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Abstract

We propose a new strategy to improve Automatic Target
Recognition (ATR) from infrared (IR) images by leverag-
ing semi-supervised learning and generative data augmen-
tation.

Our approach is twofold: first, we use an automatic de-
tector’s outputs to augment the existing labeled and unla-
beled data. Second, we introduce a confidence-guided data
generative augmentation technique that focuses on learn-
ing from the most challenging regions of the feature space,
to generate synthetic data which can be used as extra unla-
beled data.

We evaluate the proposed approach on a public dataset
with IR imagery of civilian and military vehicles. We show
that yields substantial percentage improvements in ATR
performance relative to both the baseline fully supervised
model trained using the existing data only, and a semi-
supervised model trained without generative data augmen-
tation. For instance, for the most challenging data partition,
our method achieves a relative increase of 29.51% over the
baseline fully supervised model and a relative improvement
of 2.59% over the semi-supervised model. These results
demonstrate the effectiveness of our approach in low-data
regimes, where labeled data is limited or expensive to ob-
tain.

1. Introduction

Automatic Target Recognition (ATR) from infrared im-
ages is an important task in computer vision with many
practical applications in security, emergency services, au-
tomotive, environment, and other fields [9].

Various deep learning-based methods have been pro-
posed for ATR from RGB images. However, they do not
perform as well in the infrared domain, where the lack of
color information and other environmental factors make the
task more challenging [12, 20, 26]. Recent works have at-

tempted to address this problem by leveraging deep learning
techniques for feature extraction, transfer learning, and data
augmentation [11]. Nevertheless, these approaches require
a large amount of labeled data, which is often hard to obtain
in infrared ATR due to the high cost of collecting and la-
beling data. Infrared sensors provide valuable information
for ATR, especially in low-light conditions, but still pose
unique challenges that must be addressed to improve the
performance of ATR models. One significant challenge is
the sensitivity of infrared sensors to calibration and environ-
mental conditions. For instance, changes in temperature and
humidity can affect the quality of the captured infrared data,
making it challenging to develop robust and accurate ATR
models [4, 28]. Moreover, there is a lack of standardiza-
tion in infrared data acquisition and labeling, which further
complicates the development of ATR models. Finally, even
with the use of unsupervised or weakly supervised learning
techniques, ATR models can still suffer from limited gen-
eralization capability due to the variability in target signa-
tures. This variability may arise due to different illumina-
tion conditions, viewing angles, or other factors, making it
challenging to develop a comprehensive ATR model [15].

Semi-supervised learning (SSL) [3] is a promising ap-
proach that leverages both labeled and unlabeled data to
train more robust and generalizable classifiers. In the con-
text of ATR from infrared images, SSL can potentially im-
prove the performance of the system by exploiting the large
amounts of unlabeled data that are typically easier to obtain.

In this paper, we propose a semi-supervised learning
approach for ATR from infrared images. We address the
problem of learning with limited labeled data to improve
the robustness of ATR models in challenging environments.
Our approach consists of two main contributions. First, we
leverage unlabeled data from an automatic detector, such as
YOLO [14], to augment the limited labeled data. Detections
with high confidence and significant overlap with ground
truth locations are used as labeled data. Additionally, de-
tections with low confidence or little overlap with ground
truth targets are used as unlabeled data. This approach
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helps address the limited labeled data problem and improves
the model’s robustness to different scales, viewpoints, and
partial occlusions of the targets. Second, we propose a
data augmentation strategy that focuses on learning from
the most challenging regions of the feature space. We use
a fully supervised reference model to identify misclassifi-
cations and low-confidence correct predictions, which are
then used to train a generative model capable of synthesiz-
ing an infinite number of new images from the same distri-
bution. This approach improves the diversity of the training
data, and enhances the model’s accuracy in regions that did
not have sufficient training samples.

Our proposed approach offers several advantages over
existing methods. First, it can effectively leverage the lim-
ited labeled data available for infrared ATR, reducing the
need for expensive and time-consuming data collection and
labeling. Second, it can improve the model’s robustness to
different scales and viewpoints of the targets, as well as to
different environmental conditions, by leveraging unlabeled
data and focusing on the most challenging regions of the
feature space. Finally, our approach achieves state-of-the-
art results on a real-world infrared ATR dataset, demonstrat-
ing its effectiveness and potential for practical applications.

2. Related Works
In recent years, there has been a growing interest in

developing deep learning-based approaches for Automatic
Target Recognition (ATR) from infrared images. Various
techniques have been proposed to address the challenges as-
sociated with this task, including feature extraction, transfer
learning, and data augmentation.

Early works in this field focused on hand-crafted feature
extraction methods, such as Local Binary Patterns (LBP)
and Histogram of Oriented Gradients (HOG) [5, 17]. These
methods often rely on domain-specific knowledge and are
not optimized for end-to-end training, limiting their per-
formance on complex ATR tasks. More recently, deep
learning-based methods have shown promise for ATR from
infrared images. For instance, Yang et al. [21] proposed a
deep neural network architecture with skip connections for
feature extraction from infrared images. Similarly, Yang et
al. [22] developed a multi-level fusion deep neural network
for ATR from IR and visible-light images. The network
uses a Feature Pyramid Network (FPN) to extract features
at multiple scales and fuses them using a spatial attention
mechanism. Transfer learning has also been explored as a
means to address the lack of labeled data for infrared ATR.
For example, Hu et al. [7] used a pre-trained CNN on the
ImageNet dataset for feature extraction from infrared im-
ages. Wang et al. [18] proposed a transfer learning approach
for ATR from IR images. They used a pre-trained CNN on a
large-scale RGB image classification dataset and fine-tuned
it on the IR image dataset. They also used a novel region-

based attention mechanism to highlight discriminative re-
gions in the IR images. Despite their promising potentials,
such approaches are limited by the availability of suitable
pre-trained models and may not generalize well to diverse
ATR tasks.

Data augmentation is another popular technique for ad-
dressing the low-data regime problem in ATR. For instance,
Zhang et al. [27] proposed a method to generate synthetic
infrared images by applying geometric and photometric
transformations to existing labeled data. Likewise, Zheng
et al. [29] proposed a data augmentation approach for ATR
from IR images that generates synthetic images by applying
geometric transformations and adding noise. Similarly, Li
et al. [8] proposed an augmented training approach that gen-
erates synthetic IR images with random backgrounds, ther-
mal signatures, and orientations. However, such augmen-
tation techniques are often limited by the diversity of the
original labeled dataset and may not capture the full range
of variability in the target objects.

Recently, semi-supervised learning has emerged as a
promising approach for ATR from IR images, as it can
leverage both labeled and unlabeled data to improve per-
formance. For example, Zhai et al. [23] proposed a semi-
supervised approach for ATR from IR images that uses
a generative model to generate synthetic images from the
same distribution as the labeled data. The synthetic im-
ages are used to augment the labeled data and train a semi-
supervised model.

Despite these efforts, there remain significant challenges
in developing effective ATR methods for infrared images.
These include the lack of color information, difficulty in
acquiring high-resolution labeled data, and sensitivity to
environmental conditions. Moreover, existing approaches
often require large amounts of labeled data or domain-
specific knowledge, limiting their applicability to diverse
ATR tasks.

In this paper, we propose a new approach that leverages
both supervised and unsupervised learning techniques to
overcome the limitations of existing methods in low-data
regimes. Our method incorporates unlabeled data from au-
tomatic detectors and focuses on learning from the most
challenging regions of the feature space, allowing us to train
more robust models with limited labeled data. We use a gen-
erative model to generate synthetic images from the most
challenging regions of the feature space, and we use these
synthetic images to augment the input data for training a
semi-supervised model.

3. Proposed Approach
Our proposed approach is twofold. First, we augment

the existing limited ground truth labeled data using an auto-
matic detector’s outputs as additional labeled and unlabeled
data. Second, we use our confidence-guided data augmen-
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tation to generate synthetic data that will be used as addi-
tional unlabeled data. We use YOLO [14] as our automatic
detector, and MixMatch [2] algorithm for semi-supervised
training.

We denote by DGT
L the set of the initial ground truth

labeled training data. DY OLO
L and DY OLO

U denote the
labeled and unlabeled training augmentations generated
using YOLO’s outputs respectively, and XSY NTH the
confidence-guided synthetic augmentations.

3.1. Data Augmentation Using an Automatic Detec-
tor’s Outputs

We assume that our input data consists of large images
containing at least one target. We first process the data to
detect potential targets and their locations. We use an au-
tomatic detector, specifically YOLO [14], to generate addi-
tional labeled and unlabeled data. Detections that exhibit
substantial overlap with the ground truth bounding boxes,
and have high detection confidence levels are utilized as la-
beled data, while detections with low confidence or mini-
mal overlap with ground truth targets are designated as un-
labeled data. The latter may contain false positives or ob-
jects that are hard to identify, making them challenging but
still informative for training.

3.1.1 Labeling the Strong YOLO Detections

To label the high confidence YOLO detections, we assign
them the same labels as the corresponding ground truth
boxes in the input data. More specifically, we label the
YOLO bounding boxes with a confidence above a given
threshold, with the label of the target whose ground truth
bounding box has the maximum area of intersection with
the YOLO predicted bounding box.

Let D denote the set of all YOLO detections, G denote
the set of ground truth bounding boxes, conf(d) denote the
YOLO confidence score of detection d, and IoU(d, g) de-
note the IoU score between detection d and ground truth box
g. Let y denote the label of the target whose ground truth
bounding box has the maximum area of intersection with d.
Then, the label of a given YOLO detection d is assigned as
follows:

l =

{
y if maxg∈G IoU(d, g) > τ and conf(d) ≥ τc,

unlabeled otherwise
(1)

where τ and τc are the IoU and the YOLO confidence
score thresholds, respectively. If d has no significant over-
lap with any of the ground truth bounding boxes or its con-
fidence score is below the threshold τc, it is considered as
an uncertain detection and used as unlabeled data.

We define the intersection over union (IoU) between two
bounding boxes as:

IoU(d, g) =
area(d ∩ g)

area(d ∪ g)
, (2)

where area(·) is the area of the bounding box. If there are
multiple ground truth bounding boxes with the same maxi-
mum IoU, we choose the one with the smallest area.

3.1.2 Using Weak YOLO Detections as Unlabeled Data

We also leverage YOLO outputs to generate unlabeled data
(DY OLO

U ). The weak YOLO detections, i.e., the ones with
low confidence score or no significant overlap with any of
the ground truth bounding boxes, are used as unlabeled data.
This helps to increase the amount of available data, and of-
feres the opportunity to use semi-supervised training.

DY OLO
U consists of two subsets. The first subset con-

tains detections with a confidence score below the confi-
dence threshold τc. This subset is denoted as Ulow:

Ulow = d ∈ D | conf(d) < τc (3)

The second subset contains detections with a confidence
score above τc and an IoU score below the IoU threshold τ .
This subset is denoted as Uhigh, and is generated as follows:

Uhigh = d ∈ D | conf(d) ≥ τc and max
g∈G

IoU(d, g) < τ

(4)
Intuitively, Ulow contains detections that YOLO is less

confident about, and hence, are more likely to be misclas-
sified. Uhigh, on the other hand, contains detections that
YOLO is confident about, but are not well-aligned with any
of the ground truth boxes. These detections can still provide
useful information for the model to learn from, especially
when combined with the labeled data and used as unsuper-
vised knowledge.

This approach is designed to be simple and effective,
leveraging existing resources to improve model perfor-
mance in a low-data regime. By using the strong YOLO
detections as additional labeled samples, we can increase
the size of the labeled dataset, which can lead to im-
proved model performance. Additionally, by using the
weak YOLO detections as unlabeled data, we can increase
the amount of available data for training a semi-supervised
model, which can enhance the model’s generalizability, and
reduce its sensitivity to displaced bounding boxes.

3.2. Confidence-Guided Data Augmentation
(CGDA)

In order to increase the amount and relevance of the unla-
beled data, we propose a confidence-guided generative data
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augmentation strategy. The main idea is to generate syn-
thetic data drawn from the same distribution as the most
challenging samples based on the baseline classifier’s per-
formance. Initially, we use a fully supervised reference
model to identify the underperforming samples. These sam-
ples are utilized to train a generative model which can gen-
erate an infinite number of synthetic images from the same
distribution. Finally, by using both the originally labeled
data and the synthetically generated images as unsupervised
knowledge, we train a new model in a semi-supervised man-
ner.

Formally, aside from a held out test set (DT EST ), we
randomly split our input training dataset into three different
partitions:

• DL = DGT
L ∪ DY OLO

L denotes the labeled training
subset which is the aggregation of the labeled ground
truth targets (DGT

L ), and the strong YOLO detections
(DY OLO

L ) labeled using Equation 1.
• DV = (xi, yi)

nv

i=1 denotes the validation subset of
size nv which is used for model selection and hyper-
parameters tuning.

• DREF = (xi, yi)
nref

i=1 , is a newly introduced reference
subset: a held-out labeled subset used for identifying
underperforming samples used to train the generative
models.

Algorithm 1 outlines the main steps of the proposed ap-
proach. The training pipeline includes four main steps:
(i) Fully supervised training, (ii) Softmax confidence fil-
tering, (iii) Generative data augmentation, and (iv) Semi-
supervised training.

3.2.1 Fully Supervised Training

We first train and validate a baseline model Cbase, in a fully
supervised way, using the labeled training set DL and the
validation set DV .

3.2.2 Softmax Filtering

The obtained model Cbase is afterwards tested on the third
partition of the input set: DREF . DREF serves as a held-
out reference subset that is separate from the validation and
testing subsets. Based on the assumption that all three par-
titions are drawn from the same distribution, we expect that
misclassifications from DREF are likely to be similar to the
potential misclassifications from DT EST .

This intermediate evaluation step aims to identify and
select the under-performing reference samples which will
be used to fine-tune a generative model later on, and thus
generate more synthetic samples from the same distribution.

Cbase generates a logits vector z for each input sample
x. We approximate the model’s confidence score on a given
prediction using softmax function S. Softmax converts
the logits vector into a vector of probabilities, where the

Algorithm 1 Confidence-Guided Synthetic Sample Gener-
ation for Semi-Supervised Learning

Require:
DL: a set of labeled ground truth data and high-
confidence YOLO detections
DV : Validation set
DREF : Reference subset
Cbase: Baseline fully supervised CNN classifier
G: Generative model
γ: Softmax classification confidence threshold.

Ensure: Trained semi-supervised model Csemi

1: Csemi.weights← Initial weights
2: DU ← Uhigh ∪ Ulow

(i) Fully supervised training
3: Train Cbase using DL and DV

(ii) Softmax filtering
4: DLOW

REF ← []
5: for each sample xi ∈ DREF do
6: Predict label ŷi = Cbase(xi)
7: if ŷi ̸= yi or p̂i < γ then
8: Add xi to set DLOW

REF

9: end if
10: end for

(iii) Generative data augmentation
11: Pretrain generative model G on DL
12: Train G on DLOW

REF for E epochs
13: Generate synthetic images Xsynth using G
14: D′

U ← DU ∪Xsynth[: K] ▷ Add K synthetic im ages
to the unlabeled set
(iv) Semi-supervised training

15: Update Csemi.weights using (DL,D′
U )

16: return Csemi

probabilities of each value are proportional to the relative
scale of each value in the model’s logits. Hence, Softmax
can reflect the prediction likelihood of each class. We define
DLOW

REF as follows:

DLOW
REF = Dmisc

REF ∪ Dlow
REF (5)

where Dmisc
REF is the set of misclassified samples by the

baseline model (Equation 6), and Dlow
REF is the set of cor-

rectly classified samples with low confidence. γ (Equa-
tion 7) is a user predefined confidence threshold.

Dmisc
REF = {xi ∈ DREF | Cbase(xi) ̸= yy)}

nref

i=1 (6)

Dlow
REF = {xi ∈ DREF | Cbase(xi) = yi & S(Cbase(x)) ≤ γ}nref

i=1

(7)
It is worth noting that without the proper calibration, soft-

max scores can fail to reflect the actual model’s confidence
[6]. Nevertheless, a recent research by Pearce et. al [13]
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established that softmax confidence can still perform mod-
erately well even for some relatively challenging out of dis-
tribution samples.

In this research, we assume that DREF is drawn from
the same distribution as the training set which alleviates
the constraints around considering softmax as a confidence
score [13]. Furthermore, we select all misclassfied sam-
ples, regardless of their softmax score. We only rely on the
softmax score as an extra filter to select correctly classified
samples with the lowest confidence score. These samples
barely activated the nodes corresponding to their true class
to become correctly classified. This might mean that sim-
ilar samples could be at the edge of being misclassified in
future testing. Hence the motivation behind including them
in DLOW

REF .
By training a generative model on DLOW

REF , we aim to
learn their inherent distribution in order to boost their pres-
ence in the training space so that the model can learn a more
robust representation.

3.2.3 Generative Data Augmentation

DLOW
REF is used to train a generative model in order to learn

the latent distribution of the under-performing subset and
generate similar synthetic samples. In our experiments,
we use Deep Convolutianal GAN (DCGAN) as generative
model. DLOW

REF tends to have a relatively small size which
makes training the DCGAN from scratch challenging. To
address this issue, we pre-train the generative model on
the initial training subset DL to learn the latent representa-
tion of the target domain, and then fine-tune it on DLOW

REF in
order to bias this representation more towards the under-
performing samples from DREF .

We define XSynth as the subset of K randomly gener-
ated images using the DCGAN’s generator. Since XSynth

is generated from random seeds, they cannot be assigned
labels, and thus, are treated as unlabeled during semi-
supervised training. This can be advantageous as we can
generate as many unlabeled samples as desired by sampling
from different random seeds. In our experiments we exper-
iment with various values of K.

3.2.4 Semi-supervised Training

The last step of our approach consists of semi-supervised
training. In this step, we use both the original labeled data
DL and the unlabeled synthetic data XSynth to train a semi-
supervised model. We also use DV for model selection and
hyperparameters tuning. We explore different parameters
including the size of the synthetic data and the used gener-
ative model to determine the best settings.

In this research, we adopt MixMatch [2], an semi-
supervised algorithm that proposes a holistic training ap-
proach. MixMatch operates by applying k stochastic aug-

mentations to each unlabeled sample. Augmentations of
each unlabeled input are then fed through the network to
generate k predictions which are then averaged and sharp-
ened by adjusting their distribution’s temperature to obtain
a ”guessed label”. The obtained guessed labels are used to
pseudo-label their corresponding augmentations to generate
an augmented set of pseudo-labeled augmentations.

Next, MixMatch uses MixUp [24] to generate linear in-
terpolation between the concatenation of the original la-
beled set and the augmented pseudo-labeled unlabeled set,
and their shuffled version. The alpha-blended output is then
fed to the classier to compute both a supervised and an un-
supervised loss. A weighted sum of the two obtained losses
is be used to update the model’s weights [2].

4. Experimental Results

In this section, we present the experimental results.
All experiments are implemented on Pytorch and ran on
a computer equipped with an Intel Core i7-5930K CPU
(12CPUs), an NVIDIA GeForce GTX TITAN X GPU with
12GB of VRAM and 128GB of RAM.

4.1. Experimental Setup

We conduct experiments on a a public dataset with VIS
and IR imagery of civilian and military vehicles. This
dataset is a collection of infrared (IR) imagery of vari-
ous targets with different poses and occlusions. The used
dataset consists of six ranges denoted as r1, r2, ..., r6, where
r1 represents the closest range, and r6 represents the fur-
thest range. The ranges are obtained by moving the sen-
sor platform away from the target incrementally, with each
range representing a specific distance.

To evaluate our machine learning models, we use a
range-based evaluation process where we divide the data
into three partitions based on the testing range, i.e., low,
medium, or high ranges. The low range includes targets that
are close to the observer and easily identifiable, while the
high range includes targets that are far away and have low
resolution. The medium range includes targets that are in
between these two extremes. In each partition, we hold out
one range for testing and use another for validation, while
the remaining ranges are used for training. Table 2 shows
the data partitions in each fold.

DT EST DV DREF DTrain

Low Range (LowR) r1 r2 r4 r3, r5, r6
Medium Range (MedR) r4 r3 r5 r1, r2, r6
High Range (HighR)) r6 r5 r3 r1, r2, r4

Table 1. Data partitions for the range-based evaluation process
where DTrain = DL ∪ DU .
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The used dataset contains multiple targets, including hu-
mans, military vehicles, and civilian vehicles. To simplify
the study, we exclude the human targets and only focus
on classifying the vehicles. For our analysis, we perform
a binary classification task to classify all the vehicles in
the data set into two types: Type I: TRACKED; Type 2 =
WHEELED. We report the Area Under the Receiver Oper-
ating Characteristic Curve (AUC) for all our experiments.

Due to restrictions imposed by the agency supporting
this research, we cannot report the absolute AUC of the
models. Instead, we report the relative improvement that
our proposed approach can provide, compared to the base-
line fully supervised model.

We use the VGG16 with batch normalization as the back-
bone network for both the reference fully supervised model,
and the semi-supervised model (MixMatch). The network
is trained using a stochastic gradient descent optimizer with
a momentum of 0.9. The learning rate starts from 3e−2,
and automatically decays by a factor of 10−2 with cosine
annealing [10] based on the validation (DV ) loss. For Mix-
Match algorithm, we use a MixUp ratio α = 0.5, a sharp-
ening temperature T = 0.5, and an unsupervised loss fac-
tor β = 100. We use a pre-trained YOLOv3 detector to
generate YOLO detections. To generate the YOLO based
augmentations, we use τc = 0.1 and τ = 0.2.

4.1.1 Results and analysis

Augmentation Effectiveness: Table 2 shows the num-
ber of input training samples generated by our approach
from both ground truth boxes (DGT

L ), and YOLO detections
(DY OLO

L ,DY OLO
U ). Each of the labeled partions contain a

balanced representation of targets from the two classes in
question.

|DGT
L | |DY OLO

L | |DY OLO
U |

LowR 81.0K 71.3K ≈ 230K
MedR 83.7K 77.6K ≈ 200K
HighR 86.4K 83.9K ≈ 260K

Table 2. Number of samples per each generated training subset for
each evaluation range.

To analyze the quality of the augmentations generated by
our proposed approach, we plot a t-SNE [16] visualization
of the feature space of the penultimate layer of the VGG16
network. Figure 1 illustrates the distribution of the embed-
ding feature space of the original and augmented datasets
using t-SNE. Each marker corresponds to an input object
from the generated augmentations, the labeled or unlabeled
based on the YOLO detector’s outputs, or the CGDA gen-
erated synthetic data.

In Figure 1 (a), we observe that the labeled YOLO aug-

Figure 1. 2D t-SNE scatter plot of the features extracted by the
VGG16 model trained on the used dataset. (a) Color-coded classes
of the labeled training data: DL = DGT

L ∪DY OLO
L , the red mark-

ers show the underperforming samples DLOW
REFR; (b) Superimpo-

sition of the generated unlabeled YOLO augmentations: DY OLO
U

(green markers); and 10K samples from the DCGAN generated
synthetic data Xsynth (yellow marker).

mentations (DY OLO
L ) overlaps considerably with the origi-

nal ground truth data (DGT
L ), which is expected by design.

The red markers correspond to under-performing samples:
DLOW

REF . A significant number of these samples are concen-
trated at the boundary between the two classes or within the
region of the feature space where the two classes intersect,
thereby providing a plausible explanation for the model’s
suboptimal performance on these samples.

In Figure 1 (b), we see that the generated YOLO unla-
beled data (green markers), and the CGDA synthetic data
(yellow markers) are filling the gaps in the input feature
space, especially around the areas where the most under-
perfroming samples are located. This suggests that our
approach is is effectively generating diverse and informa-
tive samples to improve the classifier’s performance, which
can help create a smoother and more continuous decision
boundary.

Visualization of Augmentation Results: To generate
the CGDA samples, for each evaluation partition, we start
by training and tuning the reference fully supervised classi-
fier (i.e., Cbase) usingDL andDV . We evaluate the obtained
models on DREF to identify and select the low confidence
predictions: DLOW

REF as detailed in the previous section.
We experiment with different confidence thresholds γ

(Equation 7). The value that yields the best results is the
lower outlier boundary of the reference prediction scores as
defined in Equation 8.

γ = Q1 − 1.5 ∗ IQR (8)

where Q1 is the lower quartile and IQR is the interquartile
range of the softmax layer outputs.
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Depending on the baseline performance, and on the num-
ber of reference samples, the size of DLOW

REF can be rel-
atively small. Hence, training the generative model (DC-
GAN) from scratch on such a small set cannot be reliable to
generate synthetic images that can capture the inner distri-
bution of the inputs. Therefore, we initialize the generative
model by pre-training it on the original training partion, i.e.,
DL. Afterwards, we fine-tune then on DLOW

REF . This pre-
training phase allows the model to learn the high level repre-
sentation of the input feature space using only the available
training subset. By fine-tuning on the under-performing
samples from the held-out reference subset (DREF ), the the
model learns to focus more on the manifold containing the
under-performing samples. Once fine-tuned, the DCGAN
can then, generate an infinite number of synthetic images
that are randomly sampled from the manifold containing
DLOW

REF .
Supervised vs. Semi-supervised Training
To assess theimportance of the proposed approach, we

use the fully supervised models trained on ground truth data
only (DGT

L ) as our baseline model, as this model corre-
sponds to the performance obtained using the initial existing
data only. We compare the baseline’s performances against:
(i) the fully supervised model trained on the combination
of ground truths and strong YOLO detections as labeled
data (DL = DGT

L ∪DY OLO
L ), and (ii) the semi-supervised

model using DL as labeled, and the weak YOLO detections
(DY OLO

U ) as unlabeled.

Table 3. AUC improvements over fully supervised baseline model
using YOLO-based data augmentation for evaluations at low,
medium and high ranges.

Method LowR MedR HighR

Baseline: FS(DGT
L ) - - -

FS(DL = DGT
L ∪DY OLO

L ) 2.74% 1.51% 0.57%
SSL (DL,DY OLO

U ) 26.78% 29.32% 26.92%

Table 3 shows that the fully-supervised model trained on
DL outperforms the baseline model across all three eval-
uation ranges. The relative AUC improvements over the
baseline range from 0.57% to 2.74%. This suggests that
leveraging weakly annotated data can help to improve the
performance of the model. Our experiments also demon-
strate the effectiveness of our proposed semi-supervised ap-
proach in improving classification performance on the used
dataset. In Table 3, we see that training a semi-supervised
model using DL as labeled data and weak YOLO detections
as unlabeled data (DY OLO

U ) outperforms both the fully su-
pervised models across the three testing ranges with a rela-
tive AUC improvements over the baseline varying between
26.78 and 29.32%.

Confidence-Guided Data Augmentation: Next, we
provide the results of using confidence guided data augmen-

tation (CGDA) on top of the previous results. Table 4 shows
the AUC improvements when adding CGDA as extra unla-
beled data to the semi-supervised model trained on DL and
DY OLO

U . For this experiment, we use K = 15K synthetic
samples. We observe that using CGDA as extra unlabeled
data consistently improves the AUC scores across all three
evaluation ranges. The improvement is the largest in the
medium range, with a 2.59% relative improvement com-
pared to the semi-supervised model without CGDA, and a
30% improvement compared to the baseline.

Table 4. AUC improvements using CGDA as extra unlabeled data
for the three testing ranges.

Method LowR MedR HighR

Baseline: FS(DGT
L ) - - -

SSL (DL+DY OLO
U ) 26.78% 29.32% 26.92%

SSL (DL, DY OLO
U ∪Xsynth) 27.65% 30.00% 29.51%

The remarkable improvements in performance achieved
using confidence-guided data augmentations as extra unla-
beled data are consistently observed across all three evalua-
tion ranges (low, medium, and high), demonstrating the ef-
fectiveness of this approach in surpassing the baseline using
the existing data only. These results underscore the poten-
tial of the introduced augmentation strategies as a powerful
tool for improving the accuracy of ATR in challenging en-
vironments.

4.2. Ablation Study

Importance of guiding data augmentation by the
under-performing samples: We investigate the impor-
tance of guiding the selected augmentations from DREF
based on the under-performing samples as identified using
the reference model Cbase. We compare two scenarios of
selecting samples from DREF to use as additional labeled
training data. In each scenario, we augment DL using the
same number of samples from DREF . We only vary the se-
lection criteria (random sampling vs. guided sampling) as
detailed below.

Experiment 1: Fully supervised baseline using the la-
beled training data only: DL = DGT

L +DY OLO
L .

Experiment 2: Fully supervised model using the se-
lected under-performing samples from DREF as extra la-
beled data, i.e., DL +DLOW

REF .
Experiment 3: Fully supervised model using a random

subset from DREF with same size as DLOW
REF as additional

labeled data: DL + rand(DREF )
|DLOW

REF

Table 5 shows the classification AUC on used data for
three different settings. We see that both augmentations
slightly improve the classification AUC. However, using the
under-performing samples gives the best improvement.

Impact of the size of the synthetic data: The trained
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Training Data LowR MedR HighR

DL (Baseline) - - -
DL + rand(DREF )

|DLOW
REF | 3.56% 3.16% 4.25%

DL +DLOW
REF 6.68% 7.12% 8.74%

Table 5. Random Augmentation vs. Guided Augmentation from
DREF in a fully supervised setting: Testing AUCs across the three
ranges.

Figure 2. CGDA - Percentage high range AUC improvement rela-
tive to the baseline model for different sizes of unlabeled synthetic
data generated using DCGAN.

CGAN can generate an infinite number of synthetic data by
randomly sampling from the learned embedding.

In Figure 2 we evaluate CGDA on the high testing range
using variable numbers (K) of unlabeled synthetic data as
generated by DCGAN. Each data point in these the plot
shows the percentage improvement of testing AUC, rela-
tive to the baseline fully supervised model (y-axis), of a
MixMatch instance that was trained on DL as labeled and
K synthetic augmentations (x-axis) as unlabeled, where
K = 0 corresponds to the fully supervised baseline us-
ing the original data DL only. We see that, adding DC-
GAN augmentations as unlabeled data incrementally im-
proves the semi-supervised training until it reaches a peak
of accuracy at K ≈ 15K. A similar behavior is observed
for the other two testing ranges.

4.3. On the Convergence of the CGDA Approach

CGDA can be framed as a boosting procedure. Feed-
ing more samples similar to the underperforming ones is
somehow equivalent to emphasizing their weights within
the training process.

The proposed approach is likely to converge if two con-
ditions are satisfied [1, 3, 19, 25]:

• The generative model G accurately captures the un-
derlying data distribution, such that the synthetic data
generated is similar to the real data. This would alle-
viate any potential distribution mismatch between the

labeled data and the generated unlabeled data that may
hurt the semi-supervised training [1].

• The semi-supervised model Csemi is capable of im-
proving performance with additional data. If the model
is already performing at its maximum, then adding
more data may not boost the performance [25].

Under these conditions, the iterative process of adding syn-
thetic data and retraining the model is expected to improve
performance, as the model is exposed to more examples and
learns to generalize better. The convergence of the approach
is expected when the performance improvement is no longer
significant, or when the performance plateaus.

5. Conclusion
This paper presents a novel strategy for addressing

the challenge of limited labeled data in Automatic Target
Recognition. Our approach consists of two main compo-
nents. First, we leverage the detections generated by a
detector, such as YOLO, to augment the existing labeled
data. We use strong detections as additional labeled sam-
ples and weak detections as unlabeled data. Second, we
propose a confidence-guided data augmentation technique
to generate synthetic data that can be used as extra unla-
beled data. By utilizing both labeled and unlabeled data
in a semi-supervised setting, our approach aims to improve
the performance of ATR systems. Experimental results
show that the proposed approach outperforms the baseline
fully supervised setting using the existing labeled data only.
We also demonstrate the effectiveness of the proposed ap-
proach, highlighting the potential of using unlabeled and
synthetic data for enhancing object classification in chal-
lenging environments.

The proposed approach provides a promising direction
for addressing the limited labeled data problem in ATR.
The integration of the outputs of an automatic detector, and
confidence-guided data augmentation provides a powerful
framework for leveraging both labeled and unlabeled data
to improve the ATR performance. Our approach can be ex-
tended to other computer vision tasks beyond ATR, provid-
ing a general framework for addressing the limited labeled
data problem in deep learning.
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