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B Details on quantitative evaluation of class-specific
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D Limitations.

A Qualitative results

A.1 Visual examples of joint class editing

In Fig. A we show examples of images in which two
classes are edited jointly with Ctrl-SIS. For example, Fig.
A shows how bed and curtain, as well as window and wall
can be edited separately or jointly. This property is en-
abled by the use of 3D latent codes, which are spatially
aware and can vary image regions independently.

A.2 Visual examples of discovered direc-
tions

In this section we show latent directions learnt by Ctrl-SIS
for the semantic image synthesis model OASIS. We pick
OASIS, as it provides the best image quality and diversity
(see Table 3 in the main paper). Results on ADE20K and
COCO-Stuff are shown in Fig. B We observe that the
directions are consistent across different label maps and
change only the image area corresponding to the class of
interest. The directions carry different semantics, such as
the color of the bus, clouds in the sky, different kinds of
house facades, various bed covers, different types of snow,
and the lighting of the lamp.

A.3 Qualitative comparison to related work
Here, we visually compare the diversity between Ctrl-SIS,
SeFa and GANSpace. These comparisons are presented
in Fig. C. For all methods, the directions are applied to
the 3D latent code within the image area corresponding
to the selected class. We observe stronger diversity for
Ctrl-SIS, which discovers meaningful class-specific direc-
tions. For example, in Fig. C Ctrl-SIS provides unique
views from a window, tree leafage and street surfaces.
The stronger diversity is explained by the fact that in con-
trast to SeFa and GANSpace, Ctrl-SIS is capable of lever-
aging the label maps that are already available for the task
of semantic image synthesis during optimization to learn
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class-specific directions.

B Quantitative evaluation of class-
specific GAN controls

In this section we provide details on our proposed metrics
for evaluating GAN controls discovery methods and re-
late them to prior work [6]. A method for discovering se-
mantically meaningful class-specific directions in the la-
tent space of SIS GANs should exhibit the following three
properties: First, the found directions should be as unique
and different as possible. We assess this property via the
mean control diversity - mCD. Second, a latent direction
should invoke the same semantic edit independent of the
initial latent code, which we assess via the mean control
consistency - mCC. Third, class-specific edits should not
affect image areas outside of the target class area. We ver-
ify this requirement via the mean outside class diversity -
mOD. The scores are based on computing the LPIPS dis-
tance between pairs of images with different edits and the
same initial latent code (mCD and mOD), or the same ed-
its but different initial latent codes (mCC). For the global
mCD and mCC scores the edits are applied to all classes
simultaneously with latent directions that are randomly
picked from the set of discovered class-specific directions.
On the other hand, the local scores mCDl, mCCl and

mOD rely on pairwise distances between images where
only one class is edited at a time. To compute the pairwise
distance between images where only one class is edited,
we use the masked LPIPS distance. In the following, we
explain the masked LPIPS distance and provide the for-
mulations of the local scores mCDl, mCCl and mOD, as
well as the global scores mCD and mCC.

The masked LPIPS distance. The default LPIPS dis-
tance between two images is based on extracting deep fea-
tures from both images using a VGG network pretrained
on ImageNet classification [4]. The features of all layers
are normalized and re-scaled along the channel dimen-
sion. The final LPIPS distance is the L2 distance between
these features. To compute the masked LPIPS distance,
we multiply the deep features with a binary mask be-
fore computing the L2 distance. We distinguish between
LPIPSMc and LPIPS1−Mc . The former uses the binary
mask Mc, which is 1 where the label map contains class
c and 0 everywhere else. The latter applies the inverted
mask 1−Mc.

Mean control diversity. The mean control diversity is
computed for global edits (mCD) and local edits (mCDl).
The mCDl is computed via:

mCDl =
1

C

C∑
c=1

Ec

[
PCD

]
, (1)

2



Label map

Generated image

Editing of class window

Editing of class wall

Editing of class window and wall jointly

Figure A: Joint editing of semantic classes using latent directions learnt by Ctrl-SIS.

where C is the total number of classes and PCD denotes
the control diversity measured for a label map contain-
ing class c. To compute PCD, a fixed initial latent code
is sampled for each label map containing class c. Given
a label map and its initial latent code, one locally edited
image is created for each of the K latent directions spe-
cific to class c. Next, the average locally masked LPIPS
distance is computed between all pairs of the K edited
images. This score is averaged over Z initial latent codes,
which can be formulated as follows:

PCD =
1

ZK

Z∑
z

K∑
k1,2=1
k1 ̸=k2

LPIPSMc

z,k1,k2
. (2)

Here, LPIPSMc

z,k1,k2
denotes the LPIPS distance masked

with Mc between two images created with the same initial
latent code z, where class c is edited with latent direction
k1 and k2, respectively.

The mCD for global edits is computed as the average
distance between globally edited images on the same la-
bel map. For each label map, we create pairs of images
with different global edits, changing all classes at once.
The class-specific latent directions are randomly chosen
for each class. We compute the mean of the default LPIPS
distance over all pairs and different initial latent codes.

The score is averaged over all label maps in the test set.
Higher mCD and mCDl scores indicate better diversity.

Mean outside class diversity. The spatial disentangle-
ment metric mOD is computed for local edits via

mOD =
1

C

C∑
c=1

Ec

[
POD

]
, (3)

where POD is the outside class diversity measured for a
label map containing class c. In contrast to mCDl, the
masked LPIPS is computed for the area outside the target
class:

POD =
1

ZK

Z∑
z

K∑
k1,2=1
k1 ̸=k2

LPIPS1−Mc

z,k1,k2
. (4)

LPIPS1−Mc

z,k1,k2
denotes the LPIPS distance masked with

1 − Mc between two images created with the same ini-
tial latent code z, where class c is edited locally with the
latent direction k1 and k2, respectively. A lower mOD
indicates better spatial disentanglement.

Mean control consistency. Lastly, to measure the con-
sistency of an edit under different initial latent codes, we
compute the mean control consistency for global edits
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Method ADE20K COCO-Stuff
mCDl ↑ mCCl ↓ mOD ↓ FID↓ mIoU↑ mCDl ↑ mCCl ↓ mOD ↓ FID↓ mIoU↑

Baseline - - - 28.6 52.2 - - - 17.1 42.4
Random 0.04 0.17 0.01 30.6 50.1 0.02 0.07 0.00 17.2 44.0
GANSpace 0.03 0.15 0.01 28.3 53.9 0.02 0.06 0.00 16.7 43.6
SeFa 0.05 0.15 0.01 28.3 53.7 0.02 0.06 0.00 16.9 44.2
Ctrl-SIS 0.12 0.16 0.01 28.8 51.6 0.04 0.07 0.01 17.5 44.4

Table A: Evaluation of OASIS GAN controls on ADE20K and COCO-Stuff on local class-specific edits.

(mCC) and local edits (mCCl). The mCCl is

mCCl =
1

C

C∑
c=1

Ec

[
PCC

]
, (5)

where PCC is the control consistency of a label map con-
taining class c. We compute the pairwise distances be-
tween images with different initial latent codes and the
same local edit:

PCC =
1

ZK

K∑
k

Z∑
z1,2=1
z1 ̸=z2

LPIPSMc

k,z1,z2
. (6)

Here, LPIPSMc

k,z1,z2
denotes the LPIPS distance masked

with Mc between two images created with different initial
latent codes z1 and z2, where class c is edited locally with
latent direction k for both images.

The global mCC score is computed as the average dis-
tance between images with the same global edit but dif-
ferent initial latent codes. For each label map, we create
pairs of images with different initial latent codes, but a
shared global edit. We compute the mean of the default
LPIPS distance over all pairs and across different shared
global edits. The score is averaged over all label maps in
the test set. Ideally, the mCC and mCCl are low, indicat-
ing high consistency under different initial latent codes.

Relation to prior diversity and disentanglement
scores. The mCDl and mCCl are related to the mean
class diversity (mCSD) and mean other class (mOCD)
proposed by [6]. These two metrics evaluate diversity
and spatial disentanglement for SIS models that allow
class-specific manipulations [6, 2]. Note that mCSD and
mOCD measure the class-specific diversity and disentan-
glement of a SIS model, while our metrics evaluate the

LPIPS MS-SSIM
mCD ↑ mCC ↓ mOD ↓ mCD ↓ mCC ↑ mOD ↑

Random 0.11 0.30 0.01 0.98 0.76 1.0
GANSpace 0.09 0.29 0.01 0.94 0.78 1.0
SeFa 0.12 0.28 0.01 0.92 0.78 1.0
Ctrl-SIS 0.26 0.28 0.01 0.74 0.77 1.0

Table B: Evaluation of GAN controls with LPIPS and
MS-SSIM using OASIS on ADE20K.

class-specific diversity and disentanglement of a set of
discovered latent directions, allowing us to compare dif-
ferent control discovery methods on the same SIS model.
The mCSD measures intra-class diversity as a property of
the SIS model itself. In contrast, mCDl measures the di-
versity of a set of latent directions, which is a property of
the GAN control discovery method. The same relation-
ship holds between mOCD and mOD. We next present
an extended evaluation using our proposed local metrics
mCDl, mCCl and mOD.

C Extended quantitative evaluation

C.1 Evaluation on local class-specific edits
In this section we present an additional comparison be-
tween Ctrl-SIS and the related work using OASIS on the
ADE20K and COCO-Stuff datasets. For evaluation we
employ image quality metrics (FID and mIoU) as well
as our proposed diversity (mCD), consistency (mCC) and
disentanglement (mOD) scores. In contrast to Table 1 in
the main paper, Table A presents this comparison for local
edits. While the related work SeFa and GANSpace are de-
signed for global edits, local edits are achieved by adding
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the learnt global directions to the 3D latent code only in a
class-specific image area, as demonstrated in Fig. C. As
Table A shows, Ctrl-SIS achieves at least twice the diver-
sity score with respect to SeFa and GANSpace, while the
consistency and disentanglement scores stay similar be-
tween all methods. The red numbers mark scores which
are equal or worse than the ones originating from random
directions. For SeFa and GANSpace, the FID and mIoU
are slightly improved compared to unedited images (see
Baseline in Table A), due to generating more ”typical”
images (see Sec. 4.3 in the main paper). In summary, the
results from Table A are in alignment with Table 1 (main
paper), suggesting that the editing properties of Ctrl-SIS
and related works are similar between local and global
edits.

C.2 Evaluation with alternative distance
measure

Our proposed scores are based on computing the mean
LPIPS distance between pairs of images. Here, we also
present our metrics computed with the multi-scale struc-
tural similarity distance (MS-SSIM) [3] as an alternative
to LPIPS. The main differences between LPIPS and MS-
SSIM are as follows. LPIPS computes the L2 distance
between image features extracted with a network pre-
trained on ImageNet classification. MS-SSIM is not neu-
ral network-based and instead computes the similarity be-
tween images based on the mean, variance and covariance
of two images. A high similarity between two images re-
sults in high MS-SSIM but low LPIPS, since LPIPS mea-
sures dissimilarity. This means MS-SSIM-based mCD,
mCC and mOD scores rise when the LPIPS-based scores
fall, and vice versa. In Table B, we compare GAN con-
trol discovery methods with our metrics based on LPIPS
and MS-SSIM. We note the same trends between the MS-
SSIM-based metrics and the LPIPS-based metrics. In par-
ticular, Ctrl-SIS also sees a strong increase in diversity un-
der the MS-SSSIM-based mCD metric. The results show
that the evaluation metrics are not strictly dependent on
the distance measure, and that other ways of estimating
image (dis-) similarity may be used.

Model Method Global edits Local edits
mCD ↑ FID ↓ mIoU ↑mCDl ↑ FID ↓ mIoU ↑

OASIS

Random 0.11 31.3 49.4 0.04 30.6 50.1
GANSpace 0.09 28.1 53.3 0.03 28.3 53.9
SeFa 0.12 28.1 53.2 0.05 28.3 53.7
Ctrl-SIS 0.26 30.9 48.9 0.12 28.8 51.6

SC-GAN

Random 0.08 34.3 38.1 0.05 34.2 38.6
GANSpace 0.11 34.2 38.3 0.06 34.3 38.8
SeFa 0.10 34.4 37.8 0.06 34.4 38.9
Ctrl-SIS 0.25 36.4 34.7 0.18 34.2 38.4

SPADE

Random 0.08 34.6 39.4 0.05 34.6 39.6
GANSpace 0.12 35.1 39.3 0.08 34.6 39.7
SeFa 0.09 34.7 39.4 0.06 34.8 39.7
Ctrl-SIS 0.14 35.4 38.6 0.09 34.6 39.4

Table C: Comparison of GAN control methods across SIS
models on ADE20K.

C.3 Comparison of GAN control methods
across SIS models

In this section, we compare Ctrl-SIS on different SIS
models. Table C shows that Ctrl-SIS exhibits stronger
diversity for local and global edits across all tested SIS
models. The diversity of GANSpace and SeFa is compa-
rable to the diversity measured for random directions (see
red numbers in Table C). In other words, the directions
that SeFa and GANSpace find differ just as much from
each other, as a set of randomly chosen directions.

A visual comparison of the diversity of Ctrl-SIS, SeFa
and GANSpace is shown in figure B: In contrast to SeFa
and GANSpace, Ctrl-SIS yields latent directions with dis-
tinct appearances. The directions of GANSpace and SeFa
all look very similar. Note that this is comparable to a
set of random directions. In contrast to regular uncon-
ditional or class-conditional GANs, random directions in
SIS yield images with low diversity. The low diversity
of random directions is a well-known issue for SIS mod-
els [1, 5, 2].
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D Limitations
There are two main limitations to what a method for class-
specific latent direction discovery can do. First, class-
specific directions do not encode shape-based semantics.
For example, there cannot be a class-specific direction en-
coding a ”smile” in a face dataset if the shape of the mouth
is already hard-coded by the label map. Second, the diver-
sity of Ctrl-SIS is limited by the diversity of the SIS model
to which it is applied. Notably, the diversity of SIS mod-
els is far lower than the diversity of regular unconditional
or class-conditional GANs. While a standard uncondi-
tional GAN produces seemingly infinitely many different
images, the diversity of SIS models like OASIS [2] was
limited to a manageable number of distinct appearances,
based on our experience. The problem of diversity in SIS
models is a well-known problem [1, 5, 2]. Consequently,
more diverse SIS models will lead to more diverse sets of
discovered latent directions.
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Figure B: Latent directions learnt by Ctrl-SIS on ADE20K and COCO-Stuff.
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Figure C: Qualitative comparison of Ctrl-SIS against SeFa and GANSpace.
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