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Abstract

GCN-based zero-shot learning approaches commonly
use fixed input graphs representing external knowledge that
usually comes from language. However, such input graphs
fail to incorporate the visual domain nuances. We introduce
a method to ground the external knowledge graph visually.
The method is demonstrated on a novel concept of group-
ing actions according to a shared notion and shown to be
of superior performance in zero-shot action recognition on
two challenging human manipulation action datasets, the
EPIC Kitchens dataset, and the Charades dataset. We fur-
ther show that visually grounding the knowledge graph en-
hances the performance of GCNs when an adversarial at-
tack corrupts the input graph.

1. Introduction

Graph Neural networks are defacto in learning represen-
tations for graphical data. Graphs are useful when repre-
senting scenes [1, 3, 22], actions [7, 15], and human-object
interaction [5, 32] activities. Because of the ability to en-
compass the scene’s structure with either attributes or sym-
bols, knowledge graphs are a step toward explainable AI
[31]. In this paper, we utilize knowledge graphs to solve one
of the challenging problems of recognizing human-object
interaction activities under a zero-shot learning setting.

Consider a simplified formulation with two graphs typ-
ically used in zero-shot settings: an input language graph
and an output vision graph that we are interested in learning.
In the language graph, each node represents an action ob-
tained from word embeddings. The language graph’s edge
weights encode the semantic distance between actions. The
output vision graph has the same amount of nodes as the
language graph and corresponds to the visual embeddings.
Message-passing methods like graph convolution and graph
attention have been used to learn the mapping between the
known category nodes of the input graph and output graph
to fill in information for the nodes in the output graph for

which we don’t have examples. In both the formulations of
graph convolution networks (GCN) [20] and graph attention
networks (GAT) [33], the structure of the input graph, along
with its edges, is fixed.

One of the challenges of using GCN or GAT is that mes-
sage passing relies only on the input graph semantics de-
rived from language embeddings, completely being obscure
to the semantics of the visual graph we are interested in pre-
dicting. However, we know that the word embeddings and
visual embeddings need not be aligned semantically. Fur-
thermore, word embeddings are prone to noise depending
on the text corpora used to obtain them. The predicted vi-
sual graph from GCN carrying language semantics and the
actual visual graph made using visual embeddings will dif-
fer owing to the domain gap between the language and the
visual embedding. Moreover, in a zero-shot learning set-
ting, we can’t directly utilize an input graph made from
visual embeddings as we only have information about the
training class nodes. This raises the question of the ideal
input graph for zero-shot learning. Using the above formu-
lation to recognize human object interaction actions under a
zero-shot learning setting has another challenge: the seman-
tic gap between videos of unseen novel test classes and the
seen training classes. In this paper, we focus on introducing
solutions to these issues from the perspective of knowledge
graphs.

We propose two methods to visually ground the lan-
guage graph to address the above challenges. In the first
method, we modify the input language graph by chang-
ing the weights of the edges to reflect the visual seman-
tics of the visual graph. Specifically, we modify the lan-
guage adjacency matrix by adjusting its weights according
to the weights from the vision graph. We use two differ-
ent concepts to define shared concepts to group actions. We
call these processes inhibitory and excitatory feedback for
message passing in graph convolutions. We experimentally
demonstrate that the modification of edge weights leads to
improvements in the task of zero-shot action recognition on
the Charades and EPIC-kitchens datasets.

In the second method, we integrate the visual graph in
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learning the GCN. Since the test classes are unknown, we
first estimate the adjacency matrix of the visual graph for all
the classes by using the adjacency matrix of the language
graph. We then modify the GCN graph propagation rule to
integrate the visual adjacency matrix. We experimentally
demonstrate the usefulness of the visual adjacency matrix
under normal conditions as well as when the language graph
is adversarially attacked.

In summary, our contributions are:

1. We highlight the limitation of using only the language
graph in zero-shot learning, ignoring the semantics of
the visual graph. We propose two methods to visually
ground the language graph to tackle this.

2. The proposed methods are simple and easy to integrate
with existing GCN message-passing methods.

2. Related Work
2.1. Graph Neural Networks

Graph convolutional networks (GCN) have been intro-
duced by Kipf and Welling [20] for the semi-supervised
classification of graph data. The core of the GCN is the
graph propagation rule, which intuitively does feature ag-
gregation of neighboring nodes. The importance of a neigh-
boring node in learning the features of a node is given by
the edge weight connecting the node with its neighboring
node. The GCN of Kipf and Welling [20] uses an adjacency
matrix to represent the edge weights and is fixed. Thus,
its performance relies mostly on the accuracy of the adja-
cency matrix and to an extent the features of nodes. Graph
Attention networks (GAT) [33], on the other hand, implic-
itly learn the importance of a node relative to its neighbor-
ing nodes through self-attention over the features of nodes.
There have been several improvements [13,16,19,21] over
the original GCN and GAT, but the underlying graph prop-
agation in networks still relies on the input graph. Elinas et
al. [6] introduced structural learning of the GCN adjacency
graph assuming a transductive setting. However, they as-
sume that all training classes are independent of each other
when conditioned on features and an adjacency matrix. For
manipulation actions, we can’t assume the classes are in-
dependent of each other. Many actions can be grouped
based on attributes or shared concepts. Our method of using
grouping of actions in GCNs shows that there is indeed ben-
efit in assuming the interdependence of action classes. Fur-
thermore, we build an inductive model to estimate the visual
adjacency matrix as feedback from the visual graph. We do
not assume any probabilistic model of the adjacency graph
or the features. While updating the GCN, Ghosh et al. [12]
add a triplet loss between positive and negative neighbors in
the input language graph but still ignore the visual domain
semantics to obtain the triplets. We differ from all previous

methods by introducing another aspect to graph propaga-
tion. We introduce direct feedback from the output graph
while doing graph propagation. The additional information
from the output graph in the form of an adjacency matrix
provides the relationship between the nodes in the output
domain

2.2. GCNs For Zero-shot Action Recognition

Previous approaches for zero-shot action recognition in-
clude [9–11, 14, 18, 23, 25, 27, 34]. Many studies rely on
attributes for zero-shot recognition. However, none of the
previous works define attributes that are effective in large
challenging human object manipulation datasets like the
Charades dataset and EPIC-Kitchens55 dataset. Jain et al.
for their system Objects2action [14] use objects present in
actions as attributes, and Liu et al. [23] use attributes for
the classification of whole body actions. The methods in
[11, 12, 18] are graph based using word embeddings only.
Our approach falls under the umbrella of hybrid approaches
as it combines word embedding with visual feedback and
the visual adjacency matrix. In our experiments (Sec. 4) we
compare against Ghosh et al. [11], who fuse three graphs
to represent actions, objects and verbs and perform knowl-
edge transfer. In comparison, our knowledge graph is much
simpler consisting of just one graph instead of a fusion of
three and relies on simply calculating the cosine similarities
between the word embeddings. To the best of our knowl-
edge, none of the previous works consider addressing the
domain gap between visual and language graphs. A few
studies use excitatory and inhibitory weight changes. [13]
exploited multidimensional edge features. Jia et al. [16] in-
troduced squeeze excitation of node channels completely in
a feed-forward way of message passing by learning weights
to excite the nodes. We differ from [13,16] by incorporating
excitation or inhibition based on the grouping of actions.

3. Method
3.1. Architectural Overview

Here we describe the high level formulation of our zero-
shot action recognition. This forms our GCN baseline
method referred to in the experimental section 4. Let the
number of training classes be S, and the number of test
classes be U .

Figure 1 shows the architecture of the network at train-
ing time. The network consists of an input language graph
on the left, which represents all the actions in form of lan-
guage vector embeddings, and a vision graph, on the right,
whose nodes are the embeddings of actions from the visual
domain.

The language graph nodes are initialized with the
GloVe [26] word embeddings, and the value of the weights
on the edges originally are the cosine similarity distances
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Figure 1. Overview of our zero-shot action recognition approach: The Input graph is visually grounded before being passed to a GCN
to predict the output visual graph. Visual grounding refers to either the weight adjustment method (Method2) or the visual adjacency graph
method (Method1) described in sections 3.5 and 3.6, respectively.

between the GloVe vectors.

3.2. Graph Convolution Network

Consider a graph G with N nodes. Let its adjacency ma-
trix be A of dimension N ×N . The graph propagation rule
from the formulation of the GCN by Kipf and Welling [20]
is given by

Hl+1 = f(A×Hl ×Wl) (1)

In equation 1 , Hl+1 is the GCN output matrix at level
l + 1 of dimension N × k , and Hl is the input feature
matrix at level l of dimension N×d. Wl is the GCN weight
matrix of dimension d × k that we are learning. Here k is
the output feature dimension. A is the adjacency matrix. f
is a non-linear function which in our case is a leaky relu
activation layer at the end of each convolution operation.
We use the same normalization to the adjacency matrix as
in [17]. After normalization of A the modified propagation
rule is given by equation 2.

Hl+1 = f(D−1 ×A×Hl ×Wl), (2)

with D denoting the diagonal matrix of the adjacency ma-
trix.

3.3. Training

The graph convolutional network is trained to learn the
nodes of the output vision graph. This is done as follows:
In a pre-processing step, we train an I3d [2] classifier using
the videos of action categories in the training set. We then
utilize the final classifier layer weights of the I3d classifier
to train the GCN. Let us denote Wclassifier of dimension
S × k as the final classifier layer weight.

During training, the predicted embeddings Wpredtrain of
the training nodes of the output vision graph are matched

with the I3d classifier weights Wclassifier obtained earlier
in the pre-processing step. We ensure that the node repre-
senting say for example “put ” action class is matched with
the I3d classifier layer weight representing the “put” action
class. Here Wpredtrain of dimension S×k represents the vi-
sual embeddings of the training nodes of the graph. Specif-
ically loss,

loss =||Wpredtrain −Wclassifier||2 (3)

is minimized between the predicted weights and the trained
I3d classifier weights.

3.4. Testing

At test time, given a test video, the I3d features ftest
of dimension k are extracted. ftest is compared against all
the nodes of the output GCN representing testing classes
to obtain the action category of the video. Let Wpredtest

of dimension U × k represent the visual embeddings of U
number of test class nodes. Using the symbol T to denote
transpose of a matrix, i.e., fT

test, the predicted class Y is
derived from equation 4

Y = softmax(Wpredtest ∗ fT
test) (4)

3.5. Visual Grounding Using Grouping Of Actions

Since we don’t have access to all the nodes of the output
graph at training time, we employ an indirect approach us-
ing the output graph’s semantics. We form groups of actions
according to cognitive concepts which the actions have in
common. Using super-categories and creating groups of
actions has roots in defining an ontology of actions [35].
In our case, we define a higher-level representation of ma-
nipulation actions by considering the geometric transforma-
tion performed on the manipulated object [36], topologi-
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cal changes on the scene, or the type of object motion in-
volved. The grouping of actions follows cognitive reason-
ing and can be extended to any human-manipulation activi-
ties dataset.

3.5.1 Defining the grouping of actions using shared
cognitive concepts

We group actions according to two criteria. First, according
to the object’s change of state that the manipulation action
induces. Second, based on the types of object motion in-
volved.

Here we list the actions in the EPIC Kitchens dataset
having that shared concept of the first kind.

• Decrease in size: squeeze, press, crush, fold, knead

• Increase in size: open, stretch

• Add (to the scene): put, pour, insert, fill, add, apply,
spray.

• Remove (from the scene): take, remove, empty, scoop,
filter

• Separate: Cut, break, peel, divide.

We can also group actions based on the motion type (sec-
ond kind)

• complex motion: mix, shake

• translational motion: move, put, insert, take, remove.

• rotational motion: turn, scoop

• no-motion: grasp, hold.

Charades dataset, however, includes not just the manip-
ulation actions but actions like “walk”, “sit”, “watch” for
which object state changes don’t directly apply. Another
interesting feature of the Charades dataset is that the action
classes are a combination of both verbs and objects. Ex-
amples include “Putting something on a table”, “watching
a book”, “watching a window”, ”smiling at a mirror”, and
”watching something/someone/themselves in a mirror”. For
the Charades dataset, we form groups based on the com-
mon object involved in an action. We hypothesize that ac-
tions involving the same objects tend to have closer RGB
visual features based on the discussion in [29] which says
that there are more errors for classifiers of actions with the
same object and different verbs. Furthermore, our goal is
not to create super categories of actions that classify all ac-
tions. But instead, come up with a logical way of group-
ing actions that can be easily generalized in any object ma-
nipulation dataset. While there are many ways of forming
groups, we have seen from the experiments that our algo-
rithm is resilient to specific groupings of actions.

3.5.2 Modifying the adjacency matrix based on group-
ing of actions

Here we describe how we utilize the grouping of actions to
modify the adjacency matrix obtained from language em-
beddings. Let Alanguage represent the adjacency matrix
obtained from word embeddings. Alanguage[i, j] represents
the edge features between nodes i and j. If nodes i and j
belong to the same group of actions, they are expected to be
visually more coherent. Thus, we intend to excite the edges
when nodes i and j belong to the same group of actions and
inhibit the edges when they are in a different group. There
are many ways to do it. In our experiments, we increase the
weight of the edge between nodes i and j by a constant
value when they belong to the same category (excitation
operation), and we decrease it by the same constant value
when they are different (inhibition operation). Let us denote
the modified adjacency matrix after this weight adjustment
process as Agrounding. We set the mean of the row normal-
ized language Adjacency matrix Alanguage as the constant
to be added or subtracted in excitation or inhibition. The in-
tuition behind this is that this way the edge weights remain
positive, and excitation is still mostly in the same order of
the original edge weight. Very high values would lead to
instability, especially in the inhibition operation, and very
small values would not lead to any significant changes to
the adjacency matrix. In the experimental section, we pro-
vide a sensitivity analysis of the choice of constant and how
it impacts performance.

After we obtain Agrounding by modifying the original
adjacency matrix Alanguage, we use Agrounding for graph
propagation in equation 2. Equation 5 describes the process
of graph propagation.

Hl+1 = f(D−1 ×Agrounding ×Hl ×Wl) (5)

Modifying the distances of word embeddings by a con-
stant based on the grouping of actions, may not be the op-
timal way to solve the domain shift between language em-
beddings and visual embeddings. However, it is very ef-
ficient in terms of ease of implementation and it incorpo-
rates the visual domain knowledge in the input adjacency
matrix. Once the adjacency matrix Alanguage is modified
based on the grouping of actions in equation 5, we use the
same propagation rule as given in equation 2 to learn the
classifier weights of test classes. Essentially, we are train-
ing the GCN only once in the entire process thereby reduc-
ing the complexity of incorporating visual feedback to the
whole process.

3.6. Modifying Weights Via The Visual Adjacency
Matrix

Here we introduce a second method to learn the visual
feedback required to incorporate the domain shift between
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Figure 2. Learning the transformation from Alanguage to Avisual

the language graph and the visual graph. Let us refer to
the adjacency matrix of all the visual embeddings as the
visual adjacency matrix Avisual. If we utilize only Avisual

for graph propagation, the updated GCN propagation rule
becomes equation 6.

Hl+1 = f(D−1 ×Avisual ×Hl ×Wl) (6)

However Avisual is not available at training time. To ob-
tain Avisual at testing time we learn a transformer function
F shown in equation 7 that transforms the adjacency matrix
from the language domain to the visual domain. In other
words, the transformer function is learning how to predict
the distances of nodes in the visual graph from the distances
of nodes of the language graph. We use the GCN network
to learn the visual embeddings of the test classes whereas
the transformer function is used to estimate the distances
between the visual embeddings of test classes.

F (Alanguage) = Avisual. (7)

3.6.1 Learning Transformer Function F

Consider a language adjacency matrix Alanguage with N
nodes of dimension N ×N . The total number of classes in
the dataset would also be equal to N . Let there be S training
classes and U test classes in the dataset. We are interested in
estimating a visual adjacency matrix Avisual with N nodes
of dimension N ×N . Alanguage can be easily obtained for
all the N classes from its word embeddings. However, for
obtaining Avisual we only have with us S classes during
training. The remaining values have to be estimated. Train-
ing one regression model for the entire dataset didn’t yield
good results. Instead, we split the regression into parts and
learn the different parts separately. The performance of the
system depends on how well we can learn the transformer
function F .

Each row in the adjacency matrix represents the cosine
similarities between it and the rest of the classes. We rear-
range the adjacency matrix for illustration purposes to show

how we learn the transformer function. We rearrange it
such that the first S rows of the adjacency matrix repre-
sent that of training classes and the next U rows represent
that of test classes. Similarly, the first S columns represent
that of training classes and the next U columns represent
that of test classes. Figure 2 illustrates this rearrangement.
Submatrix 1 of Alanguage contains the cosine similarities
between the S training classes of Alanguage. Submatrix 2
contains the cosine similarities between S training classes
and U test classes of Alanguage. Submatrix 3 contains the
cosine similarities between U testing classes and S train-
ing classes of Alanguage. Submatrix 4 contains the cosine
similarities between the U test classes of Alanguage. Sub-
matrices 1′, 2′, 3′, 4′ similarly are rearranged for Avisual.
Submatrix 1′ is available at training and our goal is to ob-
tain submatrices 2′, 3′, 4′

To obtain 2′, we train S number of regression models
one for each row of 2′, utilizing one row each of 1 and 1′

as training data such that F (1) = 1′. 3′ is obtained as the
transpose of 2′ due to symmetry. 4′ is obtained by a regres-
sion model that is trained on the entire submatrices 1 and 1′

such that F (1) = 1′. Each of these regression models con-
sists of a two-layered fully connected layer neural network
having 10 nodes in each layer having relu activation layers
and solved using the LFBGS solver.

Once Avisual is obtained, we could use it instead of
the language matrix. However, there are advantages for
using both Avisual and Alanguage for the sake of making
the model robust. There are various ways of utilizing both
Avisual and Alanguage. Ma et al. [24] developed a multi-
dimensional GCN where Avisual and Alanguage can be two
channels of a larger A matrix. However, for the sake of
simplicity, we use a single-dimensional GCN and propose
a new modified GCN propagation rule in equation 8 which
includes both Avisual and Alanguage.

Hl+1 = f(D−1 × (Alanguage + β ×Avisual)×Hl ×Wl)
(8)

Here β is the weight factor that can be determined empiri-
cally for best performance.

4. Experiments
4.1. Datasets

Experiments are conducted using the EPIC-Kitchens-
55 dataset [4] and the Charades dataset [30]. We chose
these datasets as they are some of the largest human manip-
ulation action datasets and we can test our ideas of visual
grounding through grouping of actions on them.

EPIC-Kitchens-55 is an egocentric activity dataset of
people recording their activities in kitchens. It has over 125
verbs and 331 nouns. We selected the top 50 most frequent
verbs provided by the authors of [4] for the experiments
in this paper to avoid the long tail problem. Among those,
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we used 22 verbs as training and 27 verbs as test classes
for evaluation purposes. We eliminated the verb ”walk” be-
cause it is not a human manipulation action. For each verb,
we manually formed the group of actions based on the geo-
metric or topological change or the object motion involved
as described earlier. The train and test splits and the group-
ings of actions will be released after acceptance.

Charades is a dataset made up of crowdsourced videos
of activities in people’s homes. The videos are on average
30 seconds long and each includes a sequence of multiple
action classes. There are 157 action classes and for our ex-
periments we used splits of 79 training and 78 test classes
as reported in [11]. Descriptions of all videos along with
the object classes are provided. For this dataset, because
there are a significant amount of non manipulation actions
and the action classes themselves are a combination of verbs
and objects involved, we formed groups of actions based on
the object involved. Intuitively, actions involving the same
manipulated objects tend to have closer RGB visual features
Since for this dataset the object manipulated in each video
is provided, there was no need for further annotation.

Method EPIC-Kitchens (22-27 split)

ESZSL [28] 7.33
DeViSE [8] 10.25
DEM [37] 8.66

knowledge graphs [11] 13.94
GCN baseline 15.21
Ours GCN-I 16.78

Ours GCN-IE 16.94
Ours GCN-E 19.62

Table 1. Evaluation of classification accuracy for novel test classes
on EPIC-Kitchens Dataset.

Method Charades

ESZSL [28] 17.21
Knowledge graphs [11] 18.21

GCN baseline 18.43
Ours GCN-I 18.16

Ours GCN-IE 19.16
Ours GCN-E 19.35

Ours GCN AV* 19.19
Ours GCN AV 19.63

GCN baseline with attack 15.846
GCN- V after attack 17.11

Table 2. Evaluation of classification accuracy for 79 novel test
classes on Charades Dataset. We report mean average precision
mAP.

4.2. Implementation Details

4.2.1 Baseline GCN

We used the I3d network [2] to obtain classifiers for
the Epic-Kitchens-55 and the Charades dataset. EPIC-
Kitchens-55 is a highly unbalanced dataset when it comes
to the number of videos per class. This resulted in poor
performance in zero-shot learning. Therefore we sampled
the dataset such that approximately 50 samples per class
were present in the training set. We initialized the weights
of the I3d network with those pre-trained on Imagenet and
finetuned the last layer of the I3d classifier for the EPIC-
Kitchens dataset. For the Charades dataset, the I3d model
classifier was trained end to end and we followed the in-
sights from [11] to obtain the I3d classifier weights.

The trained I3d classifier weights were then used to train
the GCN. We used a two-layer GCN having hidden lay-
ers of 1024 →1024 dimensions to predict the I3d classifier
weights. Empirically we found that two-layeres in the GCN
gave the best results, better than deeper GCNs. We initial-
ized the input graph nodes with 300-dimensional GloVe em-
beddings trained on the Wikipedia dataset. The input graph
node dimension is 300, and the output graph node dimen-
sion is 1024, which is equal to the I3d feature dimension.
The number of nodes of the graph for the EPIC-Kitchen
dataset was 50, which is equal to the number of verbs we
selected in our dataset. Although we removed ”walk” from
the dataset we didn’t remove its nodes in the graph as this
didn’t affect much the experiments. The number of nodes of
the graph for the Charades dataset was 157, which is equal
to the total number of classes in the dataset. We updated
only the training nodes during the training. We used the
Adam optimization algorithm with a learning rate of 0.0005
and momentum of 0.0001 for the Charades dataset, a learn-
ing rate of 0.0001, and momentum of 0.0001 for the EPIC-
Kitchen dataset. The GCN was trained with L2 loss to pre-
dict the classifier weights for about 15000 epochs for the
Charades dataset and for 400 epochs for the EPIC-Kitchens
dataset. For all subsequent experiments and ablation studies
we used the same architecture setting and network learning
parameters. Only the way the adjacency matrix was com-
puted differs.

4.3. Experimental details:

Table 1 and Table 2 summarize the results of zero-shot
action recognition for different ways of forming the graph
and training it on the EPIC-Kitchens and Charades dataset,
respectively. We compare our method against a baseline
GCN with no modification of the weights and against other
methods previously reported in the literature.

Table 2 shows the results of zero-short action recognition
on the Charades dataset. The results of ESZSL [28] and [11]
are from [11]. We report the Mean Average Precision of the
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test categories for the Charades dataset and report percent-
age accuracy for the test categories of the EPIC-Kitchens
dataset. GCN-I stands for GCN with inhibition of edges and
GCN-E stands for GCN with excitation of edges. GCN-IE
stands for GCN with both excitation and inhibition. GCN-
E was the best performing model for the Charades dataset,
outperforming the baseline GCN, knowledge graphs [11],
and ESZSL method [28]. GCN-IE, which has both excita-
tion and inhibition, is the second best. Inhibition of edges
is not leading to significant improvement in performance
compared to excitation.

A similar trend is also seen for the zero-short action
recognition results on the Epic-Kitchens dataset. We im-
plemented ESZSL [28], DeViSE [8], DEM [37] baselines
and compared against our methods as shown in Table 1.
Our method GCN-E nearly has 10% improvements over
previous zero-shot action recognition methods. We fur-
ther report experiments of using the estimated Avisual ad-
jacency matrix on the test splits of the Charades dataset
in table 2. GCNAV * represents GCN using Alanguage

and estimated Avisual. GCNAV represents GCN using
Agrounding alongside estimated Avisual. Using the visual
adjacency matrix on top of Agrounding leads to the best per-
formance on Charades, further validating the idea of visual
feedback through the Avisual.

Method Charades (40-39 split)

GCN − L 12.92
GCN − Videal 15.60
GCN − VidealL 17.28

GCN − Vestimated 12.06
GCN − VestimatedL 13.46

Table 3. Evaluation of classification accuracy for 39 novel test
classes in ablation study on Charades Dataset. Results are in mAP.

Method Set 1 Set 2 Set 3
GCN-I 17.21 16.78 16.79
GCN IE 16.48 16.94 16.3
GCN E 18.72 19.62 18.61

Table 4. Evaluation of classification accuracy for novel test classes
on EPIC-Kitchens Dataset for different groupings of actions

4.3.1 How to set the “constant” parameter used in the
inhibition and excitation process?

As described earlier, the “constant” parameter can be set as
the mean (over all elements) of the normalized Alanguage

matrix. Table 5 shows the sensitivity to this ”constant” pa-
rameter on the performance of GCN-E and GCN-I for the

c = 0.02 c = 0.01 c = 0.005
GCN-E 18.72 17.90 16.90
GCN-I 5.18 17.21 15.90

Table 5. Variation of classification accuracy on novel test classes
on EPIC-kitchens dataset for different “constant” parameter used
in excitation and inhibition process. In the table c refers to “con-
stant”.

β = 0.01 β = 0.02
Test Acc 19.19 18.97

Table 6. Variation of classification accuracy for 79 novel test
classes on Charades dataset for different β in equation 8 for GC-
NAV* setting.

EPIC-kitchens dataset. A smaller value than the mean of
Alanguage results in less accuracy improvements for GCN-
E. For this experiment the mean of Alanguage was 0.02.
For GCN-I however a value slightly lower than the mean
of Alanguage results in best performance. We can tune the
system to get the best values for the “constant” starting with
the mean.

4.3.2 Studying the effect of weight adjustment on dif-
ferent groupings of actions

We wanted to check if our proposed method is sensitive to
the choice of shared concepts used to group actions. We cre-
ated three sets of different shared concepts and made groups
of actions based on those sets (with a varying number of
shared concepts). We performed the experiments on these
three sets on the EPIC-kitchens dataset. Table 4 shows that
our method of weight adjustment is agnostic to grouping of
actions. Here we list the different shared concepts that were
chosen for each set.

• Set1: Decrease in size, Increase in size, Add (to the
scene), Remove (from the scene), Separate.

• Set2: Decrease in size, Increase in size, Add (to the
scene), Remove (from the scene), Separate, Complex
motion

• Set3: Translational motion, Complex motion, De-
crease in size, Increase in size, Add (to the scene), Re-
move (from the scene), Separate.

4.3.3 Effect of Visual Adjacency Matrix

To evaluate the impact of the visual adjacency matrix on
the overall GCN propogation (equation 8), we performed
some ablation experiments on the Charades dataset. For
this, we only used the training set of 79 action classes in
the charades dataset. Among these, we randomly chose 39
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test classes, and the remaining 40 were kept in the training.
Then we performed zero-shot action recognition on the 39
test classes by using a different adjacency matrix in each
case study. We analyze the following different cases of
chice of initial adjacency matrix:
1. GCN-L: This is a baseline GCN that uses the language
adjacency matrix and the formulation represented in
equation 2. We constructed a 79×79 dimensional language
adjacency matrix Alanguage and computed the test accuracy
for 39 classes.
2. GCN − Videal: This is a GCN using the ground truth
visual adjacency matrix. From this experiment, we could
understand the upper limit of test class accuracy using
the visual adjacency matrix Avisual. For this experiment,
we computed the adjacency matrix using the entire 79
training classes in the original charades dataset. Instead
of estimating the visual adjacency matrix, we used the
ground truth I3d class weights and constructed Avisual.
We computed the test accuracy for 39 classes and used the
formulation in equation 6.
3. GCN − V estimated: This is a GCN that uses the
estimated visual adjacency matrix Avisual and the formula-
tion in equation 6. We used 40 training classes and 39 test
classes to learn Avisual. We set up a transformer network,
as described in subsection 3.6.1 to obtain F . From F we
obtained the visual adjacency matrix Avisual. We used the
visual adjacency matrix Avisual in equation 6 to obtain the
zero-shot action test accuracy for 39 classes.
4. GCN − VidealL: This is a GCN that uses both the ideal
visual adjacency matrix Avisual and the original language
adjacency matrix Alanguage . We used equation 8 to obtain
the zero-shot action test accuracy for 39 classes. β in
equation 8 was set to 0.2
5. GCN − V estimatedL: This is a GCN that uses only
an estimated visual adjacency matrix Avisual and Avisual

language adjacency matrix Alanguage. We used 40 training
classes and 39 test classes. We set up the transformer
network described in subsection 3.6.1 to obtain F . From F
we obtained the visual adjacency matrix Avisual. We used
the visual adjacency matrix in equation 8 to obtain the test
accuracy for 39 classes. β used in equation 8 is 0.1

Table 3 reports the results of the ablation study. We re-
port the Mean Average Precision for 39 test classes in the
table for the Charades dataset. We will release the training
and testing splits for this ablation study upon acceptance.
From GCN − VestimatedL results in table 3, we can see
that using the estimated visual adjacency matrix Avisual

has a lot of value on its own and performs as well as using
it instead of Alanguage. Experiments on GCN − VidealL
were conducted to find the upper limit of test accuracy us-
ing Avisual. The experiments show that just the idea of
using Avisual is beneficial provided we are able to learn

a good transformer function F . However, for all practical
purposes we have to rely on the estimated visual adjacency
matrix Avisual using the transformer function F . Train-
ing the transformer function F is hard as we have limited
data points for training and it is a complex function to learn.
Learning a better F depends on accuracy of ALanguagetrain

and Avisualtrain. If both of these are unreliable, then the
overall accuracy of the system will be poor, and this is one
of the limitations of our approach.

Setting parameter β We performed experiments to de-
termine sensitivity of parameter β in equation 8. Table 6 re-
ports experiments for different parameters of β in Equation
8 for the Charades dataset experiments reported in Table 2
for the GCNAV * setting. An initial value can be set like in
any multitask learning.

4.3.4 Robustness to Noise in the Language Graph

While there is no direct negative social impact with our ap-
proaches, graphs are easily prone to adversarial attacks. We
evaluate the performance of GCNs by creating perturba-
tions on the input language graph. We created perturba-
tion on the input language graph by poisoning the edges.
Specifically, we poisoned the edges of those verbs belong-
ing to same grouping of actions. We decreased the weight
of these edges by 0.1. We then re-ran our algorithms on
this setting. GCN after it was attacked had a 15.8 MAP on
the charades test set when using the attacked adjacency ma-
trix. GCN − V uses the estimated visual adjacency matrix
Avisual from the attacked adjacency matrix along with the
attacked adjacency matrix. GCN −V had a 17.11 MAP on
test classes showing robustness when using the estimated
visual adjacency matrix despite the original language ma-
trix being attacked.

5. Conclusion

We introduced two methods to provide visual feedback
in language graphs for zero-shot action recognition. The
use of grouping of actions allowed us to adjust additively
the weights of the adjacency matrix to reflect the semantic
similarity of actions in visual space. This process of in-
creasing and decreasing the graph edge weights is simple
yet very effective and can be easily adopted in other weight
adjusting mechanisms. We also introduced the use of the
visual adjacency matrix for setting the weights in the graph,
which is usually overlooked in zero-shot learning. Experi-
mental results on the EPIC-Kitchens and the Charades data
sets showed that the addition of the visual adjacency ma-
trix and use of weight adjustment to modify the adjacency
matrix is beneficial.
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