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Abstract

In this work, we investigate the problem of Model-

Agnostic Zero-Shot Classification (MA-ZSC), which refers

to training non-specific classification architectures (down-

stream models) to classify real images without using any

real images during training. Recent research has demon-

strated that generating synthetic training images using dif-

fusion models provides a potential solution to address MA-

ZSC. However, the performance of this approach currently

falls short of that achieved by large-scale vision-language

models. One possible explanation is a potential signifi-

cant domain gap between synthetic and real images. Our

work offers a fresh perspective on the problem by provid-

ing initial insights that MA-ZSC performance can be im-

proved by improving the diversity of images in the gener-

ated dataset. We propose a set of modifications to the text-

to-image generation process using a pre-trained diffusion

model to enhance diversity, which we refer to as our bag of

tricks. Our approach shows notable improvements in vari-

ous classification architectures, with results comparable to

state-of-the-art models such as CLIP. To validate our ap-

proach, we conduct experiments on CIFAR10, CIFAR100,

and EuroSAT, which is particularly difficult for zero-shot

classification due to its satellite image domain. We evaluate

our approach with five classification architectures, includ-

ing ResNet and ViT. Our findings provide initial insights

into the problem of MA-ZSC using diffusion models. All

code is available at https://github.com/Jordan-

HS/Diversity_is_Definitely_Needed

1. Introduction

Data is a critical element for the successful training

of deep learning models [3, 24]. However, acquiring and

curating a high-quality dataset can be challenging, time-
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Figure 1. A diagram of our proposed model agnostic zero-shot

classification method. We first generate a set of diverse training

images using our proposed bag of tricks. These generated syn-

thetic images are then used to train a downstream model capable

of classifying a set of real images. This method achieves zero-shot

performance comparable to CLIP [23].

consuming, and expensive [4, 29]. This is especially true

for inherently expensive domains, such as remote sensing

where the creation of a dataset requires the use of satel-

lites [32]. The zero-shot learning tackles the data issue

by training a model using no data from the downstream

task [37]. Generally, zero-shot learning models use spe-

cialised architecture [18, 20, 22, 23, 35] or learn auxiliary

features to achieve the objective [21]. This limits the ar-

ray of potential model architectures. On the other hand,

the Model-Agnostic Zero-Shot Learning problem aims to
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address this issue by considering methods that allow any

model architecture to perform the zero-shot learning task.

In this work, we specifically investigate image classifica-

tion tasks, and as such, refer to the problem domain as

Model-Agnostic Zero-Shot Classification (MA-ZSC). Solv-

ing the MA-ZSC problem alleviates the previously men-

tioned problems of constructing a high-quality dataset with-

out the need for specialised architecture or techniques ap-

plied to the model.

One avenue to address the MA-ZSC problem is by gen-

erating a synthetic dataset which is then used to train a clas-

sification model. A Recent work [8] explored the use of

generated synthetic images powered by the GLIDE diffu-

sion model [19] primarily for improving the zero-shot and

few-shot performance of CLIP [23]; however, they briefly

explore training classification models, finding synthetic im-

ages to be inferior compared to real images. This is thought

to be due to a domain gap between real and synthetic im-

ages [8]. We revisit the issue and find it possible to im-

prove the MA-ZSC performance by increasing the diversity

of the images in the generated datasets. Increasing diver-

sity in training data has been utilised in various domains,

such as computer vision domains [41] and robotics [33]. For

instance, in domain randomisation methods in the robotics

domain [33], increasing diversity in the training data would

help to reduce the ’reality gap’ that separates simulated

robotics from experiments on hardware. With enough vari-

ability in the simulator, the real world may appear to the

model as just another variation. Increasing training data

variability is also a common practice in training classifica-

tion models by employing data augmentation methods [30].

The variability of the training data is increased by simply

performing data augmentation operations such as flipping,

and rotations. Figure 1 presents our overall method, and we

present our results as follows.

Using the latent diffusion model, Stable Diffusion [27],

we start by generating baseline synthetic datasets using the

prompt “an image of a {class}” for CIFAR10 [13], CI-

FAR100 [13] and EuroSAT [9], which is particularly dif-

ficult for zero-shot classification due to its satellite image

domain, as noted in [23]. For each dataset, {class} is re-

placed iteratively with the class labels to generate images

belonging to that class. We then train a ResNet50 model [7]

on these datasets and obtain a zero-shot top-1 accuracy of

60.1%, 29.72% and 36.18% respectively. For reference,

the CLIP zero-shot performance with a ResNet50 backbone

achieves 75.6%, 41.6%, 41.1%.

In order to improve the diversity of images in the gener-

ated dataset we propose a set of modifications to the text-

to-image generation process, which we refer to as our bag

of tricks. Each trick only improves image diversity, with no

mitigation of the image domain. In fact, one of our tricks

(multi-domain) specifically generates out-of-domain exam-

ples. After applying the proposed bag of tricks and find-

ing the best tricks for each dataset, we obtain top-1 zero-

shot classification accuracy of 81% (↑20.5) on CIFAR10,

45.63% (↑15.91) on CIFAR100 and 42.5% (↑6.41) on Eu-

roSAT. Surprisingly, these results surpass the performance

of CLIP-ResNet50 [23].

We list our contributions as follows:

1. Equipped with insights found in our work, we demon-

strate the feasibility of addressing the MA-ZSC prob-

lem by training classification models on a high-quality

Stable Diffusion [27] generated synthetic dataset.

2. We show that improving the diversity of images in a

generated synthetic dataset improves the MA-ZSC per-

formance.

3. We provide a bag of tricks for improving diversity dur-

ing latent diffusion image generation.

We continue our paper as follows. In Section 2, we provide

a summary of previous works related to zero-shot learning,

image generation, and training with synthetic data. We then

describe the problem of model-agnostic zero-shot classifi-

cation, and introduce our solution in Section 3, before de-

scribing the process of how latent diffusion models generate

images in Section 4. In Section 4.2, We investigate how we

can improve the quality of our generated synthetic datasets.

Following this, we propose our bag of tricks to improve

the diversity of our generated synthetic datasets in Section

4.3. Finally, we present our experimental results on CI-

FAR10 [13], CIFAR100 [13], and EuroSAT [9] in Section

5, demonstrating the impact of our proposed bag of tricks

on zero-shot performance across five classification models.

2. Related Work

In this section, we first show previous works relating to

zero-shot learning and the introduction of CLIP; before cov-

ering the recent history of image generation and diffusion

models. Lastly, we will cover previous works where train-

ing was done using generated synthetic images.

2.1. Zero­shot Learning and CLIP

Zero-shot learning (ZSL) refers to the ability of a trained

model to classify classes it was not trained on [37]. For im-

age classification, this is traditionally achieved by learning

auxiliary attributes instead of pre-defined classes [21, 38].

However, a more recent and effective approach is to train an

image and text encoder to learn joint representations, such

as with CLIP [23]. By encoding an image and names or de-

scriptors of the target datasets classes, zero-shot predictions

can be made by finding which descriptions text embedding

is the most similar to the image embedding. Using this

CLIP achieves zero-shot performance on datasets such as

ImageNet [4] (76.2%) comparable to supervised training of

high-quality models [5, 7]. Several works look to improve

the ZSL performance of CLIP by improving the text de-

scription used [18,20,22,35]. In this work, we focus on im-

proving the zero-shot learning performance of non-specific
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architectures, specifically focusing on image classification.

We refer to this problem as Model Agnostic Zero-Shot Clas-

sification (MA-ZSC).

2.2. Image Generation and Diffusion Models

Text-to-image generative models saw a significant per-

formance improvement with DALL-E 1 [26]. The next gen-

eration of generative models, GLIDE [19], Latent Diffusion

Models (LDM) [25], DALL-E 2 [27], and Imagen [28], use

text encoders paired with diffusion models, in contrast to the

discrete variational autoencoder and autoregressive trans-

former used by DALL-E 1. Diffusion models produce an

image by denoising Gaussian noise according to some pro-

vided conditioning, such as a text prompt. Latent diffusion

models perform the denoising in the latent space, making

them more computationally efficient. This work uses a la-

tent diffusion model to generate synthetic images.

2.3. Training with Synthetic Images

Since our research’s inception, several papers have in-

vestigated utilizing diffusion models to extend real datasets

for domain adaptation [40], semi-supervised learning [39],

or generating data augmentations [1, 34]. In our work, we

concentrate solely on training downstream models on en-

tirely synthetic generated datasets. This differs from the

two closest works to ours [2, 8], as He et al. [8] studies if

synthetic images from a diffusion model, GLIDE [19], can

be used to fine-tune CLIPs zero-shot and few-shot perfor-

mance. With respect to training downstream models on syn-

thetic data they conclude synthetic images are 5× less data

efficient than real images. Additionally, He et al. [8] show

synthetic images can effectively pre-train a classifier, on par

with ImageNet pre-training. While Besnier et al. [2] use a

GAN pre-trained on ImageNet [4] and propose strategies

for improving the training quality of the generated images.

With their improvements they were able to achieve 88.8%

accuracy on ImageNet-10 when training on synthetic im-

ages, compared to 88.4% on real images. In our work, we

generate training images using a diffusion model trained on

a much larger dataset and distribution of images.

3. Model-Agnostic Zero-Shot Classification

Zero-Shot Learning (ZSL), as traditionally defined by

[37], aims to learn a classifier fu(·) : X → U , trained

on labelled training instances Dtr belonging a set of seen

classes S (S = {csi |i = 1, ..., Ns}), to classify testing in-

stances Xte belonging to a set of unseen classes U (U =
{cui |i = 1, ..., Nu}). Where S ∩U = ∅. One method to ad-

dress this problem is to describe each unseen class cui with a

set of image attributes extracted from the images in the seen

classes S [14]. To classify an unseen image, we first extract

image attributes from the image. Then the classification is

done in the attribute feature space by comparing the image

attributes of the unseen image with each unseen class image

(a) photo (b) drawing (c) painting (d) poster

Figure 2. Examples of images generated from the prompt “a

{caption} of a car”, where {caption} is the caption of each sub-

figure. Each row shares a common initial Gaussian.

attributes. With the advent of vision-language models such

as CLIP [23], the image attributes are replaced by the nat-

ural language text which is more expressive and can more

accurately describe the unseen classes. In the CLIP model,

the text features and image features are correlated. Thus, we

can classify an unseen image by measuring the dot product

between its image features, and the text features extracted

from each class description.

Whilst the CLIP model has shown impressive zero-shot

performance, one still needs to use the CLIP model and its

zero-shot methodology. We argue that this limits the ap-

plicability of the zero-shot classification. For instance, it

is non-trivial to deploy the CLIP model into edge devices

due to its large model size and complexity. This motivates

us to consider the Model-Agnostic Zero-Shot Classification

(MA-ZSC) problem. In the MA-ZSC setting, we wish

to use any non-specific architecture and methodology to

perform the zero-shot classification task. In other words,

any classification model and methodology can be used for

fu(·).

To address the MA-ZSC problem, we utilise a Latent

Diffusion Model [27] (LDM) which can generate synthetic

training images for each unseen class from its textual de-

scription. Once the synthetic training dataset, Dsyn, are

generated, we can then train any downstream classification

model. Note that we are not claiming that our work is the

first work to employ a synthetic image generation strategy

to address the MA-ZSC problem. Rather, we show the fea-

sibility of the strategy by combining the LDM with our pro-

posed bag of tricks to generate more diverse synthetic im-

ages.

4. Generating Training Images

In our work, we use a Latent Diffusion Model [27]

loaded with Stable Diffusion V1.4 weights to generate syn-

thetic images. Stable Diffusion was trained on a subset

of the LAION-5B dataset [29] and generates images of
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512×512 pixels, which we resize to the native image size of

each dataset. Stable Diffusion uses a frozen CLIP ViT-L/14

text encoder to provide conditioning from text prompts,

similar to [27, 28]. Although LDMs can generate images

from a number of different conditionings (image, text, se-

mantic map), in our work we only generate images via text

prompt. In the following sections, we will first describe

text-to-image generation in more detail before investigating

the potential domain gap between real and synthetic images.

Finally, we hypothesise image diversity is more important

for improving zero-shot classification and provide a bag of

tricks for improving the synthetic image diversity.

4.1. Text­to­Image

For text-to-image generation, a prompt that describes the

desired contents of the image is required to guide the diffu-

sion process. The prompt is projected to an intermediate

representation via CLIP’s text encoder and then mapped to

the intermediate layers of the LDMs denoising UNet via

cross-attention [27]. The LDM uses this guidance to diffuse

a latent representation of an image starting from Gaussian

noise. The resulting latent representation is then decoded

back into the pixel domain to produce the final image. Fig-

ure 2 shows examples of generated images using different

text prompts.

There are three main hyperparameters that control the

generation process. DDIM Steps controls the number of

steps taken by the Denoising Diffusion Implicit Model [31]

in the denoising process. More steps generally result in

more realistic and coherent images, while fewer result in

more disjointed surreal images. The images in Figure 2, and

all synthetic images used in this work, were generated with

40 DDIM steps. Unconditional Guidance Scale (UGC)

controls the scale between the precision of the generated

image matching the provided prompt and generation diver-

sity. This is done by scaling between the jointly trained con-

ditional and unconditional diffusion models [11]. A lower

UGC value means less guidance and therefore more diver-

sity and vice versa. Lastly, there is the Seed from which the

initial Gaussian is generated, and serves as the starting point

for diffusion. The images in each row of Figure 2 were all

generated from common seeds, resulting in the cars in each

row sharing similar features, such as car shape, position and

colour.

4.2. Improving Synthetic Data for Training

Before attempting to construct a high-quality synthetic

dataset we first validate that our synthetic images contain

enough semantic features for classification. In a prior work,

He et al. [8] conclude there is a domain gap between real

and synthetic images generated via their chosen diffusion

model GLIDE [19]. They suggest that reducing this gap

is necessary to improve the quality of synthetic images for

training purposes. If the domain gap is significant we expect

Figure 3. T-SNE plot comparing clustering of real and synthetic

images. The lack of separation in the feature space suggests that

the synthetic images contain semantically meaningful features.

(a) Real images. (b) Synthetic images.

Figure 4. Two t-SNE plots showing the clustered classes for real

and synthetic images. The relative classes are clustered together,

demonstrating the ability of the classifier to classify synthetic im-

ages despite only being trained on real images.

it to noticeably impact our initial validation experiment. If it

does not, however, we then need to investigate what factors

do impact the quality of a synthetic dataset.

4.2.1 Validating the Usefulness of Synthetic Images

One approach for validating the quality of synthetic images

is the Fréchet Inception Distance (FID) score [10]. Recent

generative diffusion models achieve FID scores as low as

7.27 [28] on the MS-COCO dataset [15], with Stable Dif-

fusion (V1.4) achieving a score of 16. For reference, real

images overlayed with 25% Gaussian noise result in FID

scores of approximately 50 [10]. With this in mind, we con-

jecture that the low FID scores of recent diffusion models

suggest they are all capable of generating realistic images.

In order to examine if synthetic images contain semanti-

cally meaningful features we take a ResNet50 model [7]

with pre-trained ImageNet weights [4] and fine-tune only

the classifier head on the real CIFAR10 [6] dataset. We then

visualise the feature space of the real images and our gener-

ated synthetic CIFAR10 images using a t-SNE plot [36]. If

the synthetic images contain vastly different semantic fea-

tures compared to real images we expect the model to fail in

classifying them. Additionally, we expect the real and syn-

thetic images to occupy different areas of the feature space.

However, in Figure 3 we can see the features of the real and

synthetic images are intermingled. Furthermore, in Figure 4

we see the classes are closely clustered, with the model cor-

rectly classifying 76.61% of the real images and 63.8% of
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(a) Original images

(b) Synthetic images from latent interpolation

Figure 5. Examples of images generated from the combination of

different initial latents. Row 1 of (b) is from the left most image

of (a). Row 2 is the average of the centre and left most images.

Row 3 is the average of all three images in (a). Row 4 is random

combinations of all three images in (a)

(a) Sampled linearly interpo-

lated feature representations

from between all real feature

representations.

(b) Sampled linearly interpo-

lated feature representations

from between only three ran-

dom real feature representa-

tions at a time.

Figure 6. A visual example for demonstrating the difference in

resulting diversity of sampled latent points from different sampling

techniques. Sampling from a linearly interpolated combination of

all real feature representations (6a) results in a bias towards the

centre of the feature space; whereas sampling from three randomly

selected real feature representations (6b) results in a more uniform

and diverse sampling.

the synthetic images. This initial experiment validates that

the synthetic images contain enough meaningful semantic

features and therefore should be useful as training images.

4.2.2 Investigating Synthetic Image Diversity

Inspired by works in domain randomisation [33, 41] and

data augmentation [30], which demonstrate that increasing

diversity in the training data improves performance. We

investigate if diversity impacts the quality of a synthetic

training dataset. In order to isolate the impact of diversity,

we utilise the Real Guidance (RG) technique used in [8],

with a slight modification, to minimise the potential domain

gap. RG minimises the domain gap by replacing the Gaus-

sian noise used in the diffusion process with a real image

overlayed with Gaussian noise. We modify this method by

generating images from the interpolated feature representa-

tions of real images instead of from the real images them-

selves. More explicitly, we randomly sample 1% of the im-

ages for each class in CIFAR10 [13], totalling 60 images

per class. These images were then encoded using CLIP’s

image encoder to obtain their feature representations. Next,

we perform linear interpolation of these representations and

use the interpolated feature representation as conditioning

for the diffusion image generation process. Figure 5 shows

an example of this where we generate synthetic images of

trucks (Fig. 5b) from the feature representations of the orig-

inal truck images (Fig. 5a). The first row in Figure 5b are

images generated from only the feature representation of the

first image in Figure 5a, the second row is from the average

of the first and second images and the third is average of

all three. We can qualitatively observe improved synthetic

image diversity from rows one to three. In row four we gen-

erate images from random interpolations between all three

original images.

We use our 60 initial feature representations to generate

images via linear interpolation using two sampling meth-

ods. Firstly, we sample a starting feature representation

from within the convex hull of all 60 feature representa-

tions. Secondly, we sample from only three random fea-

ture representations. We then train a ResNet-50 [7] model

on these two generated datasets and validate performance

on the real CIFAR10 [13] test set. The average of all la-

tent combinations obtains 35.01% top-1 test accuracy and

the three latent combinations obtain 52.6%. This shows

data diversity is important when generating datasets and im-

proving zero-shot test accuracy is dependent on generating

diverse training examples.

In Figure 6, we provide a visual example that more in-

tuitively illustrates the differences between the two linear

interpolation sampling methods. This is purely for demon-

stration purposes and does not represent the actual fea-

ture representations. We first generate a number of evenly

spaced points (shown in blue) along the circumference of

a circle, representing the feature representations of real im-

ages. We then use the two sampling methods described ear-

lier to generate linearly interpolated feature representations

(shown in orange). Figure 6a shows a significant bias to-

wards the centre of the simulated feature space, resulting in

less diverse samples. On the other hand, Figure 6b shows a

more uniform and diverse set of samples.

4.3. Bag of Tricks for Improving Synthetic Diversity

Here we propose the tricks we can utilise to improve

the diversity of generated images. We first describe these

tricks below and later validate their effectiveness in improv-

ing zero-shot classification performance. For all synthetic

5773



Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

C
IF

A
R

1
0

[1
3
]

Aquarium

Fish
Bicycle Castle Dinosaur Keyboard Sea Shark Television Tractor Wolf

C
IF

A
R

1
0

0
[1

3
]

Annual

Crop
Forest

Herbaceous

Vegetation
Highway Industrial Pasture

Permanent

Crop
Residential River Sea/Lake

E
u
ro

S
A

T
[9

]

Table 1. Examples of real (top row per dataset) and generated (bottom row per dataset) images for the CIFAR10 [13], CIFAR100 [13] and

EuroSAT [9], the generated images are taken from the base class generated dataset. The real images are 32x32 for CIFAR and 64x64 for

EuroSAT, while the synthetic images are 512x512. The generated images are downsized to match the real images during training.

datasets, we generate the same number of images per class

as their real counterparts.

Base Class - This consists of images that were generated

using the prompt “an image of a {class}” where {class} is

replaced with a class name from the downstream dataset.

This represents the naive case for generating images as this

prompt is synonymous with the prompt used for zero-shot

prediction in [23]. We only slightly modify the zero-shot

prompt from “a photo of” to “an image of” as we use the

prompt “a photo of” later in the mutli-domain trick.

Class Prompt - We change the prompt from “an image of

a {class}” to just “{class}” as images generated from “an

image of a {class}” are included in the subset of images

generated by the prompt “{class}”. Therefore, using just

the class name may lead to more diverse outputs.

Multi-Domain - Next, we directly influence the diversity

by providing a list of domains with the prompt “a {domain}
of a {class}” where the domain is one of ten preset domains

(photo, drawing, painting, sketch, collage, poster, digital

art image, rock drawing, stick figure, 3D rendering) for

CIFAR datasets. Due to EuroSAT requiring more domain

information to correctly generate a satellite image, we use

the prompt “a satellite photo of a {class} in the style of a

{domain}” where the domains are (realistic photo, draw-

ing, painting, sketch, 3D rendering). The images in Figure

2 are an example of CIFAR10 multi-domain images.

Random Unconditional Guidance - We use the base class

prompt and randomly set the unconditional guidance scale

between values of 1 and 5. This generates images that are

highly diverse, such as generated with UCG = 1, as well

as images containing stronger features of the target class,

such as with UCG = 5. UCG = 5 was chosen as the up-

per bound from qualitative inspection of generated images

where we found little difference in features of synthetic im-

ages with values greater than 5.

All Combined - Lastly, we combine all previous tricks

into one final dataset. This should result in a more diverse

dataset than any individual dataset.

6774



CIFAR10 [13] CIFAR100 [13] EuroSAT [9]

He et al. (ResNet50) [8] - 28.74 -

CLIP-ResNet50 [23] 75.6 41.6 41.1

Base Class 60.5 29.72 36.18

Anti-aliasing Rescale 63.84 ↑3.34 33.61 ↑3.89 34.4 ↓1.78

Class Prompt 62.32 ↑1.82 26.4 ↓3.32 -

Multi-Domain 67.97 ↑7.47 32.55 ↑1.96 35.68 ↓0.5

Random Guidance 72.93 ↑12.43 31.19 ↑1.47 40.18 ↑4

All Combined 81 ↑20.5 45.63 ↑15.91 39.92 ↑3.74

Table 2. Zero-shot classification top-1 test accuracy on the CI-

FAR10, CIFAR100 and EuroSAT datasets from training on dif-

ferent permutations of synthetic datasets with a ResNet50 model.

The change (↓, ↑) in top-1 accuracy is measured with respect to

the base class.

5. EXPERIMENTS

In this section, we first discuss our training setup and

then present our baseline zero-shot results with ReseNet50

[7]. We then apply the bag of tricks when generating our

synthic datasets of CIFAR10 [13], CIFAR100 [13] and Eu-

roSAT [9]. We have chosen the CIFAR datasets due to their

widespread use and low resolution, allowing for ease of

training. We have also included EuroSAT because of its

low resolution and challenging domain for synthetic im-

ages. Additionally, it has been shown to be a challenging

dataset for zero-shot classification [23]. We show examples

of our generated datasets in Table 1.

Following the bag of tricks, we have identified the the

best tricks for each dataset and tested them on four ad-

ditional classification architectures; ResNet101 [7], Mo-

bileNetV3 [12], ViT [5] and ConvNeXt [16].

5.1. Training Setup

All models were trained from random initialisation for

200 epochs, with a batch size of 128, the AdamW opti-

miser [17] and cosine annealing learning rate decay. All

training used an initial learning rate of 2e−4. MobileNetV3

models used a weight decay of 0.1 for all training; whereas

all other models used a weight decay of 0.9 when training

on the CIFAR datasets and 0.3 when training on EuroSAT.

We found the weight decay hyperparameter of the AdamW

optimiser to be important, as it helps reduce overfitting to

the synthetic images.

5.2. Baseline Results

In Table 2, we gather baseline zero-shot classification

results of CLIP-ResNet50 from [23] and ResNet50 from

[8]. For our own baseline, we use the base class synthetic

dataset as described in section 4.3. Our base class dataset

achieves zero-shot accuracy of 60.5%, 29.72% and 36.18%

for CIFAR10, CIFAR100 and EuroSAT respectively. In

comparison, CLIP-ResNet50 from [23] achieves zero-shot

accuracies of 75.6%, 41.6% and 41.1% respectively. The

15.1% and 11.88% difference between CLIP’s ResNet zero-

shot and our ResNet zero-shot results show that our gen-

erated dataset does not currently capture the full diversity

of CLIP’s knowledge of each class. In theory, we ex-

pect that with infinite training examples, we should achieve

CLIP’s zero-shot accuracy. The baseline results from [8]

on CIFAR100 are the most directly comparable to our base

class results as these results are obtained from training a

ResNet50 model from scratch on a synthetic version of CI-

FAR100 generated using GLIDE [8]. An important point

to note however is that the results in [8] are obtained af-

ter improving the prompt quality for generating synthetic

datasets, whereas our base class results are already higher

without any improvements. This is most likely due to the

difference in diffusion models used for the generation of

the synthetic datasets. As mentioned, [8] use GLIDE [19]

which was trained on a dataset of 250 million image and

caption pairs. In contrast, we use Stable Diffusion, which

was trained on 2.3 billion image caption pairs from the

LAION-5B dataset [29]. This 9.2× increase in training data

appears to result in inherently better generative abilities.

5.3. Implementing the Bag of Tricks

Here we iterate over the bag of tricks, as described in

Section 4.3, in an effort to improve diversity and zero-shot

classification. Results are shown in Table 2 comparing the

accuracy obtained using each trick, with a ResNet50 model.

Although not a trick, we test the impact of using anti-

aliasing during the rescaling of images from 512×512 pix-

els to 32×32 for CIFAR datasets and 64×64 for EuroSAT.

We find anti-aliasing significantly benefits CIFAR datasets

but not EuroSAT. Thus we do not apply anti-aliasing on Eu-

roSAT.

Class Prompt - Using only the class name as the prompt

we see a small improvement in CIFAR10 accuracy while

CIFAR100 accuracy reduces. We suspect the reduction in

CIFAR100 performance is due to the generation of incorrect

images for classes which can have multiple meanings. Such

as: ‘Apple’ generating images of the fruit and the software

company Apple logo. ‘Beetle’ generating images of the in-

sect and the Volkswagen car. ‘Orange’ generating images of

orange items of clothing mainly instead of the fruit. ‘Ray’

generating Sun rays, sting rays and men. This is not the case

for CIFAR10 where the class names are unambiguous. We

do not test this trick on the EuroSAT dataset as this dataset

requires some context in the prompt relating to satellite im-

ages.

Multi-Domain - Despite approximately 90% of the im-

ages being generated under this setting not being realis-

tic; we see the most significant improvement for the CI-

FAR datasets, with a 7.47% and 1.96% improvement with

CIFAR10 and CIFAR100 respectively. These images, espe-

cially the posters, paintings and drawings, are not within the

real CIFAR domain. For EuroSAT, we see a slight reduction

of 0.5% compared to the base class. Both the CIFAR and

EuroSAT results show that out-of-domain training images
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Base Class Best Tricks

Dataset Model

CIFAR10 [13]

CLIP-ResNet50∗ [23] 75.6 -

ResNet50 [7] 60.5 81 ↑20.5

ResNet101 [7] 60.89 81.84 ↑20.95

ViT-B [5] 42.34 75.72 ↑33.38

MobileNetV3-S [12] 51.05 74.38 ↑23.33

ConvNeXt-S [16] 49.15 80.1 ↑30.95

CIFAR100 [13]

CLIP-ResNet50∗ [23] 41.6 -

ResNet50∗ [8] 28.74 -

ResNet50 29.72 45.63 ↑15.91

ResNet101 27.66 46.63 ↑18.97

ViT-B 16.38 32.38 ↑16

MobileNetV3-S 17.78 39.64 ↑21.86

ConvNeXt-S 20.93 45.14 ↑24.21

EuroSAT [9]

CLIP-ResNet50∗ [23] 41.1 -

ResNet50 36.18 42.59 ↑6.41

ResNet101 34.73 37.31 ↑2.58

ViT-B 19.53 21.71 ↑2.18

MobileNetV3-S 34.08 39.13 ↑5.05

ConvNeXt-S 18.57 20.22 ↑1.65

Table 3. Top-1 zero-shot accuracy of various classification models

on the Base Class and Best Trick synthetic CIFAR10, CIFAR100

and EuroSAT datasets. Models marked with ∗ are baseline results

(not base class results) from the cited papers, similar to Table 2.

The change (↑) in Best Trick top-1 accuracy is relative to the Base

Class top-1 accuracy.

are not the main constraint for improving the zero-shot po-

tential of synthetic datasets.

Random Unconditional Guidance - When we directly en-

force diversity over precision by setting a random uncondi-

tional guidance scale we see an improvement in zero-shot

classification across all datasets. Interestingly, we see the

most significant improvements in CIFAR10 and EuroSAT.

We conjecture this is due to CIFAR10 and EuroSAT con-

taining more training examples per class than CIFAR100.

This supports the finding in [8] that synthetic images are

less data efficient than real images. Random unconditional

guidance resulting in an accuracy improvement further sup-

ports our hypothesis that increasing diversity is more impor-

tant than reducing a domain gap when generating synthetic

training images.

All Combined - Finally, we combine all previously gener-

ated datasets into one large dataset, in order to test if com-

bining all the tricks, and further increasing diversity, gives

more zero-shot classification improvements. In doing so

we obtain our most significant improvements, further sup-

porting our hypothesis. Surprisingly, both CIFAR zero-shot

results have now surpassed the CLIP-ResNet50 zero-shot

results [23], showing that our bag of tricks may distil the

important signals or features in CLIPs understanding of a

concept.

5.4. Model Agnostic Zero­shot Classification

Using our bag of tricks we can now endow any model

with zero-shot classification capabilities. To demonstrate

this we test the best tricks for each dataset on four additional

classification architectures, results are shown in Table 3.

For CIFAR10, the all combined dataset is used for the best

tricks. CIFAR100 uses all tricks except class prompt. For

EuroSAT, only the random unconditional guidance trick

improved performance, therefore to further increase diver-

sity, we generate an additional 2700 images per class, dou-

bling the size of the dataset. We use the ResNet101 [7]

architecture in order to test if simply a deeper ResNet is

able to obtain higher zero-shot performance and we see

only slight improvements over ResNet50. When training

with the ViT-B model [5] we see reduced performance com-

pared to the ResNet models across all datasets. We con-

jecture this is due to training from scratch, as ViTs are

known to benefit greatly from ImageNet pre-training [5].

Despite this, we still see an improvement in zero-shot per-

formance when training using the best tricks. Lastly, we use

MobileNetV3-small [12] and ConvNeXt-small [16] as ex-

amples of architectures that previously have not been used

for zero-shot classification, demonstrating our approach ap-

plies to any existing model. Again we see improvements

in zero-shot classification across all datasets when applying

the best tricks.

6. Conclusion

In conclusion, we investigate the problem of Model-

Agnostic Zero-Shot Classification (MA-ZSC). Where MA-

ZSC aims to train any downstream classification architec-

ture to classify real images without training on any real im-

ages. We investigated how to improve the quality of a syn-

thetic dataset for the purpose of training and found diversity

in the synthetic images to be an important factor. From this,

we then proposed a set of modifications to the text-to-image

generation process via diffusion models, named our bag of

tricks. This bag of tricks is designed only to improve the di-

versity of synthetic images, with no mitigation of the poten-

tial domain gap, as reported by previous works. Applying

the bag of tricks achieves notable improvements across five

classification architectures on the CIFAR10, CIFAR100 and

EuroSAT datasets. Some architectures even achieve zero-

shot classification accuracies comparable to state-of-the-art

zero-shot models, such as CLIP. Our findings provide ini-

tial insights into the problem of MA-ZSC using diffusion

models and opens up new avenues for research in this area.
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Volker Markl. Bigearthnet: A Large-Scale Benchmark

Archive for Remote Sensing Image Understanding. In

IGARSS, 2019. 1

[33] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-

ciech Zaremba, and Pieter Abbeel. Domain randomization

for transferring deep neural networks from simulation to the

real world. In IEEE IROS, 2017. 2, 5

[34] Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan

Salakhutdinov. Effective Data Augmentation With Diffusion

Models. ArXiv, abs/2302.07944, 2023. 3

[35] Vishaal Udandarao, Ankush Gupta, and Samuel Albanie.

SuS-X: Training-Free Name-Only Transfer of Vision-

Language Models. ArXiv, abs/2211.16198, 2023. 1, 2

[36] Laurens Van der Maaten and Geoffrey Hinton. Visualizing

data using t-SNE. JMLR, 2008. 4

[37] Wei Wang, Vincent W Zheng, Han Yu, and Chunyan Miao.

A survey of zero-shot learning: Settings, methods, and ap-

plications. TIST, 2019. 1, 2, 3

[38] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot

learning-the good, the bad and the ugly. In CVPR, 2017. 2

[39] Zebin You, Yong Zhong, Fan Bao, Jiacheng Sun, Chongx-

uan Li, and Jun Zhu. Diffusion Models and Semi-

Supervised Learners Benefit Mutually with Few Labels.

ArXiv, abs/2302.10586, 2023. 3

[40] Jianhao Yuan, Francesco Pinto, Adam Davies, Aarushi

Gupta, and Philip Torr. Not Just Pretty Pictures: Text-to-

Image Generators Enable Interpretable Interventions for Ro-

bust Representations. ArXiv, abs/2212.11237, 2022. 3

[41] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto

Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing

Gong. Domain Randomization and Pyramid Consistency:

Simulation-to-Real Generalization Without Accessing

Target Domain Data. In ICCV, 2019. 2, 5

10778


