
thermal images. Furthermore, Contrast Limited Adaptive
Histogram Equalization (CLAHE) based on local contrast
modification was defined in [21]. The technique in [17] be-
longs as well to traditional methods for thermal image en-
hancement. It was first based on the computation of a 2D
histogram, which incorporated both global and local gray-
level distributions of the original image. Then, by apply-
ing histogram specification globally and locally, the results
were accordingly enhanced.

2.1. CNN-based methods

Convolutional neural networks (CNNs) have recently
shown outstanding performance in a lot of computer vi-
sion applications such as image classification and object
detection and recognition. Some recently published meth-
ods for image enhancement have employed CNN architec-
tures to improve the visual quality of thermal or visible im-
ages. SRCNN [4] is one of the first attempts to handle this

problem. Its basic idea consists of learning a mapping rela-
tionship between low-resolution and high-resolution visible
images. The SRCNN problem is that the training step is
time-consuming. To optimize it, this architecture was ex-
tended in [5] to the Fast SRCNN. The latter was composed
of three main parts: patch extraction/ representation, non-
linear mapping, and reconstruction, which are three stan-
dard convolutional layers with a ReLU function, except the
last layer because it is for reconstructing the resulting im-
age. VDSR [12] is also one of the most known deep learn-
ing methods for enhancement, which aims at augmenting
the spatial resolution of visible images. Compared to the
SRCNN, the VDSR is deeper since it is composed of 20
layers inspired by the VGG architecture [26], where each
layer consists of 64 filters of size 3 × 3. The idea behind
this is to predict the residual image with such a network
and to concatenate it with a low-resolution image in order
to obtain the desired output image since residual learning
converges much faster than others.

While most of the existing methods for image enhance-
ment in the visible domain focus on increasing the spa-
tial resolution of the original image, only a few studies for
thermal image enhancement have been proposed to cover
other aspects apart from the resolution problem, such as low
contrast and blurred edges. The thermal enhancement net-
work [2] was one of the first CNN-based methods for ther-
mal image enhancement, where a relatively shallow CNN
was designed to learn an end-to-end mapping from the orig-
inal image to the target high-resolution image. The authors
in [36], an EFTS method was proposed. It consisted of a
model based on residual dense blocks, which could perform
SR for thermal images while enhancing the visual informa-
tion of edges. EFTS would generate the SR thermal image
by enforcing the CNN network to bear down on edge visual
information.

2.2. GAN-based Methods

GANs are deep learning architectures initially intro-
duced by Goodfellow et al. in [7]. GANs are generally
composed of two sub-networks: generative sub-network
G and discriminative sub-network D. These architectures
have shown excellent performance in image generation and
restoration. They have also been employed in few studies
for the enhancement of visible and thermal images. For
instance, in [13], the SR GAN (SRGAN) included a deep
Residual Network (ResNet) with skip-connection and de-
fined a perceptual loss. The latter consisted of adversar-
ial and content loss functions using high-level feature maps
of the VGG network instead of Mean Squerd Error (MSE)
function combined with the discriminative network to dis-
tinguish between high-resolution and low-resolution im-
ages. Another related work that made use of GANs for SR
thermal images was presented, in [8]. It was about a deep
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learning framework based precisely on Deep Convolutional
GANs (DCGANs) for thermal face images. This architec-
ture was less deep than SRGAN since it utilized only two
networks instead of three in [13], which made it suitable for
smaller datasets. The way how residual blocks were orga-
nized proved to be efficient in preserving the image edges.
To validate the DCGAN architecture, multiple tests were
conducted on thermal face datasets.

According to [27], SR methods in the visible spectrum
also included the work published in [32], where a rank-
content loss in a GAN was used to improve the visual effects
in the SR image. To eliminate the effect of artifacts in [35],
an image quality assessment metric was employed in a loss
function that would improve the stability of image SR. To
further reduce the complexity of GAN models for image SR
in [6], a Fourier space supervision loss was utilized to re-
cover lost high-frequency information. By doing so, it was
shown that the predicted image quality was ameliorated and
that the training efficiency was accelerated. [23] was an-
other related work that attempted to enhance the stability
and robustness of the training of the SR model using resid-
ual blocks and a self-attention layer. Differently, in [24]
a measurement loss function was considered in a GAN net-
work in order to extract accurate features by obtaining more
detailed information. Compared to the two previous studies
that employed GAN architectures for SR in both visible and
thermal domains, the authors in [15] focused on the task of
enhancing the contrast in thermal images using conditional
GANs.

In this paper, we intend to make use of GAN archi-
tecture for thermal image enhancement as our first con-
tribution, with significant improvements and modifications
such as ViT architecture. Precisely, we put forward a more
complete architecture that simultaneously deals with differ-
ent limitations of thermal images, including low contrast,
noise, and blurred edges. Moreover, unlike previous work
in the thermal domain, where only grayscale-converted im-
ages are used for training, we use in our proposed architec-
ture impaired images only from the thermal domain to train
the network. Through extensive experiments and tests, we
demonstrate that our approach outperforms existing image
enhancement algorithms in terms of contrast and detail en-
hancement, which proves the effectiveness of our suggested
architecture.

3. Thermal Enhancement Approach

3.1. Enhancing Image Contrast with Vision Trans-
former Discriminator

The input image generator is treated by an attention map
for highlighting regions of interest in a thermal image by
assigning different weights to each pixel. Then, TE-VGAN
architecture employs the U-Net architecture as a genera-

tor with the aim of leveraging multi-scale and texture in-
formation and extracting multi-level features. The U-Net
generator is followed by global and local discriminators.
The global discriminator is designed to determine how a
real generated image is. It takes the entire image and its
ground truth as inputs and produces a probability score in-
dicating whether the input image is real or fake. The local
discriminator, on the other hand, assesses the realism of ran-
domly selected patches. Precisely, it takes random patches
from both generated and ground truth images and provides
a probability score indicating whether each pair of patches
is real or fake. The two discriminator architectures rely on
ViT, which is particularly useful for processing large input
data by leveraging self-attention mechanisms to identify im-
portant features and relationships in the input data as shown
in Fig.2. The proposed discriminators analyze the gener-
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Figure 2. Discriminator-based ViT architecture.

ated data according to the details, textures, overall structure
and data content. The global discriminator Dgl is optimized
following Eq.(1).

LDgl
= Er∼Preal

[V it(r, f)− 1)2] + Ef∼Pfake
[V it(r, f)2] (1)

where r, represents the real samples, f represents the fake
samples and V it(r, f) designs the output of their discrim-
inator. Preal and Pfake are the distribution of the real and
generated data. To optimize the local discriminator Dlc,
LDlc

is defined by Eq.(2).

LDlc
= Exr∼Qreal

[V it(xr)− 1)2] + Exf∼Qfake
[V it(xf ))

2]

(2)
where V it(xr) and V it(xf ) are the output of the discrim-
inator for the inputs of real and fake patches, respectively,
Qreal and Qfake are the distribution of the real and gener-
ated patches.

Considering discriminators include ViTs, the U-Net gen-
erator is more efficient at producing high-quality, realistic
images closely matching the ground truth. The quality of
the generated samples can be significantly improved by op-
timizing the performance of the generator through adversar-
ial loss function in order to reduce overfitting and simplify
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Figure 3. The proposed TE-VGAN architecture composed of generator and two ViT discriminators.

the training process. In particular, the adversarial loss func-
tion consists of generator loss and losses of two ViT dis-
criminators. The adversarial loss function Ladv is depicted
by Eq.(3).

Ladv = LG + LDgl + LDlc (3)

where LG represents the generator loss.

LG = Er∼Pfake
[V it(f)− 1)2] (4)

3.2. Thermal Loss Optimization

To further enhance the visual quality of the thermal im-
ages, we proposed a novel thermal loss function Lthr to op-
timize our TE-VGAN model. The suggested loss function
is designed to capture the intrinsic thermal properties of the
images and promote thermal image-specific features during
the training process.

Lthr quantifies the dissimilarities between the recon-
structed and ground truth thermal images in terms of high-
level features to yield visually realistic images, which can-
not be discerned by pixel-level measures. To improve the
stability of the training process, an instance normalization
layer was integrated after each feature map extracted from a
pre-trained VGG-16 model, allowing for the preservation of
the feature content of the image and enabling the network
to dynamically adapt its performance. Moreover, by calcu-
lating the L1 error between the input image and the output
image, Lthr involves preserving the crucial features of the
input image while maintaining the quality of the generated

image. This ensures that the generator keeps the same struc-
ture and content as the input image. Our thermal loss Lthr,
defined Eq.(5).

Lthr =∥ r−f ∥1 +
1

Wi,jHi,j

Hi,j∑
y=1

(ϕi,j(r)−ϕi,j(f))
2 (5)

where Wi,j and Hi,j denote the dimensions of the extracted
feature maps ϕi,j . The indices i and j correspond to the ith

max pooling and the jth convolutional layer following the
ith max pooling layer, respectively.

Therefore, the learning objective loss used to train TE-
VGAN is formulated as follows:

L = Ladv + λthrLthr (6)

where λthr refers to the weight controlling the share of Lthr

in the total objective function L.

3.3. Thermal Image Restoration

Since improving the contrast makes the noise progres-
sively more noticeable, which can negatively impact the
quality of thermal images, we alleviate this effect by em-
ploying the Real-ESRGAN approach [30]. Real-ESRGAN
is a state-of-the-art blind super-resolution method able to
restore high-resolution images from low-resolution inputs
without prior knowledge of the degradation process. It is
based on ESRGAN and leverages synthetic data to simulate
complex real-world degradations for model training.

In our present work, the model has been refined using
a mixture of thermal and visible images, including images
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with different types of degradation. The goal of the Real-
ESRGAN model involves training the model with visible
images and transferring the learned features by fine-tuning
the model on thermal images in order to better perceive the
challenges of thermal images in terms of lack of texture
and style as well as generate higher quality thermal images
with finer details. In particular, the Real-ESRGAN gen-
erator uses pixel-unshuffle, which reduces the spatial size
and increases the channel size of the inputs before feed-
ing them into the main architecture to improve computa-
tional efficiency. Furthermore, the U-Net discriminator with
skip connections and spectral normalization is used to sta-
bilize the training dynamics and improve the discrimina-
tor’s ability to handle complex training outputs. The re-
sulting method strikes a good balance between local detail
enhancement and noise removal, making it promising for
improving thermal image quality.

4. Experimental Results

4.1. Implementation details

The proposed TE-VGAN architecture was trained on low
and high-contrast images. We select an unpaired image sub-
set (not the same image) from the KAIST dataset. An ex-
ample of a training set is provided in Fig.4, composed of
low and high-contrast thermal images, with a batch size of
4 images. Practically, we compute the contrast of images
as the standard deviation of intensity values. Then, we split
the images into low and high-contrast subsets according to
an empirically chosen threshold. The Adam optimizer was
used with a learning rate of 0.0001 for the first 10 epochs,
then gradually decreasing over the next 10 epochs. The
model was trained on an NVIDIA Titan X GPU with 12GB
of RAM. λthr defined is set to 0.6.

4.2. Experimental Results

4.2.1 Visual Results of the TE-VGAN Architecture

To assess the effectiveness of our proposed TE-VGAN ar-
chitecture, we employ the PSNR and SSIM metrics to mea-
sure the similarity between the original thermal images and
the enhanced ones. Then, we compare the results to the
state-of-the-art methods, such as HE and CLAHE [21], as
well as the TE-GAN [19]. The evaluation is conducted on
the KAIST test set. Table 1 presents the results obtained
from the comparative analysis. Our proposed TE-VGAN
architecture outperforms other existing methods in terms of
the visual quality of the resulting images, as demonstrated
in Table 1. To further highlight the efficiency of the TE-
VGAN architecture, Fig.5 illustrates the enhanced pedestal
form with meticulous details compared to the original form.
Specifically, TE-VGAN achieves a better balance between
contrast and noise reduction, resulting in enhanced images

Low-Contrast High-Contrast

Figure 4. Examples of the training dataset.

Table 1. Comparison of the proposed TE-VGAN to other existing
models for thermal image enhancement.

HE CLAHE TE-GAN TE-VGAN
PSNR 7.81 11.92 13.92 15.0
SSIM 0.34 0.37 0.50 0.69

Figure 5. Qualitative results of person detection.

with better visual quality. The results obtained from ana-
lyzing two sample images from the KAIST dataset are pre-
sented in Fig.6. The qualitative analysis shows that while
other methods may have improved the contrast slightly, they
also increased the visibility of noise.

4.3. Comparison results

To emphasize the significance of each step involved in
the TE-VGAN architecture, Fig.7 illustrates the intermedi-
ate outcomes of each step. The visual quality of the im-
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Original Image HE CLAHE TE-VGAN

Figure 6. Qualitative results of our TE-VGAN for enhancement compared to other commonly used methods of contrast augmentation: HE,
CLAHE.

ages is improved from different aspects by each step, in-
cluding contrast enhancement, and restoration step, to ad-
dress the various issues that thermal images commonly suf-
fer from. These findings support the notion that the TE-
VGAN method is based on a complementary approach of
different steps. To further demonstrate the visual quality
of the enhanced images, Fig.8 presents additional qualita-
tive results obtained by applying various super-resolution
methods. These outcomes were expected as these methods
aim to enhance the resolution of thermal images without ad-
dressing the issues of low contrast and noisy details. Only
the SRCNN method is an exception since it was trained on
visible images, which accounts for the brighter appearance
of the enhanced images.

4.3.1 Detection results

Table 2 presents the evaluation of the mAP performance of
the YOLOv3 [33], YOLOv6 [16], and YOLOv7 [29] ob-
ject detectors on images acquired during daytime, night-
time, and both conditions from the KAIST dataset. Fur-
thermore, we compare the aforementioned results with
those obtained after utilizing our proposed TE-VGAN ar-
chitecture. The proposed thermal image enhancement ap-

Table 2. Detection Performance Comparison of YOLO versions
with and without enhancements using mAP(%).

Testing conditions Model Without enhancement With enhancement
Day

YOLOv3 [33]
61.2 65.5

Night 66.1 75.0
All 62.3 69.1
Day

YOLOv6 [16]
67.1 67.7

Night 75.6 77.1
All 71.1 72.2
Day

YOLOv7 [29]
62.7 69.6

Night 76.4 78.0
All 66.8 72.1

proach resulted in significant improvements in object detec-
tion performance across all tested YOLO detectors. When

utilizing the enhancement approach, the mAP scores for
YOLOv3, YOLOv6, and YOLOv7 detectors improved by
6.8%, 1%, and 5.3%, respectively. Furthermore, as with
the YOLOv7 detector, the enhancement’s effect on detec-
tion performance was more pronounced during nighttime
for YOLOv3 and YOLOv6 detectors, with an increase in
mAP of 9.1% and 1.5%, respectively, in comparison to the
daytime results. These findings indicate that the proposed
enhancement approach can effectively improve the visual
quality of thermal images, leading to improved object detec-
tion performance across different YOLO detectors. There-
fore, utilizing the proposed enhancement approach can of-
fer significant advantages in various real-world applications
where reliable object detection in thermal images is essen-
tial. The object detection results utilizing the YOLOv7 de-
tector with and without TE-VGAN are displayed in Fig.9.
It can be shown that a discernible enhancement in detec-
tion performance after incorporating the TE-VGAN archi-
tecture. Multiple sample images are presented, wherein the
enhancement approach corrects false negatives.

5. Conclusion
In this paper, we introduced a novel hybrid architecture

TE-VGAN based GANs and ViT for thermal image en-
hancement. The proposed method employs GANs with a
U-NET-based generator and ViT models as global and local
discriminators. The proposed TE-VGAN included a ther-
mal loss to enhance the generated image quality. We lever-
aged also fine-tuning-based visible images for thermal im-
age restoration. Our experimental evaluations demonstrate
that our approach outperforms existing methods, achieving
significant improvements in thermal image enhancement, in
terms of quantitative and qualitative assessments and object
detection tasks.
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Input image Contrast enhancement Restoration step

Figure 7. Details about intermediate results from the proposed TE-VGAN architecture

VDSR SRCNN SRGAN TE-VGAN

Figure 8. Qualitative results of different super-resolution methods: VDSR, SRCNN, and SRGAN.

Figure 9. Examples of pedestrian detection using YOLOv7 on KAIST dataset with and without TE-VGAN.
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of historical buildings: A case study on the municipal market
of são paulo, brazil. Case Studies in Construction Materials,
16:e01122, 2022.

[23] Faezehsadat Shahidi. Breast cancer histopathology image
super-resolution using wide-attention gan with improved
wasserstein gradient penalty and perceptual loss. IEEE Ac-
cess, 2021.

[24] Ali Shahsavari, Sima Ranjbari, and Toktam Khatibi. Propos-
ing a novel cascade ensemble super resolution generative ad-
versarial network (cesr-gan) method for the reconstruction of
super-resolution skin lesion images. Informatics in Medicine
Unlocked, 2021.

[25] P Shanmugavadivu and K Balasubramanian. Particle swarm
optimized multi-objective histogram equalization for image
enhancement. Optics & laser technology, 2014.

[26] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Inter-
national Conference on Learning Representations, 2015.

[27] Chunwei Tian, Xuanyu Zhang, Jerry Chun-Wen Lin, Wang-
meng Zuo, and Yanning Zhang. Generative adversarial net-
works for image super-resolution: A survey. arXiv preprint
arXiv:2204.13620, 2022.

[28] Vibashan Vs, Domenick Poster, Suya You, Shuowen Hu, and
Vishal M Patel. Meta-uda: Unsupervised domain adaptive
thermal object detection using meta-learning. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 1412–1423, 2022.

[29] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. arXiv
preprint arXiv:2207.02696, 2022.

[30] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1905–1914,
2021.

[31] Xiaogang Xu, Ruixing Wang, Chi-Wing Fu, and Jiaya Jia.
Snr-aware low-light image enhancement. In Proceedings of

824



the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17714–17724, 2022.

[32] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.
Ranksrgan: Generative adversarial networks with ranker for
image super-resolution. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 2019.

[33] Xunxun Zhang and Xu Zhu. Vehicle detection in the aerial
infrared images via an improved yolov3 network. In 2019
IEEE 4th International Conference on Signal and Image
Processing (ICSIP), pages 372–376. IEEE, 2019.

[34] Long Zhao, Zizhao Zhang, Ting Chen, Dimitris Metaxas,
and Han Zhang. Improved transformer for high-resolution
gans. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 18367–
18380. Curran Associates, Inc., 2021.

[35] Xining Zhu, Lin Zhang, Lijun Zhang, Xiao Liu, Ying Shen,
and Shengjie Zhao. Gan-based image super-resolution with
a novel quality loss. Mathematical Problems in Engineering,
2020.

[36] Yannick Wend Kuni Zoetgnande, Jean-Louis Dillenseger,
and Javad Alirezaie. Edge focused super-resolution of ther-
mal images. In 2019 International Joint Conference on Neu-
ral Networks (IJCNN). IEEE, 2019.

825


