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Abstract

Astronaut photography from the International Space Sta-
tion (ISS) forms one of the longest continuous remote sens-
ing datasets of Earth and has facilitated a large body of
research ranging from glacial surface area analysis to vol-
canic sediment delivery. Such studies are enabled by the
geolocation and georectification of the imagery. Yet, local-
izing astronaut photography of Earth is a challenging and
labor-intensive task, tempering the amount of research that
can be performed. We present a method for automatically
localizing these images named Find My Astronaut Photo,
which makes this task feasible by casting the problem as a
precision-oriented image similarity and matching exercise.

As the ISS orbits the globe, astronauts can view and pho-
tograph most locations on Earth, so there is no precom-
putable database of finite landmarks for image compari-
son. Therefore, we iteratively generate potentially similar
images from geolocated satellite imagery on-demand and
rely on an image matcher to discriminately detect overall
similarity between these images and an astronaut photo.

We evaluate various image matching techniques to find
methods which allow us to discretize and reduce our search
space to a manageable size, and locate astronaut pho-
tographs with high precision and speed.

Find My Astronaut Photo has successfully geolocated
over 30,000 photos to date, adding critical location infor-
mation that increases the downstream utility of the Gate-
way to Astronaut Photography of Earth (GAPE) database.
We also introduce AIMS, the Astronaut Imagery Matching
Subset, a new real world evaluation dataset that joins the
collection of challenging image matching benchmarks.

1. Introduction

Since the beginning of human spaceflight, astronauts
have used handheld photography to share their unique per-
spective of Earth with the rest of the world. This remote
sensing dataset contains over 4 million images that span

Figure 1. Distribution of (a) all astronaut photography by ISS lo-
cation and (b) geolocated photographs by center point. Only a
fraction of all imagery is geolocated. Bins are 10◦ squares.

more than 50 years, cover most of Earth’s landmass, and
provide a complimentary and unique dataset for researchers
(Fig 1). The primary differentiator of astronaut observations
is also one of its biggest benefits: the method in which the
data is collected. In astronaut photography, a trained human
is looking through a camera lens at a scene and interpreting
the features and phenomena visible, which allows them to
react to what they are seeing and adjust for better data col-
lection in real time. While researchers are the primary re-
questers of imagery, astronaut photography is popular with
the general public. The Gateway to Astronaut Photography
of Earth (GAPE) receives 30 million visits per month, many
of which utilize the image search function to look for pho-
tographs of specific locations. While the GAPE database
contains photographs from all NASA human spaceflight
missions, the majority have been taken from the Interna-
tional Space Station (ISS) due to the spacecraft’s 22+ years
of continuous crewed operations and the advent of digital
camera systems. From low Earth orbit about 415 kilometers
(250 miles) above the surface, wide swaths of the planet are
visible at all times and even small changes in camera ori-
entation can alter the location depicted in a photo by many
kilometers. The microgravity environment and constantly
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changing orientation of the ISS with respect to the Earth
means there is not even a canonical “up” with which to ten-
tatively orient a photo.

Astronaut photography offers a unique combination of
spatial resolution, temporal frequency, solar illumination,
and look angle variation that traditional satellite imagery is
unable to capture (Fig 2). However, the free-floating na-
ture of the cameras, while providing significant benefit to
data collection, inhibits the ability to easily determine the
ground area shown within an image as the cameras do not
record their orientation. While the position of the ISS is
well known, the absence of camera pose information means
that each image could have a ground center point (geo-
graphic coordinates of the center pixel) anywhere within a
2,000 kilometer radius of the ISS nadir point (location on
the Earth directly under the ISS position). With image field
of view varying from 10 to 2,500 kilometers depending on
the camera lens used, finding the ground center point within
this area requires considerable effort. Therefore, most of the
images in the GAPE dataset lack the geographic informa-
tion that would make them most useful to researchers and
most accessible to the public.

A human operator can spend minutes to hours georefer-
encing a single photo. This time varies depending on the
difficulty of the image and the uniqueness of its features.
To this day, despite a team of dedicated citizen scientists lo-
calizing new photos each month, only 7% of all astronaut
photography has a determined ground center point (Fig 1).

We present an image matching-based localization and
georectification pipeline to automate ground center point
determination in a timely manner and, further, produce fully
georectified imagery. Our solution is designed to work in
a uniquely “online” setting - while many image matching
or retrieval benchmarks and applications focus on finding a
best image given a fixed set of potential matches, our ref-
erence set changes per astronaut photo due to the storage
and compute complexity of the search space - the entire
surface of the Earth’s landmass, at multiple scales. Refer-
ence imagery is derived from cloud-free composites of mul-
tispectral satellite sensor data and is visually distinct from
DSLR-aquired astronaut photography, introducing further
difficulty to the matching problem. Reference image gener-
ation is time intensive, accentuating the need for a high pre-
cision matcher that can enable “early stopping”, the ability
to end a search once a good match has been found, without
having to check and rank all potential matches.

We offer an evaluation of methods for image matching
and similarity detection in this setting, with special atten-
tion paid to the discriminability, scale robustness, and vis-
ible region overlap (covisibility) requirements of the meth-
ods. These properties are critical to the overall speed and
reliability of the Find My Astronaut Photo pipeline and of-
fer insight into important qualities for image matchers in a

Figure 2. Astronaut Photos from GAPE. These images show the
variation in the image set, particularly in camera focal length (re-
flected in field of view), cloud percentage, and obliquity (tilt). The
final row shows the normalized distribution of these properties in
the AIMS evaluation set (Section 3).

.

real world setting. We evaluate pretrained self-supervised
embedding models, global feature based matchers, tradi-
tional and learned local feature matchers, and dense warp
estimators across these criteria. Our key contributions are
as follows: (1) the Find My Astronaut Photo pipeline, a
method for geolocating and georectifying imagery from the
high value astronaut photography of Earth database, (2)
quantifying the performance of matchers for image similar-
ity detection, (3) an investigation into the effects of scale,
image size, and covisibility on a range of methods for im-
age similarity detection in a challenging real world setting,
and (4) the Astronaut Photography Image Matching Sub-
set (AIMS), a new evaluation dataset for image matchers
complete with ground truth ground center points and geo-
rectification data.

2. Related Works

Although localization and georectification are critical to
the downstream use of astronaut photography, the problem
has not been thoroughly studied. A recent work [30] fo-
cused on nighttime astronaut imagery, localizing to a raster-
ized street map based on the maximum number of feature
matches over a fixed area and numerous rotations. Though
similar in principle, our work focuses on the broader collec-
tion of daytime imagery, increases localization speed and
breadth by using an adaptive search space and a discrimi-
natory matcher, and is robust to blur, obliquity, and cloud
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occlusion.
More generally, the problem of locating and georectify-

ing astronaut photography lies at the intersection of visual
place recognition (VPR), image matching, and image sim-
ilarity. We review popular methods from each domain and
discuss their application to astronaut photo localization.

2.1. Visual Place Recognition

On the surface, our task is an instance of visual place
recognition, as we seek to identify the location of an im-
age’s content given only the image itself and a set of already
localized images. Common challenges to VPR methods
are also present in astronaut photography, including envi-
ronmental appearance variation and, particularly in regions
of the world lacking distinctive features like forests and
deserts, perceptual aliasing [15]. Many VPR systems are
retrieval-based [2,25], first producing a global feature (em-
bedding) for each database image and a query image, and
using top-k filtering via a distance measure in embedding
space before an optional second, local feature-based veri-
fication step re-ranks the top matches [16, 28]. Often the
database images are processed and stored prior to use (of-
fline), so they can be quickly compared with a new query
that is processed online. Our problem differs from VPR in
this key component - there is no perpetual database (“ref-
erence set”) of images to compare against, so we cannot
precompute a database of reference features. For each new
astronaut photo, a reference set is generated from a satellite
imagery repository in a online fashion, negating the benefits
of precomputed features. For an embedding-based system
to work well in our use case, we cannot rely on relative rank-
ing for retrieval and instead require there to be a discrimi-
nating distance such that all images less than the distance
are good matches and all greater are not.

2.2. Wide Baseline Image Matching

To that end, we turn toward pairwise similarity methods.
In the pairwise domain, our task most closely aligns with
wide baseline image matching [18]. This foundational area
of computer vision aims to match images by generating cor-
respondences between an image pair and then using these
to align the images or estimate camera pose. This may be
done as a part of a larger Structure from Motion (SfM) or
Simultaneous Localization and Mapping (SLAM) pipeline.
Variations in astronaut photography, especially when com-
pared to the satellite imagery that forms our reference sets
(Table 1), make this a multiple baseline problem.

Image matching is often accomplished via local fea-
ture matching. Classically, this was done in a detect-
then-describe manner [22], employing handcrafted features.
Later, learned features were introduced and gained popu-
larity. Recently, detector-free, semi-dense matchers have
shown considerable performance boosts in tasks that rely

on accurate keypoint matching like the HPatches homogra-
phy estimation benchmark [3], pose estimation [11,21], and
the Image Matching Challenge [18]. These matchers follow
the style of the Local Feature TRansformer (LoFTR) [33],
leveraging the benefits of self and cross attention between
the images themselves or their features [5,9,17,34,35]. Al-
ternatively, dense methods estimate a warp between two im-
ages and extract sparse keypoints from that warp [14]. Pair-
wise matchers are typically evaluated by their performance
on downstream tasks, and not as methods for similarity de-
tection itself. While we do use keypoints for homography
estimation in the latter half of our pipeline, we primarily
focus on using pairwise matchers and their keypoints to in-
fer general similarity between images. We call this similar-
ity detection, as it addresses whether two images depict the
same scene, despite potentially confounding variations like
seasonality, occlusion, obliquity, and more. Using the same
principles that have shown success in these challenges and
benchmarks, we define a keypoint-based similarity measure
instead of using the points for alignment or pose estimation.

2.3. Other Image Similarity Methods

Image similarity determination is the essence of our task,
but it is a less-developed subfield. Recently the Image Sim-
ilarity Challenge [12] introduced a benchmark dataset. The
challenge is split into two tracks: descriptor (global fea-
ture/retrieval based) and matching (pairwise comparison).
Challenge results show the overall performance benefit of
pairwise approaches and the power of incorporating local
features for high precision matching.

Finally, similarity can also be viewed as generalization
of overlap region estimation. Some recent works aim to es-
timate covisibility, or overlap regions between images, via
specialized embeddings [10] or box regression [26]. Yet,
these methods struggle with the more nuanced features in
our imagery and are not well suited to confidently predict
“no overlap” for truly non-overlapping imagery.

3. Dataset
The Gateway to Astronaut Photography of Earth dataset

contains over 4 million astronaut photographs and serves
as an open repository of remote sensing imagery for re-
searchers and the public. The imagery is acquired by as-
tronauts in space with handheld cameras, in contrast to the
automated and highly controlled satellite imagery acquisi-
tion process, where sensor pose is well-known. Thus, astro-
naut imagery contains a high degree of variability compared
to its satellite counterparts (Fig 2). In all cases, the condi-
tions of astronaut photography increase the difficulty of lo-
calization whether by human or automated means (Table 1).
Astronaut photography is used extensively for scientific re-
search [1, 19, 20, 23, 27, 31] as well as for disaster response
by NASA and other organizations [32]. In both cases, end
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Figure 3. The Find My Astronaut Photo Pipeline. (a) From image metadata, we determine the ISS nadir point and discretize the Earth area
visible from the ISS into a grid. We batch and prioritize grid patches by proximity (see Fig 5) (b) We produce satellite images covering the
corresponding area of each grid patch from a satellite repository. (c) The astronaut photo and satellite image are put through a matcher. If
the pair meets the match criteria, we move to (d), else return to (b) to generate more images. In (d), high confidence geometrically verified
keypoint matches are used as tie points to georectify the astronaut photo.

Condition Astronaut Photographs Satellite Imagery

Look Angle Variable (nadir to oblique) Fixed (near-nadir)
Illumination Day AND Night Day OR Night
Orientation Variable North Up
Field of View 10-2,500 km Fixed per sensor
Seasonality Multiseasonal Multiseasonal

Table 1. Comparison of acquisition conditions between imagery
types. More difficult condition bolded. Variable look angle and
orientation make camera pose unknown.

users require geolocated and georectified imagery, a time
consuming, manual process that must be done per image.

To fairly evaluate automated localization methods, we
select 323 images with expert location and georectification
information already established. We call this evaluation set
AIMS - the Astronaut Image Matching Subset. AIMS has
variability (Fig 2, bottom row) across cloud percentage per
image (occlusion), focal length (field of view/scale), orien-
tation (North angle), and tilt (obliquity, higher as distance
from the ISS nadir point increases). Change across each of
these axes poses a challenge to matching techniques so un-
derstanding performance in these settings is critical to char-
acterizing methods. We publish the AIMS test set alongside
an evaluation protocol for future benchmarking.

4. Approach
We formulate the localization, or ground center point

finding, of astronaut photos as a cross-domain image sim-
ilarity and matching problem. Assuming that images that
encompass much of the same real world area will be vi-
sually similar, we can determine an astronaut photo’s ap-
proximate location by finding a visually similar geolocated
satellite image. Generating a satellite image and running
an image matcher is a resource-heavy process so we use
the coarse-scale geometry of the spacecraft-Earth system to
grid off the entire region of the Earth’s surface area visible
from the ISS into a set of candidate patches (Fig 3a). Each
patch covers a different portion of the Earth’s surface, with
extent determined by its location with respect to the camera
and the camera intrinsics, such that a patch closer to the ISS
covers a smaller field of view than a patch further from the
ISS, just as an image taken of that area would.

4.1. Reference Image Generation

We iteratively generate a satellite reference image from
publicly available Landsat data products [37] by extracting
an image corresponding to the ground region defined by
each patch (Fig 3b). We use cloud-free Landsat 8 median-
composites from multiple years of data, which introduces
a multi-temporal aspect to the matching process, as cloud
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free pixels could come from an image from any season or
year. While off nadir astronaut photos show obliquity char-
acteristics, all satellite imagery used is nadir, so satellite
images corresponding to what would be an oblique astro-
naut photo are still “flat”, nadir-like images. Astronaut pho-
tos are taken using commercial off-the-shelf DSLR cameras
and therefore do not collect radiance values like Landsat
and other satellite imagers. Multispectral Landsat radiance
values must be converted into RGB and brightness adjusted
for use in matching. Brightness adjustment is done uni-
formly, though it is an imperfect adjustment due to other
confounding factors such as atmospheric dust. This differ-
ence in sensors and resulting image characteristics between
an astronaut photo query and satellite reference image led
us to consider this a cross-domain matching problem.

4.2. Similarity-based localization

We batch patches by proximity to the ISS nadir point,
such that the closest patches are attempted first. We paral-
lelize image generation within a batch, and run the batch
through an image matcher (Fig 3b). Given a highly dis-
criminant, high precision image matcher that only activates
on true positives, we can use early stopping upon a posi-
tive match and do not need to continue searching the entire
space of candidate patches. We evaluate matchers for this
property in Section 5.

Additional desired properties in a matcher are rotation
invariance, as satellite images are typically north up, and
astronaut photos have no canonical orientation. Many oth-
erwise strong matchers do not meet this qualification, so for
these we repeat the matching procedure for every 90◦ rota-
tion and take the best score across orientations.

To determine match score when using a keypoint
matcher, we take initial correspondences from the matcher
(tentatives) and apply geometric verification. We estimate a
homography between images using OpenCV MAGSAC [4,
6] with inlier threshold of 5 pixels and 100,000 iterations.
We use the number of resulting correspondences (inliers)
in our scoring metric. For a given matcher, we empirically
determine a threshold number of inliers for a positive im-
age match (Section 5.1). An image pair’s match score is
the maximum inliers over the tested rotations, normalized
to the threshold. Scores over 1.0 indicate a positive match.

4.3. Georectification

After finding a positive corresponding satellite image,
we georectify the astronaut photo (Fig 3d). This process
assigns a location on the Earth (latitude/longitude coordi-
nate pair) to each pixel in the image. To georectify, we de-
termine a transformation that warps the image to the Earth
- a pixel-to-world coordinate transformation. A set of N
tie points are determined to represent N coordinates, and
a homography is computed from these points. Due to the

curvature of the Earth, georectifying off-nadir imagery ben-
efits from an even dispersion of points across the source im-
age. Based off the location of inliers in the matching candi-
date satellite image, which may have an incomplete overlap
with the astronaut photo (Fig 5, inset), we generate another
satellite image specifically for georectification. This im-
age encapsulates an estimated extent of the astronaut photo,
and produces better distributed tie points. We select well-
dispersed, high-confidence correspondences which connect
geolocated satellite image pixels with astronaut photo pix-
els, and use them to determine the pixel-to-geographic co-
ordinate transform. The geolocated, georectified photo (Fig
4) is now searchable and ready for downstream use.

This approach is only feasible if using a matcher with
high precision. If we cannot determine a repeatable, dis-
criminative threshold for correctness, then the size of the
search space drives the runtime of this approach to near in-
feasibility. Maximum per image runtime depends on the
number of candidates, with higher focal lengths requiring
more candidates to cover the visible Earth area. Account-
ing for this, the average maximum runtime is 7.65 minutes
per photo. When applied to the collection of over 4 mil-
lion photos, this procedure would take over 58 compute year
equivalents without early stopping. In practice, early stop-
ping reduces the average runtime by about 60%. Thus, we
evaluate matching methods to find one with this property.

Figure 4. Fully georectified astronaut photo ISS065-E-241885,
located and transformed via the Find My Astronaut Photo pipeline.

5. Experiments
We tailor our experiments toward quantifying matcher

performance as an image similarity detector, as well as test-
ing for other desirable criteria to speed up our approach. We
evaluate matchers in the Find My Astronaut Photo search
setting, and ensure we capture the broad range of varia-
tions present in astronaut photography by using AIMS (Sec-
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Figure 5. Main Visit priority for satellite image patches. Darker
patches are explored first. Historically, proximity to the ISS nadir
point is a good heuristic to follow for fast localization. Footprint
areas range from 1,025 km2 at center to 33,154 km2 at edge. Inset
Zoom of astronaut photo with all intersecting satellite patches and
their respective overlap percent. Patches with overlap >25% are
labeled correct (green), else labeled incorrect (red).

tion 3). Due to the method of search space discretization
(Fig 5), there are multiple “good” candidate patches (high
overlap with the astronaut photo) and each of these good
patches will not have exactly the same extent as the astro-
naut photo. Thus, for our evaluation set, we also track nom-
inal target overlap percent per candidate. This is the percent
of the astronaut photo that is nominally (not accounting for
occlusion via clouds, spacecraft hardware, etc.) covered by
the satellite image patch. We label any candidate with over-
lap > 25% as a “correct” patch. This value is empirically
derived by what minimum overlap aligns with human judg-
ment of the images representing the same “place”.

We examine models from the image matching, re-
trieval, and similarity domains. We divide the mod-
els into four categories (1) detector-based local fea-
ture matchers (SIFT [22], SuperPoint+SuperGlue [29],
D2-Net [13]) (2) detector-free local feature matchers
(LoFTR [33], SE2-LoFTR [5], Aspanformer [9], Match-
former [35], Patch2Pix [39]) (3) pretrained global em-
beddings (NetVLAD [2], GeM-Net [24, 25], SwAV [7],
DINO [8], Barlow Twins [38]) and (4) dense similar-
ity/overlap predictors (DKM [14]). For embedding mod-
els, we evaluate them under “early stopping” conditions,
determining whether there is a distance that divides the em-
bedding space into matching and non-matching images, in-
stead of using traditional retrieval metrics like correctness
of top-k candidates. For local feature matching models,
we threshold on the number of geometrically verified cor-
respondences (inliers). We investigate whether a threshold
exists to separate correct and incorrect images. Finally, for

image similarity models, we evaluate over predicted over-
lap percent, with 25% as the minimum for a positive match.
We refer to this “early stopping” criteria as discriminability.

5.1. Discriminability

In the astronaut photography localization setting with
early stopping, a false positive from a non-discriminant
matcher can completely interrupt image localization by
concluding a search before the correct patch is encountered.
To test discriminability, we compute match scores between
the astronaut photo and satellite images generated from the
gridding procedure in Section 4. On average, three correct
and 46 incorrect satellite images are produced per astronaut
photo in the AIMS set. We plot the distribution of match
scores and calculate average precision over various thresh-
olds. For each global feature matcher, we normalize the
distances so that they can be readily compared. We evaluate
each matcher in its best configuration and take the threshold
that produces the most desirable point on a Precision-Recall
curve. We additionally measure and seek to minimize the
number of false positives per query.

5.2. Scale

Scale robustness is critical to reducing the number of
candidates in the search grid. We nominally generate candi-
date patches to align with the approximate native spatial res-
olution (m/pixel) of the astronaut photo so that geographic
features are of a similar pixel size in both images. Covering
the entire visible area of the Earth at native scale can require
evaluating up to 40,000 candidates per astronaut photo, par-
ticularly for high focal length images. This number can be
significantly reduced by generating candidate patches that
have a larger spatial extent than the astronaut photo, but this
increases the burden on the matcher to perform well across
scale variations as alike features would no longer have sim-
ilar pixel size. Alternatively, the astronaut photo could be
downsampled to match the reduced spatial resolution (see
Section 5.3 for effects of this adjustment). This motivates
our investigation into a scale robust matcher.

We examine how similarity detection performance on
AIMS changes across patches that are 1.0, 1.5, and 2.0
times the spatial extent of the astronaut photo. Addition-
ally, we take the best case scenario for matching, where the
satellite image’s extent is the minimum rectilinear bound-
ing box of the astronaut photo, and compute the number
of matches between these scaled images and the astronaut
photo.

5.3. Image Size

One of the main concerns with Find My Astronaut Photo
is the per-photo runtime. While this is in theory driven
by the number of candidates in the search grid, in prac-
tice it can be reduced for a given hardware configuration
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by working with smaller images. Smaller images allow for
larger batch sizes and faster matching, yet contain less in-
formation to match with. Some features discernible in a
large, high resolution image will disappear once that image
is downsampled. To find the minimum size requirement for
productive matching, we revisit the scenario from scale ro-
bustness testing (Section 5.2) and match the best-case patch
at different image sizes. We resize both the satellite image
and astronaut photo equally (maintaining relative scale) un-
til matching is impossible. Image sizes are chosen to align
with required dimensions for CNN feature extraction.

6. Results
Experiments with the AIMS dataset illustrate how differ-

ent image similarity techniques perform in the context of a
real world application. We review each in turn.

Average Precision

AIMS Split SE2-L Aspan MF SP-SG D2-Net DKM

1.0x scale 0.61 0.48 0.56 0.49 0.39 0.38
1.5x scale 0.52 0.33 0.44 0.50 0.43 0.32
2.0x scale 0.25 0.21 0.21 0.41 0.37 0.25

Low cloud 0.62 0.50 0.56 0.52 0.40 0.42
High cloud 0.49 0.36 0.54 0.31 0.28 0.14

North up 0.62 0.47 0.55 0.56 0.47 0.47
All other 0.51 0.09 0.06 0.14 0.06 0.04

Table 2. Average precision on important splits of AIMS.

6.1. Discriminability Results

We first analyze discriminability by measure of average
precision over thresholds. Fig 6 depicts this in the rota-
tion augmented, 1.0x scale multiplier setting. Generally,
there is lower intra-class variance than inter-class variance
in precision-recall space. This is particularly true among
LoFTR-style models, suggesting that iterations on this style
are incremental. Detector-free local features are the most
discriminant class, followed by detector-based local fea-
tures. Global embedding models, when using distance as
a threshold instead of rank, admit too many false positives.
They do not perform in the same regime as local feature
matchers and we hereafter focus only on the more perfor-
mant model classes.

The number of inliers is a popular heuristic for deter-
mining whether an image contains the same scene. Aspan-
former [9] uses 25 inliers as a threshold for keeping images
for InLoc evaluation. Figure 6 illustrates the trade-off space
for different inlier thresholds. Aspanformer reaches high
precision with fewer inliers than other LoFTR-style models,
though SE2-LoFTR has the highest average precision (Ta-
ble 2) due to it’s superior recall at lower inlier thresholds.
Of the detector-based methods, SuperPoint+SuperGlue per-

forms best but still lags behind detector-free methods due to
lower recall at low inlier thresholds.

LoFTR-style models also achieve the highest recall for
a given number of false positives (Fig 6). For detector-free
models, recall can exceed 60% before a single false posi-
tive per astronaut photo is encountered. This is a promising
indicator for the Find My Astronaut Photo application. All
matchers are extremely sensitive to rotation with the excep-
tion of SE2-LoFTR, which is designed [36] specifically for
rotation equivariance. On average, models perform 7 times
better when matching an image with the closest 90◦ rotation
to its true orientation.

6.2. Scale Results

We find the number of inlier matches, even in optimal
conditions, drops with inter-image scale variation (Fig 7,
bar plot). For detector-free matchers, the drop is significant.
Scale variation has a similar negative impact on average pre-
cision in AIMS evaluation (Fig 7, lineplot). For AIMS,
where correct matches rarely have 100% overlap, fewer
matches on partially overlapping patches means a loss in
discriminating power for a particular threshold, as true pos-
itives can no longer exceed the threshold. Table 2 illustrates
the pitfalls of LoFTR style models over scale change. It’s
noteworthy that SE2-LoFTR maintains performance when
jumping between 1.0 and 1.25 scale factors. Non-LoFTR
family models generalize better over scale.

6.3. Image Size Results

Detector-free methods are notably sensitive to input im-
age size (Fig. 8). This can be attributed to architectural
choices and constraints as well as to the reduction in dis-
tinctive image features as additional downsampling occurs.
Many image sizes were impermissible to certain models.
Once a permissible size was found (dimensions multiple of
16 or 32), there is a linearly decreasing trend in the num-
ber of inliers with respect to decreasing image size. How-
ever, there is a peak in inlier quantity at 578 pixels, which
is similar to the training size of 640 for SE2-LoFTR. We
did not examine the performance of different image sizes
on the downstream AIMS task, but it is possible that the
discriminating power of detector-free matchers is reduced
at non-optimal, but potentially still permissible input sizes.
Certainly, there is a minimum image size for good similar-
ity detection around 300 pixels square. Images below this
size contain too few inlier matches for discriminability.

6.4. AIMS Results

We gain further insight from performance across splits
of AIMS (Table 2). SE2-LoFTR shines throughout, but
other LoFTR variants display certain desirable properties.
Matchformer performs best under occlusion in the high
cloud split. Detector-based models, though weaker in best-
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Figure 6. Precision-Recall and Recall vs False Positives Per Query in rotation augmented, 1.0x scale multiplier setting. Gray arrows
indicate direction of better performance. Linestyle indicates method class: detector-free (solid), detector-based (dashed), embedding
(dotted). Threshold values are annotated.

Figure 7. Scale robustness results. Average precision line plot
(left axis), number of matches in ideal case bar plot (right axis).
Performance drops significantly beyond a 1.25 scaling factor.

Figure 8. Detector-free matcher image size robustness. Models
seem to have preferential input sizes, and generally number of
matches decreases with image size.

case scenarios, show significant upside in scale robustness.

Furthermore, SuperPoint+SuperGlue does better than some
detector-free matchers in optimal, North up conditions.

Based on these experiments, we choose SE2-LoFTR as
our matcher for Find My Astronaut Photo. Its rotation
equivariance eliminates the need for inference time aug-
mentation and of the detector-free methods, it is most robust
to scale variation. We set the inlier threshold for a positive
match at 30, the highest value that keeps the average num-
ber of false positives under one.

7. Conclusion
We introduce the astronaut photography localization

problem, an image matching based solution called Find My
Astronaut Photo, and a corresponding evaluation dataset,
AIMS. We additionally conduct an empirical investigation
of image matchers for similarity detection, focusing on dis-
criminability, scale robustness, and image size robustness.

We find that recent advances in detector-free match-
ers enable sufficient image similarity performance to effi-
ciently power the Find My Astronaut Photo pipeline with
early stopping. This allows for automated geolocation and
georectification of large portions of the Gateway to Astro-
naut Photography of Earth, making the invaluable collec-
tion more accessible to researchers and the general public.
Using the settings found in Section 6, we have georectified
over 30,000 images in 10 months of operation.

Finally, we release the AIMS evaluation set in the hope
that it will inspire future work in image matching and sim-
ilarity detection. It serves both as a high-value applica-
tion and a challenging benchmark for image matching due
to the natural variations that arise with astronauts taking
photographs of the Earth from the International Space Sta-
tion.
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Maximov, Laura Leal-Taixé, Ismail Elezi, Ondrej Chum, and
Cristian Canton-Ferrer. The 2021 image similarity dataset
and challenge. CoRR, abs/2106.09672, 2021. 3

[13] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-Net:
A Trainable CNN for Joint Detection and Description of Lo-
cal Features. In Proceedings of the 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2019.
6

[14] Johan Edstedt, Ioannis Athanasiadis, Mårten Wadenbäck,
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