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Abstract

Adversarial attacks in the input (pixel) space typically
incorporate noise margins such as L1 or L∞-norm to pro-
duce imperceptibly perturbed data that can confound deep
learning networks. Such noise margins confine the mag-
nitude of permissible noise. In this work, we propose
injecting adversarial perturbations in the latent (feature)
space using a generative adversarial network, removing
the need for margin-based priors. Experiments on MNIST,
CIFAR10, Fashion-MNIST, CIFAR100 and Stanford Dogs
datasets support the effectiveness of the proposed method in
generating adversarial attacks in the latent space while en-
suring a high degree of visual realism with respect to pixel-
based adversarial attack methods.

1. Introduction
Deep neural networks have been very successful in fields

ranging from computer vision [1–3], reinforcement learn-
ing [4, 5] to natural language processing [6, 7] and speech
recognition [8]. Despite their success, robustness against
noisy inputs is becoming a concern. Szegedy et al. [9]
discovered that state-of-the-art deep learning models suf-
fer from vulnerability towards imperceptible input pertur-
bations known as adversarial attacks. Existing methods of
generating adversarial attacks or adversarial samples such
as Projected Gradient Descent (PGD) [10] and Fast Gradi-
ent Sign Method (FGSM) [11] follow the conventional pro-
cedure of adding minimal perturbations in the form of noise
following a certain prior in the pixel (input) space. This
prior is typically expressed as a L1 or L∞ boundary or ϵ-
ball of radius around the clean sample (per pixel) and serves
as the attack budget or noise margin to be added to the pixels
to render a successful adversarial attack. The attack margin
can be interpreted as a pre-defined geometric prior, analo-
gous to different forms of regularization used in optimiza-
tion. Geometric prior-induced adversarial attacks in the in-
put space are the most prevalent class of adversarial attacks
in the literature. Note, the objective of adversarial attacks
is to confound the deep learning network to make incorrect

predictions. Although the adversarial perturbations are in-
jected in the input space, the predictions are a result of op-
erations in the high-dimensional feature space. This made
us question, why not bypass the pixel space and launch the
adversarial attack to directly affect the features in the la-
tent space? Therefore, in this work, we explore a different
approach of generating adversarial attacks with the follow-
ing objectives. Firstly, to examine whether it is possible to
exclude margin-based prior for generating adversarial at-
tacks while maintaining high degrees of visual realism and
secondly, to analyze whether it is feasible to directly induce
adversarial perturbations in the latent space. To conduct
our investigation, we design an attack scheme independent
of margin-based prior to induce adversarial perturbations in
the latent space that can generalize to both untargeted and
targeted attacks. There are two advantages of injecting per-
turbations in the latent space. i) Perturbations in the latent
space require minimal regulation on attack margin. The at-
tack budget for the noise to be added need not conform to a
specific bounded margin required in existing adversarial at-
tacks. ii) Adversarial attacks in the latent space can provide
intuitive cues to interpret and explain adversarial attacks.
Our contributions in this work are as follows.

• We use a generative adversarial network (GAN) [12]
to generate adversarial samples in the latent space
that is generalizable to both targeted (specific target
class) and untargeted (an arbitrary class) attack sce-
narios on several well-known image datasets, MNIST,
CIFAR10, Fashion-MNIST, CIFAR100 and Stanford
Dogs datasets.

• We interpret the adversarial attacks in the latent space
from a geometric perspective using convex hulls. We
demonstrate how perturbations in the latent space push
the original data towards the closest face of the convex
hull of target class in the case of targeted attacks, and
to the nearest class in the case of untargeted attacks.

• We visualize the features extracted from the discrim-
inator and observe that both original images and ad-
versarial images form well-separated distributions sup-
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porting the feasibility of producing adversarial attacks
in the latent space.

• We use class activation maps [13] to depict that origi-
nal and perturbed images are highly complementary in
the feature space while being similar in the pixel space.

The rest of the paper is organized as follows. section 2
outlines the existing work. section 3 describes the rationale
behind proposed method and the methodology for achiev-
ing untargeted and targeted attacks. section 4 describes the
experimental settings. In section 5, we present our findings
and analyze the results. section 6 concludes the paper.

2. Related Work

Gradient based adversarial attacks: Some of the
most successful adversarial attacks have been gradient
based i.e., these methods leverage the gradients with respect
to the input to find the adversarial samples. Attack schemes
like fast gradient sign method (FGSM) and projected gradi-
ent descent (PGD) are classical examples of gradient based
attacks. PGD attack can be viewed as an iterative version
of FGSM where an attack is performed for a fixed number
of iterations or until misclassification is achieved. These
attacks are called white-box attacks as they involve com-
putation of the gradient of the model’s weights. While
other methods focus on adding perturbations in the input
holistically, attacks like jacobian-based saliency map attack
(JSMA) [14] and one-pixel attack [15] restrict the perturba-
tion within a small region in the image. Essentially, these
methods select and change the pixels that are most-likely
to produce the largest increase (largest gradient) in the loss.
This process is repeated for a set number of iterations or
until the data is misclassified. Other methods like Deep-
Fool attack [16] minimizes the norm of the adversarial per-
turbation by solving an optimization problem. To generate
adversarial attacks, the iterative method pushes the image
towards the closest hyperplane after linearizing the class
boundaries around the current image to produce a convex
polyhedron. The additive perturbation updates the image
iteratively until it converges to a successful adversarial at-
tack. AdvGAN [17] uses a GAN to learn and approximate
the distribution of original samples and then generate adver-
sarial samples efficiently for each instance. It uses a user-
specified bound in the form of soft hinge loss to restrict the
magnitude of perturbation. AWTM [18] uses a GAN and an
autoencoder as a mapper to achieve attack without a target
model and relies on two weight parameters to regulate the
strength of the attack and the quality of the generated sam-
ple. All of the above methods perform incremental bounded
perturbation in the pixel space to deliberately change the
classification decision. However, we propose an alternate
scheme that can perturb the data in the latent space that re-

sults in adversarial attack while maintaining the perceptual
quality of the data.

3. Methodology

3.1. Rationale

In [19], the author analyzes convex hulls of the features
produced by a deep classification network f , to demonstrate
generalizability of deep learning-based methods. Inspired
from the above work, we explore the effects of adversar-
ial attacks in the latent (feature) space than in the input
(pixel) space. Specifically, we develop a framework that
is capable of perturbing the features of the original data
so that it changes the class label without altering the vi-
sual semantics of the data. Therefore, we use a gener-
ative adversarial network (GAN) that is capable of syn-
thesizing realistic images using an encoder-decoder archi-
tecture (generator) and incorporates a classifier (discrimi-
nator) to distinguish between original and perturbed sam-
ples. In our case, the generator simulates an autoen-
coder [20], to ensure that the original and perturbed im-
ages are almost identical. The discriminator serves the
dual purpose of distinguishing between ‘real’ (original)
and ‘generated’ (adversarially perturbed) samples, and
their respective class labels. Therefore, the discrimina-
tor guides the generator to synthesize samples that are
successfully perturbed, i.e., they must belong to differ-
ent classes. The proposed method is different from Latent
Poison attack [21], that explores the vulnerability of varia-
tional autoencoders from a security perspective and requires
ϵ-bound on the class decision. An extension of the Latent
Poison work in achieving only untargeted attacks by gener-
ating out-of-distribution samples is done in [22]. However,
we propose to perturb the features in the latent space for
generating realistic images while attacking the class pre-
dictions (without noise margin) in an end-to-end fashion
to accomplish both untargeted and targeted attacks.

3.2. Proposed Method

We use a GAN [12] to produce images that fools a classi-
fier. The GAN consists of an encoder-decoder architecture
as the generator that generates adversarial samples, and a
discriminator that distinguishes between original and ad-
versarial samples. We denote the generator and discrimina-
tor network by G and D respectively. Let x = {x(i)}mi=1

denote a batch of m samples, {y(i)}mi=1 denote the corre-
sponding labels, and x̃ = G(x), denote a set of generated
images. During training, weights of both networks are opti-
mized to minimize their respective loss functions. The dis-
criminator’s loss LD is formulated as
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LD = λ1 ·
1

m

m∑
i=1

Lce(D(x(i)), y(i))

+λ2 ·
1

m

m∑
i=1

Lce(D(G(x(i))), τ)
(1)

and the generator’s loss LG is formulated as

LG = γ1 ·
1

m

m∑
i=1

Lce(D(G(x(i))), τ) + γ2 · L1(x, x̃) (2)

In order to inject adversarial perturbations in the latent
space, we strategically employ the generator and discrimi-
nator loss functions to supervise the adversarial sample gen-
eration. Note that classification occurs as a result of highly
non-linear operations in the latent space. Therefore, we in-
troduce loss terms that deliberately affect the classification
decision by implicitly perturbing the features that are re-
sponsible for classification. We design the loss functions
such that they regulate realistic data generation and accom-
plish adversarial attacks synchronously.

Equation 1 and Equation 2 achieve the desired objective
as follows. In the equations, τ denotes the target class in the
case of targeted attack, L1 is per-pixel loss and Lce is the
cross-entropy loss. In case of untargeted attack, we replace
the target class τ by c∗ − y(i) where y(i) is the label of
sample x(i) and c∗ = maxi(ci). This essentially forces the
discriminator to misclassify a sample of class c as c∗ − c.
When the number of classes in the dataset is even and class
labels are 0-indexed, labeling class c as c∗ − c mislabels all
the training samples.

Given a target class τ , the first term in LD penalizes mis-
classification of a sample x(i) to its class y(i) whereas the
second term encourages D to classify the generated sample
x̃(i) = G(x(i)) as τ . Similarly, the first term in LG encour-
ages the generated images to be classified as τ whereas the
second term forces the generated images to look visually
similar to real images. Successful training results in a gen-
erator network that produces realistic images that appear to
be sampled from original dataset, and a discriminator net-
work that correctly classifies real images but classifies the
generated images as belonging to τ . Algorithm 1 outlines
the procedure followed in the proposed method.

Baseline: We design a baseline for comparison as existing
methods perturb in the pixel space. It consists of an autoen-
coder that is jointly trained with a fully connected layer to
classify the embedding produced by the encoder. Let h and
g be the encoder and decoder respectively, and f ′ be the
fully connected layer. The model minimizes the following

loss.

LB = µ1 ·
1

m

m∑
i=1

L1(g(h(x(i))), x(i))

+µ2 ·
1

m

m∑
i=1

Lce(f
′(h(x(i))), y(i))

(3)

The first term in LB forces the model to produce images
that look similar to the input whereas the second term su-
pervises correct classification of the embedding produced
by h. Given a sample x belonging to class c, we first con-
struct the convex hull using embedding produced by h of all
the training samples from class c. We then iteratively move
towards the direction of the nearest face in the hull for a
fixed number of iterations or until the class label, i.e., the
classification decision changes.

4. Experiments

Setup and implementation details: We use a ResNet-
18 [2] as the discriminator network whose final layer is
modified to output C scores corresponding to C class labels
for each dataset used in this work (for example, C=10 for
MNIST, Fashion-MNIST and CIFAR10 datasets, C=100
for CIFAR100, and C=120 for Stanford Dogs dataset). We
follow the experimental settings in DCGAN [23] for the
generator. Specifically, we use the generator and discrim-
inator of the DCGAN architecture as decoder and encoder
respectively. We use Adam optimization [24] with a mini-
batch size of 100 and an initial learning rate of 0.002 that
is maintained using exponential-LR [25] scheduler to train
the generator and the discriminator. Additionally,the weight
parameters in discriminator’s loss LD are set to λ1 = 0.5
and λ2 = 0.5, whereas in generator’s loss LG , they are set to
γ1 = 0.1 and γ2 = 0.9. The discriminator weights are up-
dated multiple times for each update of generator’s weights
to incorporate the slow training of D. We also initialize
the weights of both the generator and the discriminator us-
ing He uniform initialization [26]. To select the model with
best adversarial attack success rate, we do k-fold cross val-
idation [27] with the value of k set to 5.

For the baseline network, we train a ResNet-18 based
encoder and a custom decoder (3 transpose convolution lay-
ers interspersed with BatchNorm and ReLU). The encoder-
decoder together serves as an autoencoder. We use the em-
bedding produced by the encoder to reconstruct the per-
turbed data. The output of the last convolutional layer is
set to 8-D and 32-D for MNIST and CIFAR10, respectively.
The model is trained for 100 epochs with both weight pa-
rameters in Equation 3 set to 0.5. After successful training,
we extract the embedding of the training set per class to con-
struct the hull of each class. Unfortunately, constructing a
convex hull in higher dimensions is computationally infea-
sible, so we project the embedding onto 2D using PCA [28].
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(a) MNIST (b) CIFAR10

(c) Fashion-MNIST

(d) CIFAR100 (e) Stanford Dogs

Figure 1. Illustration of original images on the left and generated images on the right from (a) MNIST, (b) CIFAR10, (c) Fashion-MNIST,
(d) CIFAR 100, and (e) Stanford Dogs datasets respectively, using the proposed method.
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Algorithm 1 Proposed training algorithm.

Require: batch size m, target class τ , max class c∗, dis-
criminator D, generator G, and hyperparameters: λ1,
λ2, γ1, γ2.

1: while training has not converged do
2: sample {x, y}, a batch of real data.
3: compute x̃ = G(x), a batch of generated data.
4: compute ℓ1 = Lce(D(x), y)
5: if τ is defined then
6: compute ℓ2 = Lce(D(x̃), τ) // Targeted
7: else
8: compute ℓ2 = Lce(D(x̃), c∗ − y) // Untargeted
9: end if

10: update D′s weights to minimize λ1ℓ1 + λ2ℓ2
11: compute ℓ3=L1(x, x̃), pixel-wise loss between real

and generated images.
12: update G′s weights to minimize γ1ℓ2 + γ2ℓ3
13: end while
14: return D,G

In each iteration, the data point moves towards the nearest
face in the hull (or towards the centroid of target class). We
then reconstruct the new point to its respective dimensions
(8 and 32) using inverse PCA. The reconstructed point is
then fed to the decoder and we observe the prediction by ap-
pending fully connected layers to the encoder. We perform
this iteratively until we reach the terminating criterion.

(a) (b) (c) (d)

Figure 2. Output of the baseline algorithm on an MNIST sample.
(a) Original image. (b) Output of the autoencoder. (c) Recon-
structed output of the decoder after the first iteration. (d) Recon-
structed output of the decoder after convergence.

Experiments on MNIST and CIFAR10: We conduct
experiments on two standard datasets: MNIST [29] and CI-
FAR10 [30]. We normalize and resize the images from both
datasets to 64 × 64. We use the same train (50K) and test
(10K) splits as defined in the datasets description page. We
perform both targeted and untargeted attacks using the
proposed algorithm. We quantify the success of the pro-
posed method using the metric attack success rate (ASR)
that evaluates the proportion of test data points that have
been successfully (mis)classified as the target class in the
case of targeted attack. For untargeted attack, ASR com-
putes the proportion of test data points that have been classi-
fied as belonging to any class other than their original class.
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final point

(a) Targeted attack
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(b) Untargeted attack

Figure 3. llustration of adversarial attacks from a geometric per-
spective using convex hulls. Top: Traversal from class ‘9’ to tar-
get class ‘4’ (targeted attack). Bottom: Traversal from class ‘4’
towards the nearest class (untargeted attack).

Experiments on Fashion-MNIST, CIFAR100 and
Stanford Dogs: To further validate the generalizabil-
ity of the proposed method, we conduct experiments
involving only targeted attacks on three more datasets,
namely, Fashion-MNIST [31], CIFAR-100 [32] and Stan-
ford Dogs [33]. We use the same train and test splits pro-
vided by the original authors for each of the three datasets.
For CIFAR100 and Stanford Dogs datasets, we randomly
select 10 classes out of a total of 100 classes and 120
classes, respectively, and all the classes in Fashion-MNIST
dataset to perform targeted attacks.

5. Findings

5.1. Results

Proposed Method Results: We present the results of our
proposed method on MNIST, CIFAR10, Fashion-MNIST,
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Table 1. Adversarial success rates on MNIST on both targeted (left) and untargeted (right) attacks. We report the classification accuracy
on original and generated images and ASR that denotes the attack success rate. Higher the value of ASR, the better is the performance.

Targeted Attacks Untargeted Attacks
Target
Class Proposed Method Baseline

Target
Class Proposed Method Baseline

Acc. on
Original
Images

Acc. on
Generated
Images

ASR
Acc. on
Original
Images

Acc. on
Generated
Images

ASR
Acc. on
Original
Images

Acc. on
Generated
Images

ASR
Acc. on
Original
Images

Acc. on
Generated
Images

ASR

0 99.06% 3.00% 97.00% 99.40% 81.87% 18.13% 0 60.61% 0.00% 100.00% 99.40% 6.84% 93.16%
1 99.63% 7.00% 93.00% 99.30% 99.93% 0.07% 1 93.57% 0.00% 100.00% 99.30% 97.44% 2.56%
2 96.13% 3.95% 96.05% 98.40% 37.05% 62.95% 2 81.01% 16.86% 83.14% 98.40% 0.00% 100.00%
3 86.74% 5.73% 94.27% 99.50% 50.86% 49.14% 3 93.37% 1.58% 98.42% 99.50% 99.60% 0.40%
4 83.06% 3.48% 96.52% 99.20% 57.26% 42.74% 4 88.09% 18.02% 81.98% 99.20% 1.93% 98.07%
5 99.77% 22.31% 77.69% 99.30% 82.48% 17.52% 5 92.49% 0.67% 99.33% 99.30% 12.67% 87.33%
6 54.14% 1.56% 98.44% 98.20% 40.31% 59.69% 6 90.50% 45.51% 54.49% 98.20% 6.26% 93.74%
7 91.56% 3.76% 96.24% 98.30% 27.50% 72.50% 7 88.52% 0.19% 99.81% 98.30% 89.59% 10.41%
8 88.21% 1.83% 98.17% 98.80% 60.95% 39.05% 8 81.52% 8.73% 91.27% 98.80% 95.28% 4.72%
9 89.72% 9.76% 90.24% 98.30% 9.54% 32.06% 9 91.38% 0.10% 99.90% 98.30% 97.03% 2.97%
Avg. 88.80% 6.23% 92.86% 98.88% 67.94% 32.06% Avg. 86.18% 9.10% 90.83% 98.88% 50.60% 49.40%

Table 2. Adversarial success rates on CIFAR10 on both targeted (left) and untargeted attacks (right). We report the classification accuracy
on original and generated images and ASR that denotes the attack success rate. Higher the value of ASR, the better is the performance.

Targeted Attacks Untargeted Attacks
Target
Class Proposed Method Baseline

Target
Class Proposed Method Baseline

Acc. on
Original
Images

Acc. on
Generated
Images

ASR
Acc. on
Original
Images

Acc. on
Generated
Images

ASR
Acc. on
Original
Images

Acc. on
Generated
Images

ASR
Acc. on
Original
Images

Acc. on
Generated
Images

ASR

0 75.00% 37.40 62.60% 94.70% 10.61% 0.00% 0 87.20% 2.80% 97.20% 94.70% 0.00% 100.00%
1 47.67% 7.60% 92.40% 97.30% 10.61% 0.00% 1 62.00% 0.00% 100.00% 97.30% 0.00% 100.00%
2 76.43% 6.41% 93.59% 90.10% 10.10% 19.65 % 2 78.60% 0.60% 99.40% 90.10% 7.40% 92.60%
3 74.73% 6.12% 93.88% 87.50% 9.97% 97.50% 3 66.40% 65.10% 34.90% 87.50% 58.80% 41.20%
4 60.68% 5.65% 94.35% 95.00% 9.99% 0.41% 4 97.90% 11.60% 88.40% 95.00% 16.10% 83.90%
5 77.51% 9.41% 90.59% 89.00% 10.00% 0.00% 5 68.00% 29.90% 70.10% 89.00% 0.00% 100.00%
6 65.57% 18.60% 81.40% 95.30% 10.39% 0.00% 6 95.80% 1.90% 98.10% 95.30% 0.00% 100.00%
7 76.5 % 6.86% 93.14% 94.70% 10.08% 0.00% 7 84.70% 1.60% 98.40% 94.70% 0.30% 99.70%
8 76.35% 16.78% 83.22% 96.00% 10.58% 38.92% 8 92.60% 11.40% 88.60% 96.00% 1.00% 99.00%
9 87.24% 27.68% 72.32% 97.00% 10.00% 0.00% 9 69.50% 0.00% 100.00% 97.00% 0.00% 100.00 %
Avg. 71.70% 14.26% 85.74% 93.66% 10.20% 15.64% Avg. 80.20% 12.40% 87.51% 93.66% 0.83% 91.60%

CIFAR100 and Stanford Dogs datasets in Figure 1. On
MNIST (see Table 1), we observe classification accuracy
of 88.8% on original images, 10.5% on perturbed images
and secure an attack success rate of 92.86% when aver-
aged across all the classes for targeted attacks. We ob-
serve classification accuracy of 86.18% on original images,
9.1% on perturbed images and secure an attack success rate
of 90.83% when averaged across all the classes for untar-
geted attacks. On CIFAR10 (see Table 2), we observe clas-
sification accuracy of 71.7% on original images, 10.01%
on perturbed images and secure an attack success rate of
85.74% when averaged across all the classes for targeted
attacks. We observe classification accuracy of 80.20% on
original images, 12.4% on perturbed images and secure an
attack success rate of 87.51% when averaged across all the
classes for untargeted attacks. We also test our method on
Fashion-MNIST, CIFAR100 and Stanford Dogs datasets on
targeted attacks to validate the generalizability of the pro-
posed method. We randomly select 10 classes out of a total
of 100 classes from the CIFAR100 and out of 120 classes
from the Stanford Dogs datasets, respectively. We report
the results in Table 3. We observe that the proposed method

achieves an ASR of 93.66% on the Fashion-MNIST dataset,
an ASR of 93.78% on the CIFAR100 dataset and an ASR
of 98.94% on the Stanford Dogs dataset. We suspect that
a low classification accurccy on original images from the
Stanford Dogs dataset may be responsible for surprisingly
high value of ASR.

To quantify the preservation of visual realism between
original and generated images, we use two measures: 1)
Structural Similarity Index Measure (SSIM) 2) Peak
Signal-to-Noise Ratio (PSNR). We use the MNIST dataset
for this purpose. We report SSIM = 0.85 for untargeted at-
tacks and SSIM = 0.78 for targeted attacks. We observe
PSNR = 21.7 for untargeted attacks and PSNR = 17.1 for
targeted attacks.
Baseline Results: Figure 2 depicts perturbation in the la-
tent space to modify the class label of the reconstructed
image changes without affecting its perceptual quality us-
ing the autoencoder. The objective is to move towards a
different class than the original class in the case of untar-
geted attacks. In the case of targeted attacks, we migrate
towards the centroid of the convex hull of the target class.
We offer a geometrical interpretation of how the baseline
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Table 3. Adversarial success rates on Fashion-MNIST, CIFAR100 and Stanford Dogs on only targeted attacks using the proposed method.
We report the classification accuracy on original and generated images, and ASR that denotes the attack success rate. Higher the value of
ASR, better is the performance.

Fashion-MNIST CIFAR100 StanfordDogs

Target
Class

Acc. on
Original
Images

Acc. on
Generated
Images

ASR
Target
Class

Acc. on
Original
Images

Acc. on
Generated
Images

ASR
Target
Class

Acc. on
Original
Images

Acc. on
Generated
Images

ASR

0 84.78% 2.87% 97.13% 6 53.33% 22.43% 77.57% 23 22.11% 1.32% 99.68%
1 89.45% 19.60% 80.40% 43 57.87% 0.56% 99.44% 0 12.43% 0.55% 99.45%
2 91.45% 1.37% 98.63% 12 52.10% 13.54% 86.46% 12 21.65% 1.03% 98.97%
3 89.43% 4.32% 95.68% 76 58.75% 1.56% 98.44% 46 20.76% 0.87% 99.13%
4 91.11% 3.93% 96.07% 34 55.33% 6.76% 93.24% 55 29.65% 1.49% 99.51%
5 88.45% 2.84% 97.16% 91 49.63% 3.56% 96.44% 81 19.55% 1.34% 98.66%
6 88.44% 2.59% 97.41% 11 55.91% 5.51% 94.49% 92 10.10% 0.98% 99.02%
7 92.86% 10.98% 89.02% 71 57.60% 2.93% 97.07% 60 20.98% 1.01% 98.99%
8 91.11% 3.23% 96.77% 23 49.78% 1.76% 98.24% 16 23.44% 0.87% 99.13%
9 90.24% 11.72% 88.28% 10 50.54% 3.61% 96.39% 39 22.25% 1.19% 99.81%
Avg. 89.83% 6.34% 93.66% Avg. 54.28% 6.22% 93.78% Avg. 20.29% 1.06% 98.94%

(a) Sample #1 (b) Sample #17

(c) Sample #5 (d) Sample #8

Figure 4. Activation maps corresponding to class predicted by D
(left) and target class (right) for four different test images belong-
ing to class ‘0’ in the CIFAR10 dataset.

routine works in Figure 3. We demonstrate how the addi-
tion of adversarial perturbation in the latent space pushes
the data point from the convex hull spanned by the training
data points belonging to the ‘original’ class towards the hull
of the ‘target’ class resulting in an adversarial attack. Given
a test sample x of class c, lying in the hull constructed by
features of training samples in that class, we add iterative
perturbations to f(x) towards the direction of the nearest
face in the hull until the classification of the reconstructed
image changes. In the case of targeted attack, we move to-
wards the centroid of the target class’s hull. On MNIST
(see Table 1), we observe classification accuracy of 98.88%
on original images, 9.76% on perturbed images and secure
an attack success rate of 32.06% when averaged across all
the classes for targeted attacks. We observe classification
accuracy of 50.60% on perturbed images and secure an at-
tack success rate of 49.40% when averaged across all the
classes for untargeted attacks. On CIFAR10 (see Table 2),
we observe classification accuracy of 93.66% on original
images, 10.20% on perturbed images and secure an attack
success rate of 15.64% when averaged across all the classes

for targeted attacks. We observe classification accuracy of
0.83% on perturbed images and secure an attack success
rate of 91.60% when averaged across all the classes for un-
targeted attacks. On CIFAR10, the baseline achieves a high
ASR due to poor quality of generated images. We computed
the structural similarity index measure (SSIM) between the
original and generated images (baseline) and observed it to
be very low ∼1%. Due to the low quality of generated im-
ages, the classifier misclassifies the generated data to any
arbitrary class leading to a spurious increase in the ASR. In
all the remaining cases, the proposed method outperforms
the baseline by a significant margin.

We further compare with two gradient-based attacks in
the pixel space, FGSM and PGD (both depend on noise
margin ϵ) [34] in Table 4 in terms of classification accuracy,
and observe that the proposed method is agnostic to noise ϵ
and outperforms FGSM but is comparable to PGD attacks
in the pixel space on adversarially generated images. Ad-
ditionally, we compare with ATGAN (attack without target
model using GAN) [18] and observe that ATGAN achieves
the maximum attack success rate (ASR) of 81.78% on the
MNIST dataset (proposed method achieves 90.83% ASR),
and an ASR of 87.99% on the CIFAR10 dataset (proposed
method achieves 87.51%). We also compare the L2 norm
of perturbation added by the proposed method. On MNIST,
we observe the average L2 norm of noise in pixel space to
be 0.079 and 2.559 in D′s latent space. On CIFAR 10, these
values are 0.016 and 0.519, respectively.

Table 4. Comparison of the proposed method with FGSM and
PGD in terms of classification accuracy on generated images
(lower is better).

MNIST CIFAR10
FGSM
ϵ=0.1/0.2

PGD
ϵ=0.1/0.2 Proposed

FGSM
ϵ=0.01/0.02

PGD
ϵ=0.01/0.02 Proposed

75.9/17.6 69.4/6.5 9.1 56.5/50.8 5.7/0.1 12.4
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Figure 5. Illustration of 2D embedding (extracted from the penultimate layer of the discriminator) of nine different test images originally
belonging to class ‘4’ (blue) and generated images produced by the proposed method for target class ‘9’ (orange) from the MNIST dataset.
We present the line fittings along the principal axis of each embedding cluster depicting the direction of perturbation. The angles computed
between the principal axes and the line joining the centroids indicate that adversarial samples follow well-defined trajectory from the
original class towards target class in a majority of the cases.

5.2. Analysis

We examine how the class activations change after addi-
tion of adversarial perturbations using the proposed method.
Although the original and perturbed images look visu-
ally alike, the class activation maps reveal complemen-
tary salient regions as shown in Figure 4 on four different
test images belonging to class label ‘0’ on the CIFAR10
dataset. It is evident that the activations are sufficiently
well-separated between the original images and the outputs
generated by the proposed method.

We further visualize the embedding (2-D projection us-
ing t-SNE) of original and generated images, extracted from
the penultimate layer of D. We select D over G as the em-
bedding extractor because the images reconstructed from
embedding produced by G′s encoder are already classi-
fied as the target class in a majority of cases. We present
our analysis on nine different test images from the MNIST
dataset originally belonging to class ‘4’ and adversarially
perturbed to target class ‘9’ using the proposed method. We
deliberately select these two classes as they are inherently
difficult to distinguish compared to the rest of the digits.

We observe in Figure 5 that the embedding of original and
adversarial images form compact and disjoint clusters, in-
dicating the proposed method successfully launched the at-
tack in the latent space. Moreover, the embedding of gener-
ated images are aligned in a specific orientation with respect
to the cluster of embedding from original images in a ma-
jority of cases, revealing a visually intuitive pattern in the
trajectory of adversarial perturbations.

6. Conclusion
In this work, we design a GAN-based framework that

induces adversarial perturbation in the latent space in con-
trast to existing methods that inject noise in the pixel space.
The proposed method does not need an attack margin gov-
erning gradient-based attacks. Further, perturbations in the
latent space can be geometrically interpreted using convex
hulls. The proposed method achieves a reasonable perfor-
mance in untargeted (up to 91% attack success rate) and tar-
geted attack (up to 93% attack success rate) scenarios while
maintaining sufficiently high degree of perceptual similarity
between the original and adversarially perturbed images.
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