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Figure 1. Given a style exemplar and a realistic scene, our method can synthesize the 3D artistic scene with the target geometry. Our
method not only learns textures, but also learns the geometry of the reference artworks into 3D scenes, such as the distortions in “The
Scream”.

Abstract
When stylizing 3D scenes, current methods need to ren-

der the full-resolution images from different views and use
the style loss, which is proposed for 2D style transfer and
needs to be calculated on the whole image, to optimize the
stylized radiance fields. It is quite inefficient when we need
to stylize a large-scale scene. This paper proposes a more
efficient method, DeSRF, to stylize the radiance fields, which
also transfers style information to the geometry according
to the input style. To achieve this goal, on the one hand,
we first introduce a deformable module, which can learn
the geometric style contained in the input style image and
transfer it to radiance fields. On the other hand, although
the style loss needs to be calculated for the entire image,
actually we do not need to process all the rays when up-
dating the stylized radiance fields. Motivated by this obser-
vation, we propose a new training strategy called Dilated
Sampling (DS) for efficient stylization propagation. Experi-
mental results show that our method works more efficiently

and produces more visually-reasonable stylized 3D scenes
with geometry style information compared to other existing
approaches.

1. Introduction
In the past few years, research progress on image styl-

ization has grown successfully and spawned many popu-
lar stylization applications. With the development of 3D
scene generation technology [31] and the applications such
as AR/VR, stylization for 3D scenes naturally drew atten-
tion from the research community. Style Transfer, first in-
troduced by [10], is the task of creating synthetic images
that simultaneously match the semantic content of the in-
put image and the aesthetic style of a given artwork. Be-
sides low-level style like color and texture, geometric trait
of the artistic images is also a critical feature that needs to
be transferred [18, 28]. For example, the bold distortion of
the human face had been seen as a major symbol of the fa-
mous artwork ”The Scream”.
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3D scenes, represented by point clouds, voxels, or neu-
ral radiance fields, have obvious 3D multi-view continuity.
When stylizing a 3D scene, it is not only necessary to con-
sider the visual quality of stylization but also essential to en-
sure multi-view consistency. Current works [5,33,47] com-
bine the optimization-based neural style transfer method in
the 2D domain with the neural radiance fields. They do
maintain multi-view consistency and successfully capture
the target style to some degree. However, the generated re-
sults look more like directly sticking texture to the surface
of objects in the scene rather than an artwork created with
the designated style. Similarly, just like the rendering pro-
cess in neural radiance fields, stylizing a 3D scene is very
time-consuming and requires a lot of GPU memory. This
is because that style loss needs to be calculated on the full-
resolution image, which means we need to render H ×W
rays and store all the intermediate results in one forward
and backward pass. This drawback makes the training pro-
cedure extremely slow when facing high-resolution multi-
view input.

Chiang et al. [5] address this issue by only rendering lo-
cal patch rays during training time for style transfer. How-
ever, this patch-based method would break global style con-
sistency and is prone to patch mismatching. ARF [47] also
adopts a similar idea of decomposing the whole image into
different batches, designs a different style loss matched on
the nearest neighbor features, and proposes a deferred back-
propagation mechanism, allowing the loss backward prop-
agating on the full-resolution image. Though this kind of
deferred back-propagation mechanism successfully avoids
OOM problem, it is still not efficient enough as it requires
redundant forward pass. SNeRF [33] splits the 3D scene
style transfer process into NeRF optimization step and styl-
ization optimization steps, and excute the two step in a
round-robin style. This modification makes the training
scheme more GPU-friendly, as it uses GPU memory ef-
ficiently, but the whole training process is still very time-
consuming. What’s more, existing methods [5, 33, 47] still
do not learn the geometric information well from input ex-
ample style into the 3D scene.

We propose an efficient 3D deformable stylization
method, called DeSRF. Our method not only learns the in-
nate geometric information of the input style image via a
deformation module but also introduces a more efficient op-
timization methodology for radiance field stylization from
the perspective of sparse grid updating and ray sampling,
named dilated sample.

Our method learns geometric changes in the style image
to make the stylized 3D scene deformed more reasonable
and closer to the artistic style. At the same time, from the
perspective of network efficiency, our dilated sampling can
significantly reduce the times of forward-backward prop-
agation to the radiance field, making the stylization more

efficient without losing overall structural information and
details.

The main contributions of our DeSRF are the followings:

• We propose a novel framework for 3D scene styliza-
tion that not only learns the style representation but
also the geometric changes that also be an important
component of style using a deformable network.

• We are the first to produce reasonable and deformed
style scenes for radiance fields.

• We introduce an efficient training strategy and dilated
ray sampling that alleviates both the memory and time
burden when stylizing the radiance fields.

• Our DeSRF can stylize high-resolution scenes like im-
ages at size 756 × 1008 and produce high-quality,
multi-view continuous results.

2. Related Work
2.1. Neural Radiance Field

Radiance Fields reconstruction is a classic task that syn-
thesizes a scene from a set of images capturing the scene
to the unobserved viewpoints. Unlike traditional explicit
methods using point-clouds [7, 37], voxel grids [12, 13, 44]
or octrees [40, 42], NeRF [31] uses a fully-connected MLP
and a continuous volumetric representation function, to
project the output colors and densities into an image. The
success of NeRF spurred growing attention and interest on
3D scenes research, such as NeRF editing [20, 23, 27, 46],
dynamic scene modeling [9, 24, 29, 36, 43] and fast render-
ing [3, 8, 26, 32, 39, 48]. It takes at least 12 hours in the
original NeRF to reconstruct a scene, but now, it only takes
several seconds [32], which makes us see a lot of potential
in the neural radiance field. In this paper, we aim to stylize
the radiance field with a deformation network and a special
strategy when stylizing.

2.2. Image Style Transfer

Style transfer aims at creating synthetic images with the
aesthetic style of the given style images and maintaining
their content. Starting from neural style transfer [10], [11],
it is usually a process of optimizing the output image ac-
cording to the Gram matrix loss and the content loss calcu-
lated on the VGG-Net [38] extracted features. Research on
image style transfer mainly starts from the improvement of
gram loss and proposing some different training processes.
The original optimization-based process [10, 11] is time-
consuming and typically requires 200-300 iterations to con-
verge. Subsequently, Perceptual Loss [17], [6, 16, 34], etc.
proposed a feed-forward transfer method, fixed the Loss
Network, and transfer the input images using a single for-
ward pass, which makes it faster when stylizing. Recent
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work on style loss improvements [21,25] replaces the global
gram matrix with the nearest neighbor feature matrix, for
better texture preservation. Some other methods generate
the image using patch matching, not the optimization for the
entire image, like [1, 41]. These image stylization methods
provide a good reference when we perform the stylizing on
3D scenes.

2.3. 3D Scene Style Transfer

3D scene style transfer aims to transfer the style into the
scene with the reference appearance and multi-view consis-
tency. Similar to 3D scene synthesis tasks, 3D scene styliza-
tion can be related to image style transfer tasks and different
3D scene representations, like the explicit expression as the
points cloud, SDF, mesh, etc., and the implicit expression
such as NeRF. In the following parts, we will take it as a
task that combined the 3D scene generation with the way of
image style transfer. There are several works dedicated to
it. [2,15,22] and [14,45] stylize the points cloud and mesh
respectively. Such results are not as good as the results of
the radiance field, since they are limited by the 3D scene
expression they used. However, it is necessary to do a good
trade-off between rendering the entire image, which is time-
consuming and high-GPU-memory demanded, and the high
quality of stylization results, which works better on the en-
tire image. Chiang et al. [5] render patches for style transfer,
which sacrifices the quality of stylized scenes. ARF [47]
accumulates the gradient, and SNeRF [33] repeats the ren-
dering process and the stylization process. The two closest
works to ours are ARF and SNeRF. In the following ex-
periments, we will mainly focus on these two methods for
comparison.

3. Method
Given radiance fields reconstructed with a set of real-

world photos and an arbitrary artistic image, we not only
want to transfer the reference style texture to the scene but
also transfer the geometric structure of the target style while
still keeping the semantic content of the scene recognizable.
Following the previous 3D stylizing works [4, 33, 47], we
start from a well-trained radiance field and then fine-tune
the radiance fields with carefully designed style loss. The
main contributions lie in our highly efficient optimization
pipeline equipped with dilated ray sampling and a geomet-
ric deformation module that captures the structural charac-
teristics of the style image. Fig. 2 shows an overview of our
proposed method. We will introduce our DeSRF in detail in
this section.

3.1. Overview and Formulation

The essential idea beneath neural radiance field(NeRF)
is to learn a continuous mapping from the 3D coordinates
x = (x, y, z) and view direction d = (θ, ϕ) to the volume

density σ and view-dependent color c = (r, g, b). which
can be formulated as FΘ : (x,d) 7→ (σ, c). According
to volume rendering technique The expected color Ĉ(r) of
camera ray r = o+ td for the pixel is then rendered as:

Ĉ(r) =

N−1∑
i=0

Ti(1− exp(−σiδi))ci,

where Ti = exp(−
i−1∑
j=0

σiδi)

(1)

Algorithm 1 Pseudocode of our DeSRF process in a
PyTorch-like style

# DeSRF: our network
# rays: total rays for training
# steps: training steps
DeSRF.initial() # network initialize
DeSRF.deform net initial() # deform net initialize
for i init in range(steps):

full rays = rays.sample()
full rays deformed = DeSRF.deform net(full rays)
rgb = DeSRF.volume render(full rays deformed)
loss = compute reconstruction loss(rgb, rgb gt)
optimizer.zero grad()
loss.backward()
optimizer.steps()

for i style in range(steps):
# dilated sampling from the training rays
full rays rays = rays.dilated sample()
full rays.requires grad = False

dilated rays = full rays.dilated sample()
dilated rays.requires grad = True

full rays[dilated position] = dilated rays
full rays deformed = DeSRF.deform net(full rays)
rgb = DeSRF.volume render(full rays deformed)
loss = compute stylization loss(rgb, rgb gt)
optimizer.zero grad()
dilated rays.backward()
optimizer.steps()

where δi denotes the distance between the adjacent
points. The radiance field stylizing can be seen as an opti-
mization process, where the mapping function FΘ is learned
given the rendered full-resolution image {xi}Ni=1 with dif-
ferent camera poses {θi}Ni=1 and the style image, to gener-
ate the stylized scene.

In order to transfer the geometric trait from the style
image to the target 3D scene, we introduce a deformation
network (Sec. 3.2) to learn a suitable deformation on the
points sampled along the camera rays following the net-
work design methodology from dynamic neural radiance
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Figure 2. Overview of our DeSRF. We introduce a Deform Net into the Radiance Field when stylizing 3D scenes. The deformation module
will learn the coordinate changes of the rays, which will further change the geometric shape of the scene. We also introduce a dilated ray
sample method that sampled a set of rays after the deformation module, set with gradients, for calculating the style loss, and then average
the gradient to the total image for updating the network. The second half of the image shows the sampling process of the dilated sample
during the stylization process. Where the blue point represents the selected rays, and the red point represents the process of applying
gradients to ray for updating the entire network.

field [35, 36] and NeRF editing tasks [46]. Hence, the pro-
posed deformation network can modify the global geome-
try manifold by adjusting each sample location during a ray
casting. The overview design of our DeSRF is illustrated in
Fig.2. We train the network by the constraints of rays’ dis-
tortion and the style-transfer-related loss performed on the
rendered images. And the geometric features of the input
style are learned by the overall training process.

However, the style loss computation demands the en-
tire image to be rendered, where requiring Npoints ×
H × W times network forward-propagating every itera-
tion in the volume rendering process, makes the training
pipeline unacceptable memory costing and exceptionally
time-consuming. We then investigate the sampling and gra-
dient updating process when training our DeSRF. To allevi-
ate this overhead, an intuitive idea is to minimize the num-
ber of total rays that must be rendered. In the realistic scene
reconstruction process, the network needs as many points
and rays as possible to calculate the pixel value according
to Eq. 1 to render the image with more details. When styl-
ization, we found that the stylized results frequently have
repetitive textures, with some lower details maintained but
more like the input style. Therefore, we make an assump-
tion: when updating the stylized radiance field, it actually
does not need so many rays and points. Starting from the
signal sampling principle and the design of fast NeRF, we
explored the influence of the numbers of rays and differ-
ent ray sampling methods on updating the stylized radiance
field, and propose our dilated sample (Sec. 3.3). The exper-
imental results verify the effectiveness of our assumption.

3.2. Deformation Radiance Fields

As illustrated in Fig. 2, we introduce a Deform Net-
work D(·) performing on the points sampled from the rays.

Figure 3. Different ray sample methods when training. a. indi-
cates uniform and equidistant sampling for every Nc rays in the
ray array. b. random select a patch with H×W

Nc
2 size from the rays

array. c. random selected H×W
Nc

2 from total rays.

Deform Network D(x) is estimated with a 3-layers MLP,
which refers to the design of NeRF [31]. Given a 3D point
x, D(x) learns geometry coordinate changes ∆x for each
point sampled on a ray and then outputs x + ∆x for the
latter appearance calculation. Due to the poor expression
of 3-dimension points, we project the points into a higher-
dimensional space first with a set of sine and cosine func-
tions γ : R3 → R3+6L of increasing frequencies, which is
actually same as used in NeRF [31]:

γ(p) =< (sin(2lπp), cos(2lπp)) >L
0 (2)

for x ∈ R3, we use L = 5 for the best performance.
The 3D points will be mapped into a 256-dimensional space
and then encoded back to 3D to get the ∆x. The distorted
coordinates (x + ∆x) are next sent to the radiance field,
and the color c and density σ are sampled from the radiance
feature. The rendered image xi is then used for stylization
optimization.
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3.3. Dilated Sampling

When optimizing the stylized radiance field, due to the
limitation of style loss that needs to be calculated on the
entire image, a straightforward idea is to render the whole
image completely. However, as discussed before, both ARF
[47] and SNeRF [33]’s training strategies require multiple
forward and backward updates to all rays at once. Note that
the ray sample here is not the ray selection process when
the radiance field is forward propagating. It is actually the
process of gradient backward propagation, in which rays are
selected to be calculated for the gradient and loss.

In fact, when realistic-scenes 3D rendering, it uses the
image xi rendered in some view θ to calculate the loss and
gradient for updating the entire radiance field, which can be
regarded as using a part of the total rays (for N×H×W ) to
update the entire radiance field. The more rays for the better
details. While for stylizing, not so many rays are needed
due to the abstract, stylized, and local repeated texture. Also
comes from the sampling process in traditional convolution,
a ”downsampled” rays collection can represent the whole
image. We propose the strategy to select and update only
part of the rays, whose gradient will be activated while the
others will be masked, and the gradient will be averaged
into the entire network to achieve the total rays updating.
Note that although only part of the rays is updated, which
may bring concerns with requiring more training steps, the
experiments Sec. 4 show that no extra is needed.

We consider three different samplings as shown in
Fig. 3–random sample, patch sample, and dilated sample
when updating the network. Sec. 4.3.2 will show the results
of different sampling strategies when backward propagation
of the stylizing process. We found that the proposed dilated
sample works better for the quality of rendered stylized im-
ages. Fig.3 illustrates how dilated sample works. For the
size of H ×W rays, dilated sampling random and uniform
selects one for every Nc ray equidistantly along the side of
the entire rays array. Here will get H×W

Nc
2 rays with gradi-

ent, the remaining gradients will be masked out, and then
the selected rays will be used to update the total network,
which can be regarded as an average process. Nc here is a
hyperparameter. The more detailed training process can be
found in Sec. 3.4.

3.4. Train Strategy and Loss Functions

As is in previous work [33,47], our training process also
starts with realistic scene reconstruction. Here we use the
pretrained TensoRF [3] model as a representative. What
the difference is that we also need to initialize the deform
module combined with the radiance field, where the deform
module is constrained by the reconstruction of realistic im-
ages {Xi}Ni=1:

Linit = ||X,DeSRF(x)||2 + Ltv (3)

where we randomly selected rays from all-views images
for training, and DeSRF(x) denotes the rendered result.

In the next stylizing step, we first dilated sampled a set
of rays for loss calculation. Note that the others will be set
with no gradient. Then the selected gradient will be plugged
back into the full-size image and averaged with the total
rays array to update the entire image. When the dilated rays
are back-propagated if the dilated factor Nc is small, which
means it will propagate a some-kind-of large of rays back-
ward, we will propagate in batches, like what the original
NeRF [31] do when processing all of the rays.

We treat the deform net and the radiance field network
as a total, just using the stylize loss Lstyle+Lcontent to en-
courage the deformation, a deform regularization term Ldx

to prevent the geometry from over changing, and a tv loss to
encourage the smooth deformation. The total loss functions
are the following:

Ltotal = λstyLsty + λconLcon + λdxLdx + λtvLtv (4)

where the style loss Lstyle used from what is used in
NNST [21] and ARF [47]. The content loss Lcontent comes
from the original neural style transfer [10]. The deform net
regularization term performs on the coordinate changes ∆x:

Ldx =
Nc

2

H ×W
||∆x|| (5)

And the total variation loss Ltv is used to smooth the
rendered {x′

i}
N
i=1 in 2D domain, which is computed by:

Ltv =
1

H ×W
||∇u(x

′
i) +∇v(x

′
i)|| (6)

where u and v denote horizontal and vertical directions,
H,W is the size of the entire rays same as the image xi.
The total train process is described in Alg. 1.

4. Experiments
This section provides a thorough evaluation of our

DeSRF. We will introduce the details of our experiments
(Sec. 4.1), show our experimental results (see Fig. 4),
also the results compared with the current state-of-the-
art method in 3D scene stylization, like ARF [47] and
SNeRF [33], and demonstrate the effectiveness of our de-
form net and the dilated sample.

4.1. Implementation Details

As is described in Sec. 3, our DeSRF can be represented
by any kind of Radiance Field. We adopt TensoRF [3] as
the Radiance Field. Limited by the application scenarios of
TensoRF, we mainly use the LLFF dataset [30] to represent
our DeSRF. Regarding the training process Alg. 1 of our
DeSRF, we first initialize the deform net with steps=2000,
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Figure 4. Results of our DeSRF in different scenes with different styles.

and the training process iterations is set to 40. The con-
tent features are extracted from the layer conv 3 of the pre-
trained VGG16 model as is suggested in ARF. We also

use the Lstyle with the same setting in NNST [21] and
ARF [47], also with the color preserve matrix in ARF [47].
When performing dilated sample for updating the styliza-
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Figure 5. Our DeSRF results compares with ARF [47].

Figure 6. Comparison results with some state-of-the-art methods SNeRF [33], and ARF [47]. Since SNeRF did not release their code, the
results of SNeRF are cropped from the paper.

Figure 7. our full DeSRF and the DeSRF w/o Deform Net.

tion network, we found it works better with the dilated fac-
tor Nc = 2 and the blur kernel size for 3. Adam opti-
mizer [19] is adopted with (β1, β2) = (0.9, 0.99) with the
learning rate 0.02 for appearance features learning in Ten-

soRF and 0.001 for the deform net. (λsty, λcon, λdx, λtv) is
set to (5, 0.005, 10, 0.5). We train all of our models on a
single NVIDIA A100 GPU.

4.2. Comparison

In Fig. 6 and Fig. 5, we compare our results with current
state-of-the-art 3D scene stylization methods. For SNeRF,
Fig. 6, the synthesis texture is not exquisite enough and also
does not transfer the complex textures like the twisted sky
in Van Gogh’s The Starry Night. It is also unable to learn
the sharp edge features, such as the leaves. For ARF, Fig. 6,
Fig. 5, although the results look more transparent, it learns
more of the average texture of the whole image, which is
not what we expect. In contrast, our deformable network
learns not only finer details but also the overall geometric
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Figure 8. Results of different ray sample methods in Sec. 3.3.
From top to bottom are the results of random sampling, patch sam-
pling, and out dilated sampling results.

style. Furthermore, the results show that the stylization re-
sults of current methods are all overly realistic, without ab-
stract stylistic features, which are instead the strength of our
deformable stylization method. For more results, please see
our supplementary materials.

4.3. Ablation Studies

This section will demonstrate the effectiveness of our de-
form net and the dilated sample.

4.3.1 Deform Net

To verify the effectiveness of our proposed Deform Net, we
evaluate the performance of our method by removing the
deformable module. The results are shown in Fig. 7. The
model w/o Deform Net clearly misses geometric changes,
since there is no distortion of the ray coordinates, and the
w/o model does not produce the desired results.

4.3.2 Different Sampling Method

To verify the effectiveness of our dilated sample, we com-
pare the results (Fig. 8)of different sampling methods as de-
scribed in Sec. 3.3. The sampling process is illustrated in
Fig. 3.

Figure 9. The limitation of our DeSRF. Our stylized results are
blurry when meeting some corner cases and repeating textures.

4.4. Discussion

Our DeSRF can learn the geometric changes from the re-
ferred style image, and synthesize more reasonable stylized
scenes with better aesthetics. However, in our experiments,
we found that the Deform Net is not always sensitive to
all styles, and therefore the deformation effect is somewhat
weak for those styles with weak geometry. Furthermore, to
alleviate the GPU-memory overhead when stylizing the 3D
radiance field, we proposed the dilated sample to update the
entire network with a small number of rays. In fact, like
dilated convolution, our results sometimes will produce a
slightly blurry result in some repeating textures, which is a
problem to be solved in further work.

5. Conclusion

This paper proposed DeSRF, a deformable stylized radi-
ance field, to achieve high-fidelity and efficient style trans-
fer from a given 2D style image to arbitrary 3D scenes. The
major technical contributions of the proposed method are
twofold. First, we introduced a deformable module to the
radiance field network to capture and learn the implicit ge-
ometry style information from the style image. Second, we
designed a new training strategy named Dilated Sampling
to propagate the style loss to the radiance field more effi-
ciently compared to existing methods. Both qualitative and
quantitative experiments were conducted to demonstrate the
effectiveness and efficiency of the proposed method, which
is capable of transferring both geometry and texture styles
from input 2D style images to 3D scenes.
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