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The supplementary material is organized as follows:
Sec. A reports additional experiments and ablation analysis
of our proposed method. Sec. B provides additional imple-
mentation details. Sec. C presents the segmentations maps
and then we conclude with a discussion about the broader
impact of our work.

A. Additional experiments

Impact of number of shots on FID. We also explore the
connection between the number of shots (#TS) and the photo-
realism of the generated target images using the Fréchet In-
ception Distance (FID) [3] score. The FID score measures
how close are the generated images to the real target data
distribution. Lower the FID score, closer are the two distri-
butions. We plot the FID scores in Fig. A1, and we observe
that Stable Diffusion (SD) has very high FID score, showing
that the generated images have very little resemblance to
the target domain Cityscapes. Low similarity with the target
domain is also reflected in poorer performance, as shown in
Fig. 4 of the main paper.

When compared with SD, the generations from DATUM
are much closer to the real target domain, which is evident
from the lower FID scores. We notice that when we fine-tune
SD with fewer real target images, the FID score shows an
upward trend as the number of training iterations increases.
Whereas, as the #TS increases from 1 to 5, longer training
leads to decreased FID score, up until the 800th interations.
Finally, for the 10-shot setting, the FID score plateaus for a
while and then starts going down after the 600th interations.
All these observations are as per expectations, since having
more real images necessitates longer training to fit to that
data distribution.
Impact of prompting on class-wise IoU. Next we examine
the impact of using things and stuff classes on the class-
wise IoU scores. We report the results computed using
DAFormer [5] on the GTA → Cityscapes benchmark in
Tab. A1. We consider the DAFormer trained on a single real
target image as the baseline, and the gain/loss attained by
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Figure A1. Impact of number of shots (#TS) on the FID score
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Figure A2. Real and synthetic images from the things class train

all the other methods are color coded. Warmer colors indi-
cate gain, while cooler ones signify drops in performance.
We compare the following methods: SD (using things class
names during inference), DATUM (without things and stuff
class names at inference), DATUM (using things and stuff
class names at inference), DATUM (using things class names
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Real target 41.2 36.4 68.0 35.3 84.0 33.8 36.9 34.6 30.7 25.7 82.7 14.7 83.8 34.1 19.8 31.8 86.0 30.9 83.5
SD (things) 45.7 27.8 68.0 36.4 88.5 48.8 54.1 20.4 44.3 41.8 78.4 24.0 85.2 44.9 34.0 40.5 88.2 39.1 86.4

DATUM 43.8 47.4 67.8 36.2 87.7 47.0 46.2 42.2 37.4 31.1 86.6 28.3 85.0 38.7 22.2 44.7 87.6 40.3 85.1
DATUM

(things & stuff)
48.3 44.0 68.6 38.4 90.2 55.0 63.8 23.3 46.7 55.0 85.9 29.7 87.1 38.2 40.0 44.4 88.7 42.5 86.9

DATUM (things)
(w/ prior-loss)

48.1 46.4 67.9 37.6 87.2 52.3 50.4 27.4 48.3 48.8 86.4 22.0 86.1 42.5 25.6 45.9 88.4 41.9 87.6

DATUM (things)
(w/o prior loss)

47.6 42.8 69.3 36.2 90.0 53.7 59.8 26.5 50.8 55.9 87.4 34.0 87.2 43.3 38.5 44.9 88.6 43.6 87.0

Table A1. Class-wise mIoU comparison for GTA → Cityscapes using MiT-B5 encoder. The left part of the table indicates th things classes,
whereas the right part of the table indicates stuff classes. The color visualizes the IoU difference with respect to the first row, which is trained
with the single target image.

at inference, and w/ prior-preservation loss [7]), and DA-
TUM (using things class names at inference, and w/o prior-
preservation loss), which is our final method.

We observe from Tab. A1 that using synthetic data, either
with SD or our method brings improvements in a major-
ity of the classes. Big improvements are noteworthy in the
things classes (shown in the left half of Tab. A1). Interest-
ingly, for some things classes, such as person, rider and car,
the improvement with synthetic data is meagre. It could be
potentially due to the fact that the source domain already
encodes a strong prior about these objects, and additional
data do not provide useful information.

Careful scrutiny of the table also reveals that there is
a drop in the performance of the things class train. In an
attempt to investigate this drop, we visualize in Fig. A2
the images annotated as train in GTA and Cityscapes, as
well as synthetic images of train generated by DATUM. We
observe an ambiguity in annotations for the train class in
GTA and Cityscapes. While in GTA, the train image really
corresponds to the vehicle of type “train”, in Cityscapes one
can reasonably recognize that the vehicle is actually a tram.
Since, we utilize the class names of the source domain, our
DATUM generates images with an object, i.e., train, which
is irrelevant to the target domain, despite both the vehicles
exhibiting similar appearance.

B. Other Implementation details :

Data Augmentation. To enhance the robustness of the
learned features and allow fair comparison, we adopt the
identical set of data augmentation techniques as those em-
ployed in DAFormer [5]. The augmentation process entails
applying a Random Crop of size 512 × 512 to both source
and target images, followed by Random Flip with a 0.5 prob-
ability. Next, we employ the photometric distortion utilized
in DACS [8], which comprises of a Gaussian Blur, Color
Jittering, and ClassMix [6].
Personalization and generation. In the personalization
stage, we employ the default DDPM [4] noise scheduler

as in Dreambooth [7]. In the data generation stage, we also
use the default parameters of Dreambooth [7]: 50 inference
steps and a guidance scale of 7.5.

C. Qualitative visualizations
Finally, we show the qualitative results of the segmen-

tation maps generated by our method and the comparison
with other state-of-the-art methods in Fig. A3. Despite being
trained on synthetic data, our DATUM is still able to cap-
ture several fine-grained details, especially the objects that
appear far away from the camera. Note that, we do not make
efforts to cherry pick the segmentation maps, and simply
report our results for the same RGB input maps, as reported
in CACDA [2].

Broader Impact
Although SD is adept at generating high-fidelity images

of geometrically coherent scenes, sometimes the generations
are gibberish and defy commonsense reasoning. As shown in
Fig.3(d) of the main paper, the fine-tuned SD generates a very
convincing-looking yet unintelligible “traffic sign”, which
has no meaning in a driving manual. Thus, to avoid model
poisoning [1], the practitioners should exercise utmost cau-
tion when deploying segmentation models, for autonomous
driving, that are trained using such synthetic datasets.
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Figure A3. Qualitative results of segmentation maps. We compare the segmentation maps from different UDA methods on the GTA →
Cityscapes benchmark.
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