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Figure 1. ATME is a GAN where, for each iteration at epoch t, the input images for the generator are corrupted with a noisy representation
of the discriminator’s decision map at epoch t− 1. The adversarial game enforces this noise to be removed, sending the proper signals for
equilibration by encouraging the discriminator to converge towards its maximum entropy state. Convergence is often slower in the cases
where the noise significantly affects the semantic content of the input (a) and is faster in the opposite cases (b).

Abstract

Generative adversarial networks (GANs) are success-
fully used for image synthesis but are known to face in-
stability during training. In contrast, probabilistic diffu-
sion models (DMs) are stable and generate high-quality im-
ages, at the cost of an expensive sampling procedure. In
this paper, we introduce a simple method to allow GANs to
stably converge to their theoretical optimum, while bring-
ing in the denoising machinery from DMs. These models
are combined into a simpler model (ATME) that only re-
quires a forward pass during inference, making predictions
cheaper and more accurate than DMs and popular GANs.
ATME breaks an information asymmetry existing in most
GAN models in which the discriminator has spatial knowl-
edge of where the generator is failing. To restore the infor-
mation symmetry, the generator is endowed with knowledge
of the entropic state of the discriminator, which is leveraged
to allow the adversarial game to converge towards equilib-

rium. We demonstrate the power of our method in several
image-to-image translation tasks, showing superior perfor-
mance than state-of-the-art methods at a lesser cost. Code
is available at https://github.com/DLR-MI/atme.

1. Introduction

Recent advances in deep learning have led to remarkable
progress in the field of image synthesis. Among the most
exciting applications, image-to-image translation (where an
image in domain A is transformed into a different domain B
while preserving the original semantic content) has played
a prominent role [30]. This task is often addressed using
GANs [12] or, more recently, with DMs [14]. Although
DMs have been shown to produce high-quality images with
unprecedented success, it does so after sequential sampling
over multiple time steps. On the other hand, GANs require
only a single forward pass for prediction, but suffer from
training instabilities that hinder performance.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this paper, we propose a novel model for image-
to-image translation that harnesses the high-quality image
generation power of DMs while eliminating their time-
sampling limitation using a GAN. Our approach recognizes
that the training instabilities in the latter are rooted in a phe-
nomenon similar to the violation of the second law of ther-
modynamics by Maxwell’s demon [26, 31], and suggests a
simple solution to avoid this.

In order to achieve stable training, we build a GAN
whose generator receives images corrupted by a noisy rep-
resentation of the discriminator’s decision map — as it tra-
verses the training epochs, but not across an independent
time-axis as in DMs. The generator then learns to denoise
its input to produce the output image, enforcing the dis-
criminator’s convergence to its maximum entropy state, as
shown in practice by the approach of the GAN (on aver-
age) to its theoretical optimum corresponding to the Nash
equilibrium [9].

By learning to diffusively attend to the discriminator
mean entropy, our model (ATME) helps to improve training
stability by breaking the information asymmetry between
the generator and discriminator, leading to better perfor-
mance in image-to-image translation tasks.

The main contributions of this work are therefore:

• A novel model that fuses the sampling strengths of
GANs with the core denoising ideas of DMs into a sin-
gle efficient model for image-to-image translation.

• A practical and simple measure of convergence of
GAN models, consistent with the original theoretical
description of their optimality.

Our approach builds on recent advancements in the field,
particularly from diffusion models. These have achieved
state-of-the-art performance in image generation [20]. Nev-
ertheless, they require thousands of model evaluations to
generate high-quality samples [5, 33, 34]. Bridging the gap
with GANs is therefore an important step towards enabling
high-quality and efficient image-to-image translation for a
range of practical applications.

2. Related work
GANs for image-to-image translation. GANs have been
for a long time the de facto method for generation of syn-
thetic images [30]. pix2pix [17] was the first unified frame-
work for supervised image-to-image translation using con-
ditional GANs. It serves as a foundational model on top of
which other solutions have been built, such as adding cy-
cle consistency to a couple of GANs, i.e. CycleGAN [42],
for unsupervised image-to-image translation. The latter has
further inspired other models such as UNIT [22], which
leverages a latent representation of the support of the joint
distribution of the unpaired images, and several other multi-
domain variants [6, 15, 23]. Of special importance for this

work is the use of attention mechanisms in GANs. In par-
ticular, FAL [16] improves image synthesis with a gener-
ator that repeatedly receives feedback—in several forward
passes—from the discriminator. SPA-GAN [8], computes
attention in the discriminator to help the generator focus on
the most discriminative regions between source and target
domains. Most recently, ASGIT [21] also enforces spa-
tial guidance by adding attention in the discriminator, sur-
passing previous methods for supervised and unsupervised
image-to-image translation.

Our approach builds on pix2pix, recognizing the infor-
mation advantages of its patch discriminator, which is coun-
terbalanced by adding attention to the generator. Since the
main focus in this work is the effect on convergence, we
study this in a supervised setting.
Convergence during GAN training. Several proposals
have been made to address the stability issues posed by
training GANs, which include vanishing or exploiting gra-
dients and mode collapse. These typically manifest as an
ill-behaved Jacobian of the gradient vector field of the asso-
ciated GAN objectives [28]. To address this, SNGAN [29]
proposes a weight normalization technique called spectral
normalization to stabilize the training of the discriminator.
On the other hand, WGAN [1] introduces the Wasserstein
distance between real and fake distributions as an objec-
tive to optimize, alleviating the mode collapse problem of
vanilla GANs [12], which optimize the Jensen-Shannon di-
vergence. WGAN-GP [13] improves training in practice by
adding a gradient penalty to enforce the required discrim-
inator 1-Lipschitz constraint. Alternatively, LSGAN [25]
optimizes the Pearson χ2 divergence between the real and
fake distributions. Viewing the convergence in GAN train-
ing as a matter of finding the right divergence to minimize
at each step is misleading though [10]; more beneficial con-
vergence characteristics are found in practice by adding in-
stance noise or gradient penalties [27].

Architectures also play a role in the stability of GAN
training. Energy-based GANs view the discriminator as
an energy function taking on lower values for regions near
the data manifold. By using the reconstruction error of an
autoencoder as an energy function, EBGANs [41] exhibit
more stable behavior than vanilla GANs. After approxi-
mating the Wasserstein distance using autoencoders, BE-
GAN [2] intends to balance the generator and discriminator
during training. RGANs [18] make the discriminator rela-
tivistic (i.e. discriminating whether real data is more realis-
tic than fake data) making training more stable.

Rather than improving network architectures, or chang-
ing the objectives functions for training, or regularizing gra-
dients/weights; our work focuses on vanilla GANs with
standard networks, stabilizing training by symmetrizing the
information exchange between the GAN adversaries.
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Diffusion probabilistic models. Diffusion models are gen-
erative models that iteratively transform a random noise
distribution into a target data distribution by learning a re-
verse denoising process [14, 35, 36]. They have arisen as
the current state of the art in the field of synthetic data gen-
eration [40], surpassing GANs [20] in the quality of im-
age synthesis — after denoising either directly in the image
space [19] or in a latent representation, such as latent dif-
fusion models (LDMs) [32]. In the context of high-quality
image generation leveraging intance noise injection, com-
bining ideas from diffusion models with GANs has gained
current research traction [38, 39]. However, the cost of the
sampling procedure in diffusion-based models still remains
an issue, which may be mitigated by modeling the denoising
distribution as a complex multimodal distribution instead of
a Gaussian [39], or by making the number of timesteps de-
pendent on the data and the generator [38].

Our approach for injecting instance noise is not based
on an independent and expensive diffusion process. It is
rather the iterative visit of the data distribution through the
training epochs that occurs diffusively, after corrupting the
generator inputs with a representation of the disorder state
of the discriminator outputs.

3. Background
3.1. Conditional GANs

The generator G in these models learn a mapping from
the image x and noise vector z to the image y. Its output is
discriminated by a model D, judging whether the image is
real or fake. The objective is

L̃GAN (G,D) = Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z)))],
(1)

where G is trained to minimize this objective and D is
trained to maximize it, known as the min-max game.

With the introduction of the patchGAN discriminator in
pix2pix [17], the discriminator outputs a tensor (default size
of 30×30), with each entry Di classifying a patch (receptive
field size of 70× 70) in the input image. With N being the
number of patches, the objective becomes

LGAN (G,D) =
1

N

N∑
i=1

L̃GAN (G,Di). (2)

The motivation of discriminating by patches is enforcing the
generator to produce correct high-frequency patterns, while
the low frequencies are captured by a L1 penalty

LL1(G) = Ex,y,z[∥G(x, z)− y∥1]. (3)

The final objective is then

argmin
G

max
D

LGAN (G,D) + λLL1(G), (4)

with λ typically chosen as λ = 100.

3.2. Diffusion models

Diffusion models are generative models designed to
learn a data distribution p(y0) by sequentially denosing a
normally-distributed variable yt ∼ αty0 + σtε, by using a
model yθ = yθ(yt, t) with the objective

LDM ∝ Eε,t∥y0 − yθ(yt, t)∥2. (5)

Here the sequences (αt)
T
t=1 and (σt)

T
t=1 are chosen

following a schedule that makes the signal-to-noise ra-
tio SNR(t) = α2

t /σ
2
t small enough at t = T (typically

SNR(T ) ∥y0∥2 ∼ 10−5) and ε ∼ N (0, 1). In practice, only
one schedule for the variable βt in ᾱt =

∏t
s=1(1 − βs) is

chosen, with SNR(t) = ᾱt/(1− ᾱt).

4. Attending the mean entropy (ATME)

Introducing a discrimination by patches allows the dis-
criminator to have a notion of where the generator is failing.
This makes the min-max game asymmetric in favor of the
discriminator, since the generator has no direct spatial clue
of where the discriminator is failing. Without further in-
tervention, this forbids a proper equilibration of the game,
resulting in a lack of convergence. Our task is to find the
piece of information about the discriminator that the gener-
ator should know in order to recover the symmetry.

The situation is similar to the information asymmetry in-
troduced in statistical physics by Maxwell’s demon. That
is, when two ideal gases at different temperatures are placed
in separate containers communicated by a switchable hole,
equilibration (corresponding to the maximum entropy state)
is achieved when the hole is opened — more fast-moving
particles moving from the hot container to the cold one than
backwards. But if an entity (demon) is introduced, which
opens the hole to allow the backward motion and close it to
block the forward, the cold container will be colder and the
hot container hotter, and equilibration never takes place.

In the GAN game, the information gain introduced by
the patch discriminator is analog to the information gain of
Maxwell’s demon due to its knowledge of the velocity of
the particles in both containers. We propose to incentivate
a proper equilibration by letting the generator enforce the
corresponding maximum entropy state — seeing the Nash
equilibrium [9] as a thermal equilibrium. The following fact
(proved in the appendix) hints us on how to achieve this:

Theorem 1. Let Yi be a binary random variables taking on
the value yi = 1 with probability Di. If they are statisti-
cal independent, the joint distribution P (Y1, · · · , YN ) has
maximum entropy if and only if Di = 1

2 for all i. In this
state, the objective in Eq. (2) reaches the value − log(4) for
an optimal discriminator and generator.
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Figure 2. Building blocks (c)-(e) for the denoising UNet (a) used in diffusion models [14]. Our model (b) adds new building blocks for its
generator, consisting of (g) for listening to the discriminator entropic state in order to corrupt the input image with noise, and a modified
head (f) to remove spurious high-frequency patterns. All building blocks are based on a basic block that convolves the input, normalizes
the resulting channels, optionally applies an affine transformation (using the Fourier features), and finally applies SiLU activation.

We propose to endow the generator with a notion of the
state of “disorder” of the discriminator decisions, this being
a surrogate to its entropy. Denoting by Dt the output tensor
of the discriminator at training epoch t (having entries Di;t),
we introduce the learnable mapping Wt = W (Dt−1) hav-
ing a range in the space of the input images of the generator.
This should have the following properties:

• As Dt tends to the maximum entropy state, W (Dt)
tends to a constant tensor, and viceversa. That is, as
Di;t → 1

2 for all patches i, Wr;t → w for all pixels r.
This is our statement of the preservation of the state of
disorder under the action of W .

• The differences W (Dt) −W (Dt−1) are uncorrelated
in time and approximately Gaussian.

The second property is a weaker one, only ensuring that
the input images for the generator, which we take as

xt = x0 + x0 W (Dt−1), (6)

initially follow a Brownian motion, diffusing through the
epochs during training. This allows us to borrow the in-
tuition from the diffusion models. That is, we corrupt the
input image x0 = x with “noise” arising from W (Dt−1)
and train the generator to get rid of this noise in order to

capture the correct mapping x → y (as shown in Fig. 1). As
a side effect, removing this noise sends the signal to the dis-
criminator to seek the maximum entropy state, by the main
property of W (Dt).

It is important to note that, although the epochs index the
time steps t in the experiments, the arrow of time set in the
generator has to follow the discriminator’s entropic state.
This is achieved by estimating the temporal position of the
noising events according to

t̃ = E [W (Dt−1)], (7)

which is similar to the ordering imposed in the diffusion
models by SNR(T ) being small and SNR(0) being large.

The loss of ATME at epoch t is then, similar to Eq. (4),

Lt
ATME(G,D) = Lt

GAN (G,D) + λLt
L1(G), (8)

with the superindex indicating that the variables (x, z) are
replaced by the combined variable xt in Eq. (6), and the
generator acquires the functional form (see Eq. (5)) that is
used in the diffussion models, G(xt) := yθ(xt, t̃ ).

At inference, Dt−1 is sampled element-wise from a nor-
mal distribution with mean 1

2 (the maximum-entropy value)
and small standard deviation (set to 0.001 in all experi-
ments).
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Figure 3. Smoothed −LGAN (G,D) from Eq. (2) at the end of each training epoch for all GAN models and datasets considered. According
to Eq. (4) and Theorem 1, this should converge — in the limit of a large enough model and infinite data [11] — to the Nash equilibrium,
where the value log(4) is reached. Being the lightest of all, our model ATME shows better converge properties (on average) except in the
largest dataset Night2day, where it lacks capacity to accommodate all the data variability. Also, its convergence is slower in the tasks B→A
where it is harder to remove the noise applied to the input images due to this noise significantly altering their semantic content.

4.1. Model architecture

The architecture of the patch discriminator in ATME fol-
lows the implementation of pix2pix [17]. The generator is
shown in Fig. 2(b). It has the UNet structure used in the
diffusion models (see Fig. 2(a)) with additional blocks that
we introduce to listen to the discriminator’s entropic state,
Fig. 2(g), and a modified head (Fig. 2(f)) to remove spurious
high-frequency patterns.

The UNet is mainly parameterized by an embedding di-
mension d and attention resolutions R = (r1, r2, · · · , rH),
with H being half the depth of the network (excluding the
middle block). The notation means that at the ith downsam-
pling layer, the number of feature maps go from d ri−1 to
d ri (with r0 = 1). The default network for all the experi-
ments has d = 64 with R = (1, 2, 4, 8), corresponding to
a network with four downsampling layers, a middle block,
and four upsampling layers, as shown in Fig. 2(b).

Dataset A B

Facades Photo Architectural labels
Maps Aerial photo Map

Cityscapes Photo Semantic labels
Night2day Night photo Day photo

Table 1. Datasets used in this work. The corresponding images are
paired, i.e. the first half of the width of the image is called A and
the second half is called B.

5. Experiments

5.1. Datasets

We use four of the standard datasets for supervised
image-to-image translation: Facades, Maps, Cityscapes,
and Night2day, whose details can be found in [17]. For
Night2day, we train only on 5000 images. Image-to-image
translation is performed in both directions A→B and B→A,
as defined in Table 1.
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Model # Params Facades Maps Cityscapes Night2day
[M] A→B B→A A→B B→A A→B B→A A→B B→A

pix2pix 57 31.3 ± 2.3 11.0 ± 0.7 25.7 ± 2.0 19.0 ± 1.8 16.0 ± 0.8 7.8 ± 1.0 19.2 ± 1.6 11.6 ± 1.1
CycleGAN 114 28.1 ± 2.1 18.2 ± 1.0 60.5 ± 1.3 10.8 ± 1.4 45.0 ± 1.0 16.9 ± 1.3 12.6 ± 2.0 9.0 ± 0.9

UNIT 116 47.9 ± 2.4 18.0 ± 0.9 30.1 ± 0.9 9.3 ± 1.1 16.6 ± 1.1 12.8 ± 1.0 15.6 ± 2.1 19.7 ± 1.5
ASGIT 57 22.6 ± 1.6 4.9 ± 0.8 9.2 ± 1.2 7.7 ± 1.2 16.0 ± 1.3 4.2 ± 0.5 17.5 ± 2.2 11.1 ± 1.3
LDM 270 30.9 ± 2.4 23.0 ± 1.0 7.9 ± 1.0 10.3 ± 1.3 5.6 ± 0.6 5.6 ± 0.5 19.6 ± 2.2 11.9 ± 1.3
ATME 39 18.4 ± 1.8 9.4 ± 0.7 2.8 ± 0.6 2.8 ± 0.7 6.5 ± 1.0 5.7 ± 0.8 19.7 ± 2.1 18.3 ± 1.4

Table 2. KID scores (scaled by 100) for the methods evaluated in the datasets shown (lower is better). The best result per column is shown
in bold. Our model ATME, shows superior performance, defined as the number of times it has the best KID per task.

Model Per-pixel acc. Per-class acc. Class IoU

pix2pix 0.63 0.18 0.13
CycleGAN 0.49 0.13 0.09

UNIT 0.48 0.12 0.09
ASGIT 0.54 0.17 0.11
LDM 0.57 0.17 0.11

ATME 0.64 0.19 0.14

Ground truth 0.80 0.26 0.21

Table 3. FCN scores (higher is better) after training on Cityscapes
B→A at a resolution of 256× 256. The best result per column is
shown in bold.

5.2. Baselines

Since our model is built using the pix2pix framework,
we train the latter for comparison. Additionally, we train
CycleGAN [42] (despite its introduction for unsupervised
problems) as a reference of a generator that is trained to
have an approximate inverse mapping. The hypothesis is
that adding cycle consistency may improve convergence
since this restricts the possible paths to equilibrium, with
respect to those allowed by the highly under-unconstrained
source-to-target mapping originally present in pix2pix. Fi-
nally, we train the supervised version of ASGIT [21] as a
reference of a state-of-the-art model using attention in the
discriminator, as well as their implementation of UNIT (at
a 256 × 256 resolution) using a 2-branch residual attention
network [37] in the discriminator.

On the other hand, due to the diffusion in a latent-space
representation of the target images being more efficient than
in the image space, we choose to train an LDM [32] condi-
tioned on the source images for comparison.

5.3. Training details

We train all GAN models from scratch using the default
configuration in pix2pix. That is, we use the Adam opti-
mizer with β1 = 0.5 and β2 = 0.999, with an initial learn-

ing rate of 0.0002 for both the generator (UNet-256) and
discriminator (patchGAN) of the vanilla GANs. The learn-
ing rate is kept constant in the first 100 epochs and linearly
decayed to zero for the following 100 epochs. A batch size
of 48 is used and instance normalization. Random jitter-
ing and horizontal flipping is applied during training to the
images with resolution 256 × 256. For ATME, the UNet-
256 is replaced by the UNet in Fig. 2(b) with an embedding
dimension of d = 64 and resolutions R = (1, 2, 4, 8).

On the other hand, we train the LDMs with the default
configuration in [32] for the input resolution 256 × 256.
That is, the denoising is done by the UNet in Fig. 2(a) after
downsampling the input (target) images by a factor of f = 4
(using the VQ-reg encoder with attention) running the dif-
fusion process, and concatenating the output of this process
with a spatially-scaled version of the conditioning (source)
image. The diffusion follows a linear schedule of βt, from
β1 = 0.0015 to βT = 0.0205 in T = 1000 timesteps.

5.4. Metrics

We follow recent practices [4, 21] and report the Ker-
nel Inception Distance (KID) between feature representa-
tions of real and fake images. The feature extraction [3]
is done by the Inception v3 model. Additionally, the FCN
score [17] is computed to further evaluate details of the per-
formance in the Cityscapes dataset. This measures the ac-
curacy of the FCN-8s semantic classifier [24] (pre-trained
on real images) after segmenting the generated images and
comparing the results against the labels these images were
synthesized from.

5.5. Evaluating convergence of GANs

We keep track of the loss in Eq. (2) at the end of each
epoch and notice that, by Theorem 1 and Eq. (4), the
convergence to equilibrium is manifested as the approach
of −LGAN (G,D) to log(4) during optimization. This is
shown in Fig. 3, where ATME shows stable convergence in
most cases. The cases where convergence seems slower is
presumably due to ATME not being large enough — since
GANs are designed to reach Nash equilibrium with a large
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pix2pix CycleGAN ASGIT UNIT LDM ATME TargetInput

Figure 4. Sample predictions of all models in the evaluated datasets.

enough model and infinite data [11] — or being harder for
the generator to remove the input noise in the required num-
ber of epochs. The latter is evident from the success in the
convergence for the column A→B in Fig. 3, which repre-
sents the corruption with noise of the photo (much more
semantic content than the labels) according to Table 1. The
exception is the Night2day dataset, for which the photo with
more semantic content is in the opposite side B. This slow-
ness in noise removal is further illustrated in Fig. 1 where,
at the same epoch t = 20, the noise in Cityscapes B→A
still has much more structure than the noise in Maps A→B.

As mentioned above, the model capacity may also play
a role, specially for the largest dataset. As seen in Table 2,

ATME is the lightest model so it may not be able to ac-
comodate all the variability of the data distribution in this
case. We plan to investigate this further in the future. How-
ever, preliminary results show that by enlarging ATME to
the configuration d = 64 and R = (1, 1, 2, 2, 4, 4, 4, 8),
which brings the model to a capacity similar to pix2pix (i.e.
with ∼57M parameters), the worst KID in Table 2, obtained
in the task Night2day A→B, is lowered to 16.3 ± 2.1, tak-
ing ATME from the last place to the top-3 after the big-
ger CycleGAN and UNIT models. These bigger models
were observed to suffer mode collapse for some tasks, as
evidenced in Fig. 4.
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Figure 5. Qualitative predictions of LDM and ATME for a subset of test images in the Cityscapes dataset.

5.6. Quality of image synthesis

Table 2 shows the KID scores for all models and datasets.
Despite being the lightest model, our model ATME shows
superior performance than the other methods, assessed as
the number of times that it has the lowest KID per task.

The quality of image generation is further evaluated
using the FCN scores in the Cityscapes dataset (see Ta-
ble 3), confirming the superiority of ATME compared to
the other methods. Sample predictions from all methods in
all datasets are shown in Fig. 4.

5.6.1 Distribution Modes: GANs vs Diffusion models

Both GANs and diffusion models are trained to learn the tar-
get distribution conditioned on the source images. Given an
input image x, the models are expected to output the most
probable image ŷ sharing semantic content with x. This
should have a strong similarity with the ground truth y. Al-
though the diffusion models are known to predict images
with very high quality, surprisingly for us, the predictions
are far from the right mode, as can be seen in Fig. 5, i.e.
LDM not being able to understand the semantics of the right
pose (e.g. car facing inwards being confused with the car
facing outwards), the right contrast, etc. This explains the
results of Table 3 and suggests that GAN models are more
appropriate for supervised image-to-image translation than
diffusion models.

6. Conclusion
We have shown that a significant improvement in the

convergence properties of GANs for image-to-image trans-
lation is achieved when making the generator and discrim-
inator exhange information symmetrically. We achieve this

by informing the generator about the entropic state of the
discriminator, as a guide for the equilibration of the adver-
sarial game. The quality of image synthesis is high com-
pared to state-of-the-art methods and our model ATME pre-
dicts the modes of the conditional target distribution better
than diffusion models.

Several research directions are left open, including ex-
ploring a generator model in ATME with higher capacity
and, most importantly, extending the method to unsuper-
vised image-to-image translation.

Appendix
To avoid clutter in notation, we omit the condition on x

in the following.

Theorem 1. Let Yi be binary random variables taking on
the value yi = 1 with probability Di. If they are statisti-
cal independent, the joint distribution P (Y1, · · · , YN ) has
maximum entropy if and only if Di = 1

2 for all i. In this
state, the objective in Eq. (2) reaches the value − log(4) for
an optimal discriminator and generator.

Proof. The joint entropy becomes the sum of the marginal
entropies −

∑
i

∑
yi
Di(yi) logDi(yi) if and only if the

random variables Y1, · · · , YN are statistically indepen-
dent [7], which is implicit in the patch discriminator being
Markovian [17]. Now, the entropy of a binary random vari-
able is known to reach a maximum when Di(yi) = 1

2 for
all i and yi. In this case, the objective in Eq. (2) collapses
to

LGAN =
1

N
N

(
log

(
1
2

)
+ log

(
1
2

))
= − log(4), (9)

corresponding to the value for an optimal discriminator and
generator [12].
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