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Abstract

Diffusion probabilistic models have achieved enormous
success in the field of image generation and manipulation.
In this paper, we explore a novel paradigm of using the dif-
fusion model and classifier guidance in the latent seman-
tic space for compositional visual tasks. Specifically, we
train latent diffusion models and auxiliary latent classifiers
to facilitate non-linear navigation of latent representation
generation for any pre-trained generative model with a se-
mantic latent space. We demonstrate that such conditional
generation achieved by latent classifier guidance provably
maximizes a lower bound of the conditional log probability
during training. To maintain the original semantics during
manipulation, we introduce a new guidance term, which we
show is crucial for achieving compositionality. With addi-
tional assumptions, we show that the non-linear manipu-
lation reduces to a simple latent arithmetic approach. We
show that this paradigm based on latent classifier guidance
is agnostic to pre-trained generative models, and present
competitive results for both image generation and sequen-
tial manipulation of real and synthetic images. Our findings
suggest that latent classifier guidance is a promising ap-
proach that merits further exploration, even in the presence
of other strong competing methods.

1. Introduction
In recent years, the machine learning and computer vi-

sion communities have witnessed great progress in the field
of deep generative modeling. From variational autoen-
coders (VAEs) [19], normalizing flows [31], and generative
adversarial networks (GANs) [2,7,8,11,50], to the very re-
cent diffusion probabilistic models [4,14,26,33,39,40] and
score-based models [41, 42], generating high-quality, real-
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istic images has become easier, if not impossible before.
Despite the previous significant progress, controlling the
generation process using various conditions, such as class
labels and text descriptions, still remains challenging.

One major difficulty towards such controllable gener-
ation is compositionality. Compositionality in generative
modeling, or compositional generation, is the ability of
a conditional generative model to produce realistic out-
puts given multiple conditions and their relations. Broadly
speaking, there exist two types of methods for achieving
such compositionality. The first class of methods tackles
the problem directly in the image space, either relying on
energy-based models (EBMs) or drawing inspiration from
them [10, 23]. Such technique is referred as classifier-free
guidance in the literature, in contrast to classifier guidance
that relies on auxiliary image classifiers [26]. Unlike clas-
sifier guidance that is mainly used for controllable genera-
tion with a single condition, the classifier-free guidance is
naturally composable and suitable for multiple conditions.
However, such methods can not leverage the nice proper-
ties of the latent space such as disentanglement [6]. Also,
training multiple image space sub-models, either EBMs or
diffusion models, can be cumbersome, especially when the
number of conditions grows.

The second class of methods focuses on the latent space
of pre-trained generative models. These methods aim to
find a rule that governs the manipulation of latent codes so
as to obtain outputs with desired properties. When the latent
space is disentangled as in StyleGAN [17,18], linear control
is possible by carefully identifying and combining the latent
directions of each attribute [12,36,37,50]. While this is not
new, the feasibility of such linear control in the context of
compositionality is still under-explored. On the other hand,
non-linear manipulations of the latent space have also been
proposed for finer control, in the sense that each modifica-
tion will be customized for each latent code. However, the
previous non-linear methods are either not amendable for
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new attributes [3] or not agnostic to various models and la-
tent spaces [27]. Using diffusion models to control latent
space through classifier-free guidance has been widely rec-
ognized [33], but not within the context of compositional-
ity. Using diffusion models and classifier guidance in latent
space however, is still a missing piece.

In this paper, we aim to fill in this missing piece and
answer the question: is the latent diffusion model with la-
tent classifier guidance useful for compositional image gen-
eration and manipulation1? We demonstrate that classifier
guidance can help diffusion probabilistic models to manip-
ulate latent spaces in a non-linear way, and this process can
be further simplified to a linear version that resembles vec-
tor arithmetic-based manipulation with additional assump-
tions. For compositional generation, we train latent diffu-
sion models and auxiliary latent classifiers for pre-trained
generators, and use classifier guidance to sample in the la-
tent space. To facilitate the manipulation of synthetic or
real images, we introduce an additional guidance term by
framing the problem as incorporating a source image condi-
tion into the compositional generation process. We demon-
strate that employing latent classifier guidance with diffu-
sion models maximizes a lower bound of the conditional log
probability function, providing a provable approach for con-
ditioning on multiple attributes. Our experiments validate
the effectiveness of this technique, as it can generate realis-
tic images with various attribute compositions and manipu-
late both synthetic and real images in a coherent manner.
We also find that the linear version of our proposed method
based on vector arithmetic can serve as a strong baseline in
many scenarios, despite previous studies focusing on non-
linear manipulation.

2. Related Work
(Conditional) diffusion models. Diffusion models have
become increasingly favorable over other generative mod-
els such as GANs [11] and VAEs [19] due to their photo-
realistic generation quality and ease of training. [39] pro-
posed the first functional framework of diffusion models
from the perspective of thermodynamics, then this frame-
work was followed by [14,40–42] whose works established
the foundation of diffusion models that we see today. For
the conditional generation with diffusion models, [9] fur-
ther formulated classifier guidance and lifted the generation
quality of diffusion models over previous state-of-the-art
GANs. [15] then proposed classifier-free guidance which
nowadays is used in many large-scale image generation en-
gine [25, 30, 35]. Although most of these diffusion models
work on the image space, recently latent diffusion models

1For the sake of clarity, the term “compositional generation” will refer
to generating images conditioning only on attributes while the term “com-
positional manipulation” will specifically refer to conditioning on both at-
tributes and an original image.

have also drawn great attention and achieved remarkable re-
sults [4, 33, 44].

Compositionality in latent space. Due to the wide suc-
cess of StyleGANs [17, 18] in image generation, most ef-
forts on conditional generation have been focusing on the
latent space of StyleGANs. To use linear arithmetic for ma-
nipulation, various ways of finding attribute directions have
been proposed. [36] found a direction for each attribute by
training linear SVMs, then perturbed the latent point along
the orthogonal projection of these directions to prevent un-
wanted semantic changes. [50] detected latent channels that
only allow local changes for specific attributes. Such direc-
tions can also be identified in an unsupervised fashion, us-
ing the PCA decomposition of the latent space [12], or the
SVD of the first subsequent linear layer [37]. On the non-
linear side, [3] designed a framework to control a set of pre-
decided attributes using conditional normalizing flow. [27]
used latent EBMs to control the style generation with non-
linear classifiers. Note that none of the linear methods ex-
plicitly discussed the composition of multiple attributes and
their relations as in the non-linear methods.

Compositionality in image space. Some other methods
tackled compositional generation in the image space. These
methods either directly used EBMs or employed diffusion
models that can be considered as EBMs. [10] trained EBMs
for each condition and composed them together by defin-
ing new energy functions based on each individual energy
function and their relations. [23] followed their proposal
and adopted classifier-free guidance in diffusion models to
multiple conditions. However, these image space models
can not leverage the disentanglement property of the latent
space, and training EBMs or diffusion models for each con-
dition can be cumbersome. Note that although some large-
scale text-to-image generation engines [25, 30, 35] claim
compositionality in their methods, they do not model com-
positionality explicitly but rather rely on implicit composi-
tion by their language models, which leads to less satisfying
results when the set of conditions gets large [23].

3. Methodology
In this section, we will describe how the latent diffusion

model and classifier guidance can be used to generate and
manipulate images in a principled way.

3.1. Latent Diffusion Modeling

A diffusion model is a type of deep latent variable
model that approximates an unknown data distribution p(x)
through smooth, iterative denoising steps. It maps a pre-
defined noise distribution to the data distribution using the
following formula: pθ(x0) =

∫
pθ(x0:T )dx1:T , where x1:T

are the latent variables with the same dimensionality as
the data x0. The forward diffusion process, resembling a
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parameter-free encoder, is a Markov chain q(x1:T |x0) =∏T
t=1 q(xt|xt−1), where each q(xt|xt−1) is typically a

Gaussian distribution. The forward process perturbs inputs
according to a pre-defined schedule, and the transformed
data distribution q(xt|x0) will gradually converge to a stan-
dard Gaussian N (xT ;0, I). The reverse sampling process,
resembling a hierarchical decoder, is composed of a se-
quence of de-noising steps pθ(xt−1|xt), which is parame-
terized by a deep neural network with parameter θ.

During training, the input images are corrupted by the
forward process, and the diffusion model is trained to re-
construct the original images from the corrupted inputs.
Specifically, for de-noising diffusion probabilistic models
(DDPM) [14], the training objective is formulated as a re-
weighted variational bound by treating DDPMs as VAEs,
while for scored-based generative models [41], the objec-
tive is derived using score matching. Once trained, to gen-
erate samples from the learned distribution, one first sam-
ples xT from a standard Gaussian and then uses the reverse
process to transform it into the image space.

Here, we focus on leveraging the latent space of a pre-
trained generative model. Specifically, we train a diffusion
model to approximate the latent distribution p(z) of a pre-
trained generator G that maps a latent space Z to the image
space X . Modeling the latent space has several advantages
over modeling the image space. For instance, the latent
space enjoys properties such as disentanglement [6], which
can facilitate more controllable manipulations of the gen-
erated images. Additionally, using various guidance tech-
niques in the latent space is often more feasible since train-
ing latent guidance terms is generally easier than training
other manipulation methods in image space [36].

3.2. Conditional and Compositional Generation

Conditional generation with diffusion models relies on
perturbing unconditional generation with user-specified
guidance terms, namely classifier guidance [9, 39, 42] and
classifier-free guidance [15]. Although classifier-free guid-
ance performs competitively in image space and is some-
times more favorable than classifier guidance [15, 23],
we argue that using classifier guidance in latent diffusion
models has its unique advantages. Regarding the under-
performance of classifier guidance in the image space, one
popular suspicion is that image classifiers tend to learn
shortcuts from suspicious correlations. For example, a deep
neural network classifier on the attribute “old” can be mis-
guided by “white hair” and ignore its holistic features. This
problem is alleviated in a compact, even disentangled latent
space, if the semantic directions of ‘old’ and ‘white hair’ are
orthogonal. Also, deep image classifiers are typically vul-
nerable to adversarial attacks, while latent classifiers with
much few parameters suffer less from this problem. An-
other benefit is that classifiers are usually easier to train than

diffusion models used in classifier-free guidance. Finally,
when the classifiers are linear, classifier guidance resembles
linear arithmetic methods, as we will show in Section 3.4.

The goal of conditional generation is to model the con-
ditional distribution p(z|y) where y is the conditions or at-
tributes. By Bayes rules p(zt|y) = p(zt)p(y|zt)/p(y), the
score of the conditional probability ∇zt log p(zt|y) can be
factorized as the unconditional score ∇zt log p(zt) and the
gradient flow ∇zt log p(y|zt). Therefore, one simply needs
an unconditional latent diffusion model and a latent clas-
sifier to model the conditional score, known as classifier
guidance. In practice, the classifier guidance term is usu-
ally scaled by a factor α, such that ∇zt log p(zt|y) =
∇zt log p(zt) + α∇zt log p(y|zt). The factor α serves as a
temperature parameter which adds another layer of control-
lability to the sharpness of the posterior distribution p(y|zt).

Compositional generation can be considered as condi-
tional generation with multiple conditions and the relations
among them. In this paper, we consider two relations, con-
junction “AND” and negation “NOT”. For the conjunction
of attributes y1 ∧ y2 ∧ ... ∧ yn, assuming the conditions to
be independent of each other, we can simply factorize the
compositional log probability as

∇zt log p(zt|y1, y2, ..., yn) =

∇zt log p(zt) +

n∑
i=1

αi
t∇zt log p(y

i|zt). (1)

And with attribute negations y1∧ ...∧ym−1∧ym∧ ...∧yn,
without loss of generality, we can factorize the log proba-
bility similarly

∇zt log p(zt|y1, ..., yn) = ∇zt log p(zt)+

m−1∑
i=1

αi
t∇zt log p(y

i|zt)−
n∑

i=m

βi
t∇zt log p(y

i|zt). (2)

While classifier guidance is useful for compositional
generation, there is no guarantee that those results will
be anything similar to the original image when doing ma-
nipulations. This is because the generation is not condi-
tioned on the original image. As there is no constraint
on the specific form of the posterior [39], conditioning on
the original image amounts to adding a new guidance term
γt∇z log p(ẑ|z), where ẑ is the latent of the image to be
manipulated. For conjunction relations as in Eq. (1), the
overall score function for manipulation then becomes

∇zt log p(zt|y1, y2, ..., yn, ẑ) = ∇zt log p(zt)+
n∑

i=1

αi
t∇zt log p(y

i|zt) + γt∇zt log p(ẑ|zt), (3)

similarly for Eq. (2) with the presence of negation. When
p(ẑ|zt) is modeled by an isotropic Gaussian distribution,
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the new guidance term γt∇z log p(ẑ|z) behaves as a regu-
larization term ∇zt∥zt − ẑ∥22.

3.3. Model Training

A true compositional model should be able to easily
encompass new attributes without re-training the whole
model. Indeed, the training of the unconditional diffusion
models and the latent classifiers can be decoupled, and such
training amounts to maximizing the evidence lower bound
(ELBO) of the conditional log-likelihood. This means that
encompassing new attributes simply requires training clas-
sifiers on them, and the latent diffusion model as well as
used classifiers can be recycled.

We take DDPM as our example and begin with uncondi-
tional generation.

Lemma 1. The unconditional ELBO of DDPM is given by
the following equation:

Luncond := Eq(z1:T |z0)

[
log

p(zT )

q(zT |z0)
+

T∑
t=2

log
p(zt−1|zt)

q(zt−1|zt, z0)
+ log p(z0|z1)

]
. (4)

See [14] for the detailed proof.

Lemma 2 (Compositional generation and manipulation).
The conditional ELBO of DDPM with condition y is given
by:

Eq(z1:T |z0)

[ T∑
t=1

log p(y|zt−1)

]
+ Luncond + C, (5)

and with independent conditions {y1, y2, ..., yn} and ẑ, the
ELBO is given by:

Eq(z1:T |x0)

[
T∑

t=1

[ n∑
i=1

log p(yi|zt−1) + log p(ẑ|zt−1)

]]
+ Luncond + C. (6)

Proof. Lemma. 2 can be proved using p(zt−1|zt, y) =
Zp(zt−1|zt)p(y|zt−1) (Z is a normalizing constant) and
following the same routine as the proof of Lemma. 1.

log p(z0, y)

= log

∫
p(z0:T |y)p(y)dz1:T

≥Eq(z1:T |z0) log
p(z0:T |y)p(y)
q(z1:T |z0)

=Eq(z1:T |z0)

[
log

p(zT )

q(zT |z0)
+

T∑
t=2

log
p(zt−1|zt, y)
q(zt−1|zt, z0)

+ log p(z0|z1, y)
]
+ C1

=Eq(z1:T |z0)

[
log

p(zT )

q(zT |z0)
+

T∑
t=2

log
p(zt−1|zt)

q(zt−1|zt, z0)

+ log p(z0|z1) +
T∑

t=1

log p(y|zt−1)

]
+ C2

=Luncond + Eq(z1:T |z0)

[ T∑
t=1

log p(y|zt−1)

]
+ C2.

For clarity purposes, we only show the proof with single
condition y, but derivations can be easily extended to multi-
ple y for compositional generation, and the cases with ẑ for
manipulation.

Lemma. 2 states that training unconditional diffusion
models and their latent classifiers is equivalent to maximiz-
ing the ELBO of joint log-likelihood of z and y up to a
constant.

3.4. Connection to Linear Arithmetic

The regularized guidance manipulates a given latent ẑ in
a non-linear fashion, but it degrades to linear manipulation
with additional assumptions. We take the case where there
are only conjunction relations as an example and consider
Eq. (3).

Lemma 3 (Compositional manipulation and linear arith-
metic). When p(zt) is non-informative and log p(y|zt) are
linear, the proposed manipulation is endowed with an ana-
lytic solution

z0 = ẑ +
1

γ0

n∑
i=1

αi
0w

i. (7)

Proof. We first assume that p(zt) is a non-informative dis-
tribution where ∇ztp(zt) = 0. Then we model each
log p(yi|zt) with a linear classifier z 7→ wT z + b, so that
the gradient ∇zt log p(y

i|zt) ∼ w up to a scale factor2.
Now when the reverse process of latent diffusion model
converges at t = 0, the whole Eq. (3) should converge to
0 as follows:

n∑
i=1

αi
0w

i + γ0(z0 − ẑ) = 0, (8)

which leads to the above analytic solution.

For attribute negation, the solution perturbs ẑ towards the
negative direction of the classifiers. This is a natural multi-
attributes generalization of the vector arithmetic method,
and we refer it as the linear version of latent classifier guid-
ance in later comparisons.

2Let the scalar absorbed by αi
t.
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4. Experiments
We evaluate classifier-guided latent diffusion models for

compositional generation and manipulation tasks on two
pre-trained models, StyleGAN2 [18] and Diffusion Autoen-
coder [29]. To use the described framework in the interme-
diate latent space (Ws space) of a pre-trained StyleGAN2,
we first train latent DDIM [40] on 100,000 ws vectors sam-
pled from the push-forward distribution given by the style
generation. We then train linear classifiers on the Ws space
using the latent-label pairs provided by [3]. Note that al-
though Eq. (5) requires classifiers to be time-dependent, we
find that using the same linear classifiers trained on clean ws
vectors can still produce reasonable results in our prelimi-
nary experiments. The latent diffusion model is the same
as the latent DDIM used in [29]. The performance of the
classifiers can be found in Table 1. For Diffusion Autoen-
coder, we use their pre-trained latent diffusion model and
linear classifiers.

For real image manipulation, we also need to encode in-
put images to the latent space. With StyleGAN2, we use
the optimization-based inversion method in [18] to get the
initial latent space Zs and intermediate Ws space encodings
and then employ the pre-trained pSp encoder [32] to get
Ws+ space encodings, where Ws+ is a concatenation of 18
different 512-dimensional ws vectors in StyleGAN2. With
Diffusion Autoencoder, we can directly use their pre-trained
encoders to get semantic vectors.

Following [27], we consider three metrics for our evalu-
ation: Fréchet Inception Distance (FID) [13], face identity
loss (ID) [3] and conditional accuracy (ACC). FID mea-
sures generation quality by comparing the Inception feature
distribution of generated outputs and real images. ID re-
flects the ability of a manipulation method to preserve the
identity of an input face. A pair of input and manipulated
face images are embedded by a pre-trained face recognition
model3, and the ID score is computed as the distance be-
tween their embeddings. ACC measures the efficacy of ma-
nipulation, which is the accuracy of classifying attributes of
generated images with randomly sampled target conditions
using off-the-shelf image classifiers.

4.1. Compositional Generation

We first evaluate the ability of latent classifier guid-
ance to generate images with multiple desired attributes.
For high-resolution images (1024×1024), we select Style-
GAN2 as the pre-trained generator; for low-resolution im-
ages (256×256), we use Diffusion Autoencoder.

We compare our proposed method, which we refer as
LCG (Latent Classifier Guidance) from below, with Style-
Flow [3] and LACE [27]. Results of StyleFlow are directly
taken from [27] for the conjunction of “gender”, “smile”

3https://github.com/ageitgey/face_recognition

Table 1. Validation and test accuracy of linear latent classifiers of
StyleGAN2.

Attribute Validation Accuracy (%) Test Accuracy (%)
Smile 92.00 91.67

Gender 93.40 94.20
Glasses 92.60 91.30
Beard 93.40 91.60

Hair color 75.40 75.50
Yaw 98.07 98.13
Age 93.37 93.64

and “age”, while it cannot handle the other compositional
task where negation relations are involved. To compare
with LACE, we use their official implementation. Note that
LACE is not applicable for Diffusion Autoencoder as its
semantic latent space is not endowed with a parameterized
distribution as the Zs or Ws space of StyleGAN2. However,
we can still apply latent classifier guidance because it can be
easily fitted by diffusion models.

The quantitative comparison is shown in Table 2 and
the qualitative comparison shown in Fig. 1 and Fig. 2.
While for the quantitative results target conditions are ran-
domly sampled for each attribute, for the qualitative results,
we use fixed targets for the sake of visualization. As we
can see, with latent classifier guidance, using simple lin-
ear arithmetic (LCG-Linear) and latent diffusion models
(LCG-Diffusion) both perform competitively against previ-
ous non-linear methods.

4.2. Compositional Manipulation

We evaluate latent classifier guidance on manipulating
both synthetic and real images.

Synthetic Images To evaluate synthetic image manipula-
tion, we first sample latent codes in Zs space and Ws space,
then generate their corresponding output images. To ensure
fair comparisons, we use the style network of StyleGAN2 to
generate ws vectors following [27] rather than sample vec-
tors from the latent diffusion model that we learn. We then
sequentially edit each synthetic image given the target con-
ditions. Results are shown in Table 3. Note that both of
the linear arithmetic based and latent diffusion model based
method achieves competitive FID and ID scores with most
attributes successfully manipulated (except for “glasses”).

Real Images Manipulating real images can be much
harder than manipulating synthetic images as it sometimes
involves inverting source images to their latent codes. La-
tent classifier guidance being space-agnostic brings addi-
tional advantages when editing real images. It is well-
known that not all real images can be encoded into the Zs
space and Ws space of StyleGAN, and expanded spaces
such as Ws+ space [1] and S space [50] are better choices
for real image editing. However, LACE is restricted to the
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(a) LACE-LD [27] (b) LACE-ODE [27]

(c) LCG-Linear (Ours) (d) LCG-Diffusion (Ours)

Figure 1. Qualitative comparison among different methods for compositional generation based on the latenet space of the pre-trained
StyleGAN2 generator under the resolution of 1024×1024. The target attribute conditions are: female, smile, and 55 y/o (i.e., “years old”).

(a) LCG-Linear (Ours) (b) LCG-Diffusion (Ours)

Figure 2. Qualitative comparison of our methods for compositional generation based on the latent space of Diffusion Autoencoder generator
under the resolution of 256×256. The target attribute conditions are: male, smile, and glasses.

intermediate space of StyleGAN and thus cannot leverage
the richness of the expanded spaces. Moreover, it also re-
quires inverting input images to Zs space, which is very
challenging. Latent diffusion models, on the other hand,
can be trained on either existing or new expanded spaces,
where the semantics are richer and the inversion is easier.

As shown in Figure 3, latent classifier guidance outper-
forms LACE in terms of real image editing. For LACE,
the identities of the manipulation change dramatically in all
three cases. This is because it is generally hard to invert real
input images to Zs space, which is required for LACE’s ma-
nipulation. On the other hand, the latent classifier guidance
only requires inversion into Ws or Ws+ space and controls
attributes better as well as preserves the identity more faith-

fully than LACE. Ws space manipulation controls the at-
tributes very well, but the image quality is sub-optimal due
to the limited expressiveness of Ws space. Ws+ space ma-
nipulation provides better image quality, but the attributes
are harder to control, e.g., the “glasses” attribute in the sec-
ond row. This is because Ws+ space has higher dimensions
and training well-behaved classifiers can be harder due to
problems such as over-fitting.

5. Discussion
5.1. Why is the linear method competitive?

One main challenge of manipulating multiple attributes
is maintaining the non-targetted attributes. For composi-
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Table 2. Quantative comparison of different methods for compositional generation based on the latent space of pre-trained StyleGAN2.

Method
gender, smile, age -gender, smile, -haircolor

FID ↓ ACC ↑ FID ↓ ACC ↑
gender smile age gender smile haircolor

StyleFlow [3] 43.88 0.718 0.870 0.874 — — — —
LACE-LD [27] 22.34 0.953 0.954 0.925 22.86 0.678 0.958 0.924
LACE-ODE [27] 22.03 0.964 0.967 0.925 23.51 0.649 0.970 0.935
LCG-Linear (Ours) 22.46 0.980 0.982 0.863 23.94 0.948 0.995 0.936
LCG-Diffusion (Ours) 26.49 0.981 0.968 0.863 29.62 0.987 0.954 0.906

Table 3. Quantative comparison of different methods for sequential editing with StyleGAN2.

Method FID ↓ ID ↓ ACC ↑
yaw smile age glasses

StyleFlow [3] 44.13 0.549 0.947 0.773 0.817 0.876
LACE-ODE [27] 27.49 0.501 0.938 0.956 0.881 0.997
LCG-Linear (Ours) 29.48 0.290 0.887 0.983 0.875 0.786
LCG-Diffusion (Ours) 24.06 0.445 0.903 0.963 0.845 0.843

(1)

(2)

(3)

(a) (b) (c) (d)

Figure 3. Qualitative comparison among different compositional
manipulation methods on real image inputs. Target attributes from
the top row to the bottom row are (1) glasses, smile, 55 y/o, (2)
no glasses, smile, 28 y/o, (3) glasses, white hair, right face. Each
column from left to right are (a) original images, (b) LACE-ODE
[27], (c) linear latent classifier guidance in Ws, (d) linear latent
classifier guidance in Ws+.

tional generation, these are the out-of-scope attributes; for
sequential editing, these also include the previously manip-
ulated attributes. To tackle the challenge, previous methods
either design a protection with linear manipulation such as
InterfaceGAN [36], or use non-linear manipulation such as
StyleFlow and LACE. As we have shown in previous sec-
tions, our LCG-linear can be very competitive against other
non-linear methods despite its simplicity.

To understand its power, we examine the linear classi-
fiers that are learned for manipulation. Here we use the
heatmap to visualize the correlation between each pair of

Figure 4. Visualization of Latent semantic correlations of Diffu-
sion Autoencoder. Bluer regions indicate positive correlations and
redder areas suggest negative correlations.

linear classifiers learned on the semantic latent space of Dif-
fusion Autoencoder, as shown in Fig. 4. As we can see, the
semantic latent space of Diffusion Autoencoder is favorably
disentangled and thus the linear classifiers show strong or-
thogonality frequently. This means that even without a spe-
cific protection mechanism as in [36], LCG-linear is still
capable of preserving the identity in most cases. In Table 4,
we list the changes of conditional accuracy of other at-
tributes when a single attribute is linearly manipulated. The
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four edits correspond to the four attributes “yaw”, “smile”,
“age”, and “glasses” respectively. The small changes indi-
cate that the attributes are well disentangled in such genera-
tive models, and further explain the efficacy of LCG-linear.

Table 4. Changes of conditional accuracy for each linear sequen-
tial editing.

yaw smile age glasses
Edit-1 — -0.001 +0.001 -0.002
Edit-2 +0.003 — +0.001 +0.007
Edit-3 +0.001 +0.000 — -0.013
Edit-4 +0.000 -0.012 -0.005 —

5.2. When is the non-linear method preferred?

Despite the complicity of the non-linear diffusion based
method, it does not always perform favorably against the
linear version. The main motivation for non-linear meth-
ods, as argued in [3], is that linear manipulation often moves
a latent code outside the latent distribution which leads to
low-quality generation. Indeed, in linear manipulation, we
assume a non-informative p(zt) which favors different re-
gions of sample space equally, regardless of the actual latent
distribution. This indicates that non-linear control is likely
to profit when the generation needs to traverse low density
region or is simply out-of-distribution.

An example is sequential editing. Sequential editing
is more prone to low density region, as the new edit is
conditioned on previous edits that possibly have already
guided the latent to low density regions. To see this, imag-
ine a 3-D Guassian distribution where each axis represents
an attribute and we want to guide a sample point from
[−1,−1,−1] to [1, 1, 1]. Compositional generation is anal-
ogous to a direct path [−1,−1,−1] → [1, 1, 1], while se-
quential editing is analogous to a path [−1,−1,−1] →
[−1,−1, 1] →→ [−1, 1, 1] → [1, 1, 1] that traverses more
low density regions. As we can in Table 3, LCG-diffusion
outperforms LCG-linear on FID, generating more realistic
images. Characterizing the latent distribution with diffusion
model in this case is favorable than a non-informative one,
as the diffusion model always pulls the sample toward high
density region thus preventing it going out-of-distribution.
A downside of this is that, as we can see from the ID score,
keeping images realistic is at the cost of losing identity
preservation. Improving the identity preservation should
serve as an interesting topic for future exploration.

6. Conclusion and Future Work
In conclusion, we study the efficacy of using latent dif-

fusion models and latent classifier guidance for composi-
tional visual generation and manipulation. Specifically, we
train latent diffusion models and auxiliary latent classifiers

to facilitate non-linear navigation of latent representation
generation for two pre-trained generative models, Style-
GAN2 and Diffusion Autoencoder. We demonstrate such a
paradigm is suitable for compositional visual tasks both the-
oretically and empirically. Our findings suggest that latent
classifier guidance is a promising approach that deserves
further research, even in the presence of other strong meth-
ods such as Stable Diffusion [33].

In our future work, we plan to explore modeling more
complicated relations between attributes and aim to achieve
compositionality on more challenging datasets and tasks,
such as text/class-conditioned video generation [5, 16, 24,
38]. We are also interested in the performance of latent
classifier guidance in out-of-distribution settings. In addi-
tion, we acknowledge that relying on a pretrained genera-
tive model with a semantic latent space may not be practi-
cal or feasible in some scenarios. To address this potential
problem, we will explore the possibility of reorganizing the
latent space of the pretrained generative model to construct
a semantic latent space in the post-pretraining stage. Also,
the demand for generating unseen classes and unseen sub-
concept of an existing class is of surged interest in the com-
munity [20, 21, 28, 34]. To tackle these new challenges for
compositional generation, we plan to investigate the appli-
cability of leveraging the continual learning and incremen-
tal learning techniques [22,43,45–49] to extend the seman-
tic latent space of the generative model accordingly.
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