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Abstract

This study investigates the robustness of image classi-
fiers to text-guided corruptions. We utilize diffusion mod-
els to edit images to different domains. Unlike other works
that use synthetic or hand-picked data for benchmarking,
we use diffusion models as they are generative models ca-
pable of learning to edit images while preserving their se-
mantic content. Thus, the corruptions will be more realistic
and the comparison will be more informative. Also, there
is no need for manual labeling and we can create large-
scale benchmarks with less effort. We define a prompt hi-
erarchy based on the original ImageNet hierarchy to apply
edits in different domains. As well as introducing a new
benchmark we try to investigate the robustness of different
vision models. The results of this study demonstrate that
the performance of image classifiers decreases significantly
in different language-based corruptions and edit domains.
We also observe that convolutional models are more ro-
bust than transformer architectures. Additionally, we see
that common data augmentation techniques can improve
the performance on both the original data and the edited
images. The findings of this research can help improve the
design of image classifiers and contribute to the develop-
ment of more robust machine learning systems. The code
for generating the benchmark will be made available on-
line upon publication.

1. Introduction
Image classifiers are widely used in various applica-

tions such as object recognition, medical diagnosis, and au-
tonomous driving. These systems are designed to classify
images accurately and reliably, which requires them to be
robust to various sources of noise and corruption [1, 9, 21].

However, recent studies have shown that image classi-
fiers can be vulnerable to small corruptions, where subtle
changes to an image can significantly impact the classifier’s
performance [9]. This issue has raised concerns about the
robustness of image classifiers and their reliability in real-
world scenarios. Also, current benchmarks and training
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Figure 1. Current image classifiers are not robust to domain
changes. We can see that when we evaluate these models on edited
images the performance drops significantly. For this, we introduce
a new benchmark that includes text-guided edited images in 5 dif-
ferent domains to assess and improve models’ performance.

datasets do not cover all possible real-world situations such
as weather changes, color and texture variation, or context
changes [27].

In this paper, we investigate the robustness of image clas-
sifiers to text-guided corruptions using diffusion models to
create image edits. Diffusion models are a type of gener-
ative model that can learn to edit images while preserving
their semantic content. We use these models to create var-
ious text-guided corruptions in different domains and eval-
uate the performance of different image classifiers under
these corruptions.

The main objective of this study is to conduct a compre-
hensive benchmark of the performance of image classifiers
under various language-based corruptions. We evaluate the
classifiers’ performance in different domains. The results of
this study will provide insights into the robustness of image
classifiers to language-based corruptions and identify the
limitations of existing image classification systems. We ob-
serve that convolutional models are more robust than trans-
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formers in different domains. We can also see that increas-
ing the complexity usually improves robustness. Moreover,
we check the effect of the different domains of prompts for
editing on the robustness of classifiers. The results show
that their accuracies fall more significantly in the drawing
domain in comparison to others. Figuring out which do-
main of prompts is tough for handling for classifiers can
give the hint for designing a new augmentation technique
based on language-based models.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work in the field of image classifica-
tion and robustness to corruption. Section 3 describes the
methodology used to create the benchmark in this study, in-
cluding the dataset and the prompts hierarchy used to create
language-based corruptions and the image classifiers evalu-
ated. Section 4 presents the experimental results and anal-
yses the performance of different image classifiers under
various language-based corruptions. Finally, Section 5 con-
cludes the paper, and Section 6 discusses future directions
for research in this field.

Our contributions are in summary: 1) Creating a novel
text-guided benchmark for evaluating the robustness of dif-
ferent vision models. 2) Using five domains as a testbed
to evaluate image classifier performance, to gain a better
understanding of where the models struggle most, and 3)
Studying the effect of two common data augmentation tech-
niques on robustness in different domains.

2. Related Work
Diffusion Models. Diffusion models are new generative
models which produce images based on a forward and re-
verse process. In the forward process, we add a gaussian
noise with certain variance and zero mean to the image in
each step. The noisy image in step t, xt, is produced as
follow:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, 1). (1)

x0 is a clean image and ϵ is an additive noise. αt is defined
as :

αt =

t∏
s=1

1− βs. (2)

βt can be a learned or fixed variance scheduler. In the train-
ing procedure, the model tries to predict the noise added in
the forward process. In the reverse process, the predicted
noise is subtracted from the noisy image in each step [13].
Null-text Inversion. Null-text Inversion model [20] is a
text-guided diffusion model that can edit and manipulate an
image using text only. This model needs source and target
prompts to produce an edited image. This model has two
main contributions which are pivotal inversion for diffusion
models and null-text optimization.

Most inversion works use random noise vectors for op-
timization while null-text performs local optimization and
uses a pivotal noise vector instead, which illustrates more
efficient inversion. Since they utilize Stable Diffusion [23],
they require applying classifier-free guidance which has a
trade-off between editability and being a good approxima-
tion. As a result, the guidance scale is fixed to 1 as their
pivot trajectory and the optimization starts around it with a
guidance scale larger than 1.

Null-text is inspired by the prompt-to-prompt model
[12]. Instead of using default embedding for null text, they
optimize it for each input image that can be used for multi-
ple editing scenarios. This process is applied for each time
step, t, and an optimized result of the previous step, t + 1,
is used as a starting point [20].
Benchmarking Robustness. Recent work focuses on two
approaches for creating robustness benchmarks: Synthetic
data which means utilizing synthetic images to test the ro-
bustness of neural networks and Hand-collected data which
means focusing on collecting real-world images.

Recently, there has been considerable effort devoted to
testing the robustness of neural networks by employing
synthetic images. One such example is ImageNet-C [9],
which assesses how neural networks perform on images
with synthetic noise such as Gaussian noise, motion blur,
zoom blur, and JPEG compression. To accomplish this,
the standard ImageNet [2] validation set is modified with
these noises. In addition to perturbing images with these
processing pipeline noises, other research [5] has evaluated
the shape and texture bias of deep neural networks by using
images with artificially overwritten textures. Augmenting
images with style transfer [4,5] or by taking a linear combi-
nation of augmented images and the original images [10]
has been found to be a beneficial way of enhancing the
robustness to these synthetic image noises or texture alter-
ations. Nevertheless, these evaluations are limited because
synthetic image perturbations are unable to accurately repli-
cate real-world scenarios. [27] demonstrates that style trans-
fer and strong augmentation are not helpful in dealing with
changes in shape and pose.

Other recent studies have focused on using real-world
images to evaluate the performance of deep neural network
(DNN) models, as distribution shifts in these images can
have a significant impact on the robustness of these mod-
els. For example, ImageNet-V2 [22], which gathered im-
ages from Flickr to create a new test set for ImageNet [2],
found that DNN model performance decreased when faced
with these real-world images. Similarly, ImageNet-A [11]
utilized an adversarial filtration technique to collect a new
test set of images using ResNet-50 [6] that caused the per-
formance to drop significantly when transferred to other
architectures. However, ImageNet-A [11] was unable to
isolate the specific factors causing the decrease in perfor-
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mance. More recently, ImageNet-R [8] collected four out-
of-distribution testing benchmarks that incorporated shifts
in texture, geo-location, camera parameters, and blur, and
found that no single technique could improve model perfor-
mance across all these factors. Other benchmarks have also
been developed to evaluate how well DNN models can learn
invariant features from unbalanced datasets [25], as well as
benchmarks composed of real-world image shifts [16].

3. Text-guided Robustness Benchmark

We utilize the null-text inversion [20] model to edit Ima-
geNet [2] images with our prompts. Our text-guided bench-
mark is constructed by edited images in different domains.
These domains are Drawing, Weather, Color, Texture, and
Context.

We will introduce the prompts hierarchy of each domain
in the next section.

3.1. Dataset

ImageNet [2] is one of the largest benchmarks for image
classification. The ImageNet-1K dataset consists of 1000
object classes with 50K validation images. The classes
are based on a hierarchical structure provided by Word-
Net. Each meaningful word or phrase in Wordnet, called
”synset”, has about a thousand images on average in the
ImageNet dataset. For the benchmark, the validation set of
the ILSVRC-2012 dataset is used.

3.2. ImageNet Hierarchy

First, we needed to divide the ImageNet classes into
more general sub-classes and define prompts for each sub-
class differently to generate more meaningful images. For
instance, changing a texture to metal makes sense for tools
not for animals. The super-class and sub-classes are shown
in Table 1.

Super Class Sub-class Index

Organism
Animal 1
Plant 2

Person 3

Artifact

Vehicle 4
Furniture 5

Tool 6
Food 7

Geological Formation Structure 8
Landscape 9

Table 1. The ImageNet [2] hierarchy used for defining the sub-
classes.

3.3. Prompt Hierarchy

One of the main problems in recent text-guided models is
that all target prompts cannot be applied to whole images;
so, it is necessary to find prompts that have good results
on most of the images in that specific subclass. To over-
come this problem, we introduce a set of hand-engineered
prompts for applying the edits to the images. To have a sight
of what happened to each image and be able to analyze the
impact of each category of prompts, we define 5 domains
for editing prompts. It is noteworthy to mention that if the
editing prompts can not be performed, the image doesn’t
convert to any damaged or different image. This point is
vital for using this process without prompt engineering that
can assure users that the originality of images is kept safe.
The full prompt hierarchy is shown in Table 2.

Domain Prompt Sub-class

Drawing

A watercolor painting of a [class] 1-2-3-4-5-6-7-8-9
An antique sketch of a [class] 1-2-3-4-5-6-7-8-9
A pencil drawing of a [class] 1-2-3-4-5-6-7-8-9
A sketch with crayon of a [class] 1-2-3-4-5-6-7-8-9
A [class] in Monet style 1-2-3-4-5-6-7-8-9
A [class] in starry night style 1-2-3-4-5-6-7-8-9

Weather

A [class] in the snow 1-2-3-4-5-6-7-8-9
A [class] on ice 1
A [class] in the fog 1-2-3-4-5-6-7-8-9
A [class] in the rain 1-2-3-4-5-6-7-8-9

Color A [color name] [class] 1-2-3-4-5-6-7-8-9

Texture

A metal [class] 5-6
A wooden [class] 5-6-8
A glass [class] 8
A brick [class] 8
A golden [class] 8

Context

A [class] on the water 1-2
A [class] on the moon 1-2-3-4-6
A [class] on the mars 1-2-3-4-6
A [class] in the desert 1-2-3-4-6
A [class] on the cloth 2-7
A [class] on the glass 2-7

Table 2. The prompt hierarchy for editing images in the five men-
tioned domains. In each of the five domains, we introduce specific
prompts for different subclasses.

4. Experiments

We feed the edited images to multiple classifiers to cal-
culate their error in finding the correct classes. Since we
want to have an interpretation of which model is more ro-
bust or to which prompt they are sensitive, we get the results
of each classifier on some random images of each super-
class with a random prompt of each class of prompts.
Experimental Setup. We pick some classes from each
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Model Original Color Context Drawing Weather Texture

AlexNet [17] 55.6 37.9 44.1 27.4 40.3 37.1
SqueezeNet v1.0 [15] 58.0 38.8 46.3 26.6 43.8 34.9
SqueezeNet v1.1 [15] 58.5 40.8 45.7 27.0 44.5 37.1

VGG-11 [24] 66.2 48.2 53.6 31.5 51.3 46.6
VGG-19 [24] 70.0 52.3 55.7 34.6 53.2 47.7

VGG-19+BN [24] 70.2 53.9 58.9 38.2 56.5 50.9

DenseNet-121 [14] 72.1 53.9 62.0 41.9 58.4 51.4
DenseNet-169 [14] 73.6 56.3 63.1 44.3 57.7 52.0
DenseNet-201 [14] 75.2 57.5 63.7 44.7 60.2 52.6

ResNet-18 [7] 67.9 51.5 56.5 40.7 54.1 46.9
ResNet-34 [7] 72.1 52.9 59.1 40.7 57.4 50.9
ResNet-50 [7] 73.3 55.0 60.7 40.0 58.1 50.3

ResNet-101 [7] 79.5 61.1 69.7 50.0 66.9 61.1
ResNet-152 [7] 81.4 63.5 70.0 49.8 68.8 62.3

ResNeXt-50 [26] 80.1 62.6 67.9 48.6 64.2 60.3
ResNeXt-101 [26] 80.1 64.9 70.9 53.2 67.0 61.7

ResNeXt-101 64x4d [26] 81.2 65.7 70.5 52.0 68.2 64.9

ViT-B/16 [3] 80.2 61.1 69.3 50.1 67.4 56.6
ViT-B/32 [3] 74.1 57.8 64.5 48.3 60.6 55.1
ViT-L/16 [3] 78.7 60.9 64.3 47.9 62.0 55.7
ViT-L/32 [3] 77.3 60.6 66.0 50.2 62.1 56.6

ConvNeXt-B [19] 82.1 65.7 72.4 50.8 69.3 63.1

Swin-B [18] 82.5 63.7 66.5 47.7 66.9 60.3
Swin-B v2 [18] 82.6 64.5 69.3 47.7 67.9 58.9

Table 3. Performance of different vision models for image classification on different domains. We report the top-1 accuracy on the original
data and the edited images in different domains.

super-class mentioned in Table 1 and for each class, we
choose 10 images randomly. In total, we have 1000 im-
ages for this experiment. Since we select them randomly,
we can assume that their results are a good representative of
a whole test set. We pick a randomly suitable prompt from
each domain mentioned in Table 2 for each image.

Baselines. Different image classifiers used in this study
are based on convolutional, and transformer layers. In the
following, we intend to compare the results of AlexNet
[17], SqueezeNet [15], VGG [24], DenseNet [14], ResNet
[7], ResNeXt [26], ViT [3], ConvNeXt [19], and Swin-
Transformer [18]. For SqueezeNet [15], we use both ver-
sion 1.0 and 1.1 of the model. (SqueezeNet v1.1 model
requires 2.4x less computation than SqueezeNet v1.0 with-
out diminishing accuracy.) For VGGNets [24], we chose
VGG-11, VGG-19, and VGG-19 with batch normalization.
For ResNeXt [26], we evaluate models with 50 and 101 lay-
ers and also the model with increased cardinality and width
named ResNeXt-101 64x4d. And finally, we chose the base
and large models of ViT [3] and the base model for Con-

vNeXt [19], and Swin-Transformer [18]. We evaluate the
performance of classifiers using the Top-1 Accuracy.

4.1. Effect of Architecture on Robustness

Although the Swin-Transformer models [18] have a bet-
ter performance on the original data, the ConvNeXt [19]
model, the ResNeXt [26] models, and deep ResNet [7]
models perform better on edited images.

In VGGNets [24], we can see that increasing the lay-
ers results in more accuracy, and using batch normalization
makes the model more robust. In ResNets [7], increasing
the layers makes the model more accurate and also more
robust to different domains. In ResNeXts [26], the model
with increased cardinality and width (ResNeXt-101 64x4d)
is more robust to texture and weather edits. Vision Trans-
formers [3] have competitive accuracy on original data but
they are less robust than other architectures, especially in
color and texture changes.
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Model Original Color Context Drawing Weather Texture

ResNet-50 [7] 73.3 55.0 60.7 40.0 58.1 50.3
ResNet-50 [7] + Style Transfer [5] 71.5 55.4 62.9 43.6 60.1 51.7

ResNet-50 [7] + AugMix [10] 75.6 57.7 64.5 48 62.4 55.1

Table 4. Effect of data augmentation techniques on robustness. We can see that the style transfer method [5] has improved robustness in
the drawing domain more significantly. AugMix [10] has improved the performance both on the original data and on the edited data.

Color Context Drawing Weather Texture
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DenseNet-201
ResNet-152
ResNeXt-101 64x4d
ViT-B/16
ConvNeXt-B
Swin-B v2

Figure 2. Robustness of various image classifiers in different do-
mains. We can see that all models struggle in the ’Drawing’ do-
main. We define robustness as the relative accuracy on the edited
data and the original data, divided by the accuracy on the original
data.

4.2. Effect of Data Augmentation on Robustness

Previous research has shown that data augmentation
techniques can improve the robustness of image classifiers
[5,10]. Stylizing images with artistic textures [5] and blend-
ing the original image with a highly augmented one (known
as AugMix) [10] are examples of such data augmentation
techniques.

We can see the effect of training a ResNet-50 [7] with
both methods in Table 4. Using style transfer as augmenta-
tion improves the overall performance in different domains
and the effect is most in the ’Drawing’ domain. AugMix
[10], has a better performance in all of the domains includ-
ing the original data.

4.3. Effect of Domains on Robustness

In this section, we aim to observe for each class what
kind of manipulation is riskier in the image classification
task. According to Figure 2, all domains decrease the accu-
racy of classifiers but the drawing domain is the most dif-
ficult domain for classifiers. This interpretation is advan-
tageous for designing a new augmentation technique based

Model Original Color Context Drawing Weather

AlexNet [17] 60 40 42 26 51
SqueezeNet v1.0 [15] 60 37 57 36 55
SqueezeNet v1.1 [15] 64 39 52 30 54

VGG-11 [24] 80 60 57 39 71
VGG-19 [24] 82 58 62 39 69

VGG-19+BN [24] 82 63 72 45 72

DenseNet-121 [14] 85 59 71 45 70
DenseNet-169 [14] 87 58 77 52 77
DenseNet-201 [14] 83 62 71 47 67

ResNet-18 [7] 76 52 63 42 65
ResNet-34 [7] 78 52 65 41 67
ResNet-50 [7] 85 60 68 50 68
ResNet-101 [7] 88 70 81 63 75
ResNet-152 [7] 89 72 78 63 79

ResNeXt-50 [26] 88 68 79 56 78
ResNeXt-101 [26] 88 79 79 64 82

ResNeXt-101 64x4d [26] 92 76 78 64 84

ViT-B/16 [3] 83 68 76 52 69
ViT-B/32 [3] 81 62 68 53 65
ViT-L/16 [3] 89 65 79 57 72
ViT-L/32 [3] 81 69 74 57 69

ConvNeXt-B [19] 88 76 82 64 81

Swin-B [18] 90 72 81 53 75
Swin-B v2 [18] 90 77 80 56 79

Table 5. Performance of different vision models for image classi-
fication on the animal subset. We report the top-1 accuracy on the
original data and the edited images in different domains.

on drawing domains and also comparing the performance of
various classifiers in this tough domain in the object detec-
tion task. Another interesting point is that although different
models have dissimilar accuracy results, they have the same
behavior about different domains, and the order of hardness
of domains is approximately alike for all of them.

4.4. Ablation Study

We also evaluated the models’ performance on the ani-
mal subclass of the ImageNet-1K dataset. The results are
provided in Table 5. We chose 10 classes from the subclass
and 10 images per class.

In ResNets [7], increasing the layers makes the model
more accurate and robust to different domains. Similar to
Table 3, we can see that batch normalization has made VG-
GNet more robust.

783



Figure 3. Visualization of edited images with different prompts in the drawing, weather, color, texture, and context domains. With our
benchmark vision models can be further evaluated with more realistic and diverse data.

5. Conclusion

In this study, we provide an automated process to edit
images with language-based diffusion models which have
a great performance in generating images. First, we divide
the ImageNet classes into some super classes based on the
WordNet hierarchy and we assigned some prompts for each
subclass in 5 domains. Second, we compare the robustness
of different classification baselines with this newly edited
benchmark, which illustrates that convolutional models are
more robust. Furthermore, we compare the results of dif-
ferent domains of prompts and figure out that the drawing
domain is the hardest editing domain for networks to han-

dle. As our final step, we can mention that the data aug-
mentation technique can improve the performance on both
the new corrupted and the original images. This study can
be a first step for benchmarking different test sets in a fully
automated way for any dataset. Moreover, it can give an
impressive insight into the weakness of models in diverse
domains.

6. Future Work

This manipulation procedure with text-guided models
can be added to the training process as a new automated
augmentation technique. Since previous research [5, 10]
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shows the effectiveness of augmented techniques, we expect
that augmentation with language-based models can outper-
form the previous methods. We highly recommend optimiz-
ing prompts for each image as an adversarial attack on the
network. As a result, we can assign the best prompts for
each image in a fully automated way to fool the model.
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