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Abstract

Recent unsupervised representation learning methods
rely heavily on various transformations to generate dis-
tinctive views of given samples. Transformations for these
views are generally defined manually, requiring significant
human effort to design detailed configurations and validate
practical efficacy. Furthermore, the diversity of these views
is quite limited in scope causing the network to be invariant
to only a small set of data transformations. To address these
problems, we introduce a neural transformation network
that learns to generate diverse views. Our proposed frame-
work consists of an encoder-decoder network architecture
that encodes semantic information and then randomly styl-
izes it with style amplification. However, such generative
processes tend to cause degradation compared to the origi-
nal images, which can harm the quality of the learned rep-
resentation. To remedy this issue and generate more diverse
styles, we use a linear augmentation between the generated
view and the original image. Finally, we apply geometric
transformations to aid in contrastive learning of represen-
tations. We evaluate the learned representations on various
downstream vision tasks. Results show highly competitive
recognition performance compared to the state-of-the-art
methods that use learned views or hand-crafted views for
representation learning.

*Work completed during internship at Qualcomm AI Research
†Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc.

1. Introduction

Recently, unsupervised representation learning has gar-
nered a lot of attention in computer vision tasks because of
its label-efficiency compared to traditional supervised learn-
ing. The common strategy for unsupervised representation
learning has been to construct a self-supervised objective
from the unlabeled data and use it to train the network. A
common self-supervised objective is to predict the transfor-
mation type of an image. This includes predicting rotation
types [15], predicting translation and scale types [41], solv-
ing jigsaw puzzles [40], etc. Alternative self-supervised
methods utilize positive and negative samples to train se-
mantic information from their similarity and dissimilarity
[1, 6, 19], which is the main focus of our paper. These ob-
jectives tend to generate positive samples of a given sam-
ple through transformations and enforce them to be similar
while sometimes enforcing the sample to be dissimilar to
negative samples.

The choice of data transformations, augmentations, or
views, as we shall refer to them interchangeably through-
out the paper, is important for contrastive learning. Pos-
sible views for vision tasks can be of photometric types
such as blurring, color jitter, etc., or of geometric types
like cropping, rotation, etc. However, these view types
have been human-designed and therefore limited in their di-
versity. Consequently, contrastively learned representations
would be invariant to only a limited number of augmenta-
tion types and hence might be sub-optimal for downstream
tasks. Thus, for contrastive learning frameworks, there is
a need to generate more diverse views without altering the
semantic content of an image.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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Only very few works have studied non-manual view gen-
eration beyond hand-designed views. Viewmaker [48] net-
work learns to generate novel views through an additive
noise map. This noise generator is adversarially trained
against the contrastive loss. Since the Viewmaker net-
work produces only low-level additive transformations, de-
spite of its effectiveness on enhancing the overall diversity
of the dataset, it produces less diversified views for each
given image (discussed in Section 4.3). Alternatively, Neu-
tral AD [45] learns a neural mask generator to diversify
the masked views while preserving the semantic informa-
tion of the given image. However, Neutral AD can only
generate a limited number of mask maps for each image,
which suggests that the generated views likely have low di-
versity. Despite these promising studies, there still exists
more non-manual views that are not been fully studied so
far. Since these unexplored views might be useful for con-
trastive learning of representations, our work proposes auto-
matic novel view generation using unlabeled training data.

We focus on beating the limitation of these recent works
in two aspects. First, to explore beyond conventional
augmented views, we transform images within the latent
space while preserving the semantic information. Sec-
ondly, we pursue generating a large number of diverse
views from a given image. To this end, we propose a neu-
ral transformation-based method for generating non-manual
diverse views. Our method consists of a two-stage proce-
dure where the view generation network and the feature en-
coder are trained separately unlike [45, 48]. Our view gen-
eration network uses an encoder-decoder architecture with
an adaptive instance normalization layer [25] in the latent
feature space to modify the style of an input image. Since
the view transformation occurs in the latent space, the novel
views can possibly contain much more high-level contex-
tual changes compared to [45,48]. The stylization is further
controlled by the features of another reference style map
sampled from a standard distribution. This step is also quite
different from that of [45, 48] which only uses single im-
ages for novel view generation. Hence, these networks are
less globally aware of the content and style distribution of
the dataset.

Once the view generator is trained, it is frozen and then
the randomly sampled style map can be used to generate a
large number of possible views. Thus, the diversity of the
augmentations are much higher compared to [45, 48]. The
stylized novel views are then combined with randomly gen-
erated geometric transformations and fed to the feature en-
coder to optimize the contrastive loss. Our method shows its
advantages throughout, and the analysis in diversity metric
also shows distinctive view generation capability compared
to previous methods. To summarize, the contributions of
the paper are as follows:

• We propose an encoder-decoder-based architecture

that can produce diverse novel and stylized views be-
yond conventional noised, masked, or expert-designed
views.

• During encoder training and downstream stages, we
additionally modify the generated views through style
distribution expansion and linear expansion to diver-
sify the views from a given image.

• Compared to expert-designed views and existing view
generation approaches, our generated views also facili-
tate contrastive learning methods when combined with
geometric transformations.

2. Related Work
Unsupervised Representation Learning Learning rep-

resentations from unlabeled data is a long-standing problem
in computer vision [3, 42]. Most modern unsupervised rep-
resentation learning approaches use sample augmentations
for constructing pretext tasks [12,15,38,40,63]. The pretext
tasks include predicting patches [12], channels [63], rota-
tions [15], and even order of a puzzle [40]. AET [30, 62]
used image pairs, where the pretext task was estimating
the transformation between them. Alternative unsupervised
representation learning frameworks [1, 37] use augmenta-
tion invariance where the model representations are en-
forced to be invariant to certain geometric and photometric
transformations. The idea of augmentation invariance has
been mentioned in earlier works [2, 13, 18] but has recently
garnered attention due to its applicability to multiple data-
starved use cases. Contrastive learning realizes transfor-
mation invariance where representations of different input
views are pulled together while views of a different input
(i.e. negative pairs) are pushed apart [6–8, 19, 50]. Alter-
native methods exist [5,17] that do not require the presence
of negative pairs to be pushed apart. All the above methods
use handcrafted views while our method focuses on learn-
ing useful views for contrastive learning.
Useful Views for Representation Learning There has
been significant research in obtaining useful transforma-
tions for learning representations. For supervised learning,
there have been various works [21, 34, 43, 59, 60] studying
the effect of different handcrafted augmentation types. Au-
tomatic augmentation policies [10, 11, 23, 29, 46, 64] have
also been learned to compose existing handcrafted data aug-
mentations. Additionally, Tran et al. [52] formulated aug-
mentations as missing variables within a Bayesian frame-
work. Wong et al. [54] learned perturbation sets for ad-
versarial robustness using a conditional variational auto-
encoder. There are works that leverage geometric transfor-
mations/views for anomaly detection [16]. Such views have
demonstrated improvement in out-of-distribution (OOD)
detection [22] and can be combined with generative mod-
eling techniques to improve representations for openset and
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Figure 1. The overall framework of the proposed neural style transformation network. Our network consists of a semantic encoder, a style
encoder, multi-layer perceptrons (MLPs) for generating normalization statistics, adaptive instance normalization (AdaIN) layers, and a
decoder. (a) shows the pipeline for training the neural transformation network while (b) shows how the network generates novel views to
be used in contrastive learning.

OOD detection [14, 32, 33, 61]. For self-supervised learn-
ing, some works [51,55] consider views that maximize mu-
tual information to be useful. The utility of views has been
studied for transfer learning tasks [50] and for learning in-
variances [44]. Particularly, the authors of VTSS [41] hy-
pothesize that instantiations of data transformations absent
in the dataset are useful for unsupervised representation
learning. Yang et al. [58] realized the VTSS hypothesis by
adversarially learning the dataset’s transformation distribu-
tion. Recently, authors of viewmaker [48] proposed to gen-
erate views for multiple modalities by adversarially learning
residual perturbations applied to the input image. NeuTral
AD [45] addresses self-supervised learning for anomaly de-
tection by learning transformations on input samples that
maintain semantics but also produce diversified augmenta-
tions. Both [49] and [45] only considered a limited number
of style and photometric transformations as learned aug-
mentations while our method can produce much more di-
verse and effective transformations.

3. Method
Our method aims to generate novel diverse views by styl-

izing the input images with respect to the randomly sampled
arbitrary style maps. In the first stage, we train a neural
transformation network that learns to stylize images within
a dataset. In the second stage, novel transformed images
are generated to aid contrastive representation learning of
an encoder. The details are described in the following sec-
tions while the overall framework is shown in Fig. 1.

3.1. Training neural style transformation network

Our goal is to explore a huge number of non-manual di-
verse views and finally achieve a performance boost with
contrastive learning. To generate such diverse views be-
yond conventional noised or masked views and manually
transformed views, we design a neural style transforma-

tion network that consists of a content encoder Ecθ , a style
encoder Esθ , a decoder Gθ,γ1,β1,...,γl,βl

comprised of mul-
tiple adaptive instance normalization (AdaIN) layers [26]
with AdaIN statistics γ1, β1, ..., γl, βl, a statistics genera-
tor MLPθ for AdaIN statistics computation from a given
style map s, and trainable parameters θ for the whole afore-
mentioned encoder-decoder architecture. The content en-
coder Ecθ and style encoder Esθ aim to disentangle semantic
information and style information from given images. On
the other hand, the decoder Gθ,γ1,β1,...,γl,βl

reconstructs an
image corresponding to a given semantic information and
AdaIN statistics. Here, each ith AdaIN layer adjusts the
semantic feature c by:

AdaIN(c, γi, βi) = γi

(c− µ(c)
σ(c)

)
+ βi, (1)

where µ(c) and σ(c) denotes the mean and standard devia-
tion of the feature c. Such AdaIN statistics can be derived
by MLPθ from a given style map. Our method trains style
reference from the style of each training sample. During
this training stage, our network learns to encode content
maps and style maps through content and style encoders,
reconstruct an input image from its content and style maps,
and transform the input image to the style of other training
samples.
Training objectives We enforce adversarial learning, style
map reconstruction, semantic map reconstruction, and im-
age reconstruction loss functions to train the neural style
transformation network. Specifically, suppose we sampled
an image x ∈ X from a training dataset D. The seman-
tic encoder Ecθ and style encoder Esθ disentangle semantic
maps Ecθ(x) and style maps Esθ(x) from the given image
x. Then, MLPθ computes proper AdaIN statistics with re-
spect to the given style map Esθ(x) by:

γ
Es

θ(x)
1 , β

Es
θ(x)

1 , ..., γ
Es

θ(x)
l , β

Es
θ(x)

l =MLPθ(E
s
θ(x)). (2)
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Figure 2. Qualitative results of the neural style transformation network for varying input images and style maps. The first column shows the
input images, and each column represents the transformed results with each style map. We randomly sampled style maps from N(0, 8Im).
The input images are sampled from the validation split of the MSCOCO dataset.

We update the decoder G
θ,γ

Es
θ
(x)

1 ,β
Es

θ
(x)

1 ,...,γ
Es

θ
(x)

l ,β
Es

θ
(x)

l

with the computed statistics. In this state, we can recon-
struct the input image from the corresponding semantic map
Ecθ(x) and style map Esθ(x) by:

x̂ = G
θ,γ

Es
θ
(x)

1 ,β
Es

θ
(x)

1 ,...,γ
Es

θ
(x)

l ,β
Es

θ
(x)

l

(Ecθ(x)), (3)

which should be identical to x. Thus, we minimize image
reconstruction loss Limg , an L1 error between the input im-
age x and the reconstructed image x̂ as follows:

Limg = Ex∼p(x)
[
||x−G

θ,γ
Es

θ
(x)

1 ,β
Es

θ
(x)

1 ,...,

γ
Es

θ(x)
l , β

Es
θ(x)

l (Ecθ(x))||1
]
.

(4)

Due to the generation process of x̂, the reconstructed con-
tent map Ecθ(x̂) and style map Esθ(x̂) should be identical to
Ecθ(x) and Esθ(x), respectively.

On the other hand, the decoder should also have the ca-
pability of properly generating new views from given input
images and arbitrary style maps. Thus, we define a discrim-
inatorDϕ with trainable parameters ϕ, and we minimize the
following adversarial loss Ladv:

Ladv = Ex∼p(x),s∼N(0,Im)

[
log(1−Dϕ(G

θ,γ
Es

θ
(x)

1 ,β
Es

θ
(x)

1 ,...,

γ
Es

θ(x)
l , β

Es
θ(x)

l (Ecθ(x)))
]
+ Ex∼p(x)

[
log(Dϕ(x))

]
,
(5)

where s denotes an m-dimensional style vector sampled
from N(0, Im). Moreover, since we generate the novel
view from the semantic map Ecθ(x) and the style map s,

it should also be disentangled to Ecθ(x) and s. Thus, we de-
fine a semantic map reconstruction loss Lc and a style map
reconstruction loss Ls by:

Lc = Ex∼p(x)
[
||Ecθ(xi)− Ecθ(Gθ,γEs

θ
(x)

1 ,β
Es

θ
(x)

1 ,...,

γ
Es

θ(x)
l , β

Es
θ(x)

l (Ecθ(x)))||1
]
,

Ls = Ex∼p(x)
[
||Esθ(xi)− Esθ(Gθ,γEs

θ
(x)

1 ,β
Es

θ
(x)

1 ,...,

γ
Es

θ(x)
l , β

Es
θ(x)

l (Ecθ(x)))||1
]
.

(6)

Therefore, the final objective for neural style transformation
training is:

min
θ

max
ϕ

Ltotal = min
θ

max
ϕ

λimgLimg + λcLc + λsLs

+ λadvLadv,
(7)

where λimg , λc, λs, and λadv are 20.0, 2.0, 2.0, and 2.0,
respectively. The detailed training process is shown in Al-
gorithm 1 in the supplementary material.

3.2. View generation for representation learning

After training the neural style transformation network,
we utilize the overall encoder-decoder framework as a trans-
formation function. However, we observed that directly
using the generated views does not sufficiently utilize the
capability of our framework to produce highly diversified
views. In this section, we introduce some schemes that can
boost the effectiveness of contrastive learning.
Random style distribution expansion While the previous
training stage enables the encoder-decoder framework to
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Method (a) (b) (c) (d) (e) (f) (g) (h) (i) Avg.

Si
m

C
L

R
[6

] Expert-designed view 86.2 49.9 32.5 30.4 97.1 88.3 11.2 53.3 96.6 60.6
Viewmaker 84.5 50.4 31.7 28.8 98.7 91.5 8.7 53.6 94.9 60.3
Viewmaker + Geo. 83.0 49.4 29.7 27.9 95.2 90.1 10.1 56.8 94.1 59.6
Ours 86.9 52.3 29.7 32.7 96.6 89.2 15.4 61.1 93.5 63.1

In
st

D
is

c
[5

6] Expert-designed view 82.4 48.6 37.7 29.8 98.7 89.2 13.7 61.5 98.9 62.3
Viewmaker 80.1 50.2 33.5 29.8 98.9 91.4 9.4 54.8 94.3 60.3
Viewmaker + Geo. 82.6 51.0 29.5 29.3 96.2 88.2 13.3 64.1 85.1 59.9
Ours 83.2 54.5 34.7 33.3 97.5 89.7 18.6 66.7 96.6 63.9

Table 1. Quantitative comparison between manual transformations, Viewmaker [48], Viewmaker with geometric transformations, and our
method. We conducted linear evaluation on the CIFAR-10 dataset and transferred the pretrained encoder to (a) CIFAR-10, (b) MSCOCO,
(c) Aircraft, (d) DTD, (e) MNIST, (f) FaMNIST, (g) CUBirds, (h) VGGFlower, and (i) TrafficSign. We used ResNet-18 [20] as a backbone
network.

address arbitrary style maps sampled from N(0, Im), we
generate the novel views from expanded style map distribu-
tionN(0, σIm), σ > 1. By controlling the magnitude of the
random style vector with a standard deviation σ, we expect
the network to generate more drastic changes in the given
images. We analyze the effects of the expanded style distri-
bution in Section 4.3.1. Suppose an input image is sampled
as x ∈ X , this scheme can be formulated by the following
equation:

γs1 , β
s
1, ..., γ

s
l , β

s
l =MLPθ(s), s ∼ N(0, σIm)

x′ = Gθ,γs
1 ,β

s
1 ,...,γ

s
l ,β

s
l
(Ecθ(x)).

(8)

Linear augmentation. Subsequent to the style expan-
sion, we linearly augment the views with the input im-
ages through random interpolation and extrapolation. The
purpose of linear augmentation is to continuously diversify
novel views along the input images and the generated views
and to recover the lost semantic information of the input im-
age during our neural style transformation. We control the
degree of the linear augmentation with a magnitude ϵ since
too much wide range of the linear combination ratio may
generate redundant or ineffective views. The process can be
simply represented as follows:

x′′ = (1− ϵ)x+ ϵx′, ϵ ∈ (−ϵmax, ϵmax), (9)

where x′ denotes a generated view derived in Eqn. 8.
Combining with geometric transformations. We apply
random geometric transformations upon the adjusted views
x′′ to enhance distinctiveness among the generated views.
Suppose we have a distribution of geometric transformation
Tgeo, then this scheme can be written by:

x′′′ ← tgeo(x
′′), tgeo ∼ Tgeo, (10)

where tgeo ∈ Tgeo is a randomly sampled geometric trans-
formation.

3.3. Encoder training and transfer learning

During encoder pretraining, we replace the conventional
manual transformation with our modified neural transfor-
mation framework. For the trainable encoder Eψ with its
parameters ψ and the contrastive learning loss Lcont, the
training objective for the encoder training is:

min
ψ
Lenc = Lcont(lψ(Eψ(x

′′′
1 ), Eψ(x

′′′
2 ))) (11)

where x′′′1 and x′′′2 denote for two randomly transformed
views of x.

Now we can transfer the pretrained encoder to various
downstream tasks including classification, detection, and
segmentation. During the transfer learning, we fix the en-
coder and only update the task-specific prediction layer (e.g.
classification layer of the classification task) through su-
pervision with labels. Suppose we have a trainable task-
specific prediction layer lξ and an input data x ∈ X with
corresponding ground-truth y ∈ Y . Then, the training ob-
jective for the transfer learning can be represented as fol-
lows:

min
ξ
Ltrans = Ltask(lξ(Eψ(x

′′′)), y) (12)

where Ltask denote the task-specific objective function and
x′′′ represents for the adjusted views in Eqn. 10.

4. Experiments
4.1. Datasets

We evaluated our framework using the following
image classification datasets: (a) CIFAR-10 [27], (b)
MSCOCO [31], (c) Aircraft [35], (d) DTD [9], (e)
MNIST [28], (f) FaMNIST [57], (g) CUBirds [53],
(h) VGGFlower [39], and (i) TrafficSign [24]. These
datasets contain a large variety of natural and human-made
categories and they are popularly used for evaluating
self-supervised methods. All details of the datasets are
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ϵmax
0.1 0.5 1.0 2.0

σ
1 57.4 67.1 69.1 69.6
2 63.6 71.5 73.7 75.4
4 66.3 74.6 77.3 76.8
8 66.6 75.1 78.2 77.6

16 66.7 75.7 78.1 77.2
32 67.6 76.0 77.9 77.2

(a) Encoder pretraining performance

ϵmax
0.1 0.5 1.0 2.0

σ

1 76.4 81.5 83.1 83.4
2 79.7 84.1 85.2 85.8
4 80.8 85.5 86.7 86.1
8 80.9 85.9 86.9 86.4

16 81.8 86.3 86.9 86.4
32 82.0 86.4 86.8 86.8

(b) Linear evaluation performance

Table 2. Performance comparison varying hyperparameters σ and ϵmax iteration number of neural transformation network training. The
performances are evaluated on the CIFAR-10 dataset.

described in the supplementary material.

Experimental setup. For the neural style transformation
network, our encoders consist of several strided convolu-
tion layers and four subsequent residual blocks. The style
encoders additionally have a global average pooling layer
followed by a fully connected layer since we defined a style
map by an m-dimensional vector. Here, we set m as 8. The
AdaIN-based decoder consists of four residual blocks with
eight AdaIN layers and several convolution layers with up-
sampling. Our multi-layer perceptrons (MLPs) consists of
three layers and output concatenation of eight gamma and
beta value for AdaIN layers. We used the LSGAN discrim-
inator [36] with four convolutional layers. The encoder-
decoder framework is trained for 200k iterations on the
CIFAR-10 dataset with batch size 64.

For the encoder pretraining step in learning representa-
tions, we followed the configurations and evaluation pro-
tocol of Viewmaker [48] for a fair comparison. We adopt
SimCLR [6] and InstDisc [56] to verify the compatibility on
contrastive learning approaches. The SimCLR method used
a temperature of 0.07 and the InstDisc method used 4096
negative samples from the memory bank with an update rate
of 0.5. We pretrain ResNet-18 for 200 epochs with a batch
size of 256 on CIFAR-10 using SGD optimizer with learn-
ing rate 0.03, momentum 0.9, and weight decay 1× 10−4.

For the linear evaluation, we fixed the encoder and
train the prediction layer with a supervised loss on vari-
ous datasets using an SGD optimizer with a learning rate
of 0.01, a momentum of 0.9, and weight decay of 0 for 100
epochs with a batch size of 128. The learning rate is reduced
by a factor of 10 on 60 and 80 epochs. Once the network
has been trained, we evaluate it on the test split of the cor-
responding dataset and report the recognition performance.

We provided detailed information on the neural style
transformation network in the supplementary material.

4.2. Performance comparisons

4.2.1 Qualitative results of the view generation

We visualized the augmentation results of the neural style
transformation network varying input images and style
maps to validate the distinctive appearances across the ran-
domly generated views. As shown in Fig. 2, our transfor-
mation network can generate distinctive transformation at-
tributes for each of the style maps. Moreover, each style
map maintains its own transformation attribute despite vary-
ing inputs. On the other hand, the neural network preserves
the semantic information of the input image well so that we
can assign similarity between the transformed samples.

4.2.2 Performance comparisons on classification tasks

Having verified the capability of our framework to gener-
ate diverse augmentations, we pretrain the target encoder
and conduct the linear evaluation by transferring the fixed
encoder to various classification tasks. Then, we com-
pared with models, where each has been trained by expert-
designed views, viewmaker-based views, and views gener-
ated by our method. Since Viewmaker does not utilize ge-
ometric transformations only among the three types of gen-
erated views, we additionally evaluate Viewmaker-based
views with geometric transformations for a fair comparison.

Table 1 shows linear evaluation results on nine datasets
including CIFAR-10. Here, the left and right parts of the ta-
ble show the experimental results with the SimCLR [6] and
InstDisc [56] methods, respectively. For the SimCLR ap-
proach, our method outperformed models learned by other
types of views on average. Specifically, our method tends
to be effective on datasets with diverse attributes such as
CIFAR-10, MSCOCO, DTD, CUBirds, and VGGFlower
datasets. On the other hand, our method is relatively less ef-
fective on the datasets with stereotyped backgrounds or ap-
pearances, such as the Aircraft dataset with blue skies, the
MNIST dataset with black backgrounds and white digits,
the FashionMNIST dataset with black backgrounds, and the
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Figure 3. Qualitative results of view generation varying hyperparameter σ and the training iteration numbers of the neural style transfor-
mation network. Each row represents for the transformed results using N(0, σIm) with σ = 1, 2, 4, 8 from top to bottom. Each column
represents for the results transformed by a model trained by 50k, 100k, 150k, 200k, 250k, 300k, 350k iterations from left to right. The
input image is sampled from the validation split of the MSCOCO dataset.

TrafficSign dataset with standardized instances. Another
noticeable observation is that the Viewmaker was not effec-
tive when complementary geometric transformations were
added. This observation supports the extendibility of our
method on various geometric transformations.

4.3. Analysis

4.3.1 Quantitative ablation study on hyperparameters
σ and ϵmax

We compared encoder pretraining and linear evaluation
recognition performance on the CIFAR-10 dataset to find
optimal values for the hyperparameters σ and ϵmax. We
conducted experiments for σ = 1, 2, 4, 8, 16, 32 and
ϵmax = 0.1, 0.5, 1.0, 2.0, and used the SimCLR approach
to pretrain encoders for the encoder pretraining stage.

Table 2 shows the ablation study results for varying σ
and ϵmax. As shown in Table 2 (a) and (b), increasing ϵmax
causes performance improvements within a certain range by
continuously expanding the variety of the novel views be-
tween the input images and the generated views, but such
range appears to be tighter when σ is larger. The optimal
value for ϵmax clearly reveals to be 1.0 since all the results
tend to peak at 1.0 across various σ values.

For the hyperparameter, σ, both encoder pretraining and
linear evaluation performances tend to increase as σ in-
creases within a certain range, and such increase becomes
tighter as ϵmax increases. These results indicate that ex-
panding the distribution of the style maps causes far more

distinctive views advantageous for contrastive learning. We
set σ and ϵmax as 8 and 1.0 for all the subsequent experi-
ments in this section.

4.3.2 Qualitative ablation study on hyperparameters σ
and iteration number

To visually compare the influence of the hyperparameter
σ and the number of neural transformation training itera-
tions on generated views, we visualized qualitative results
of our neural style transformation network varying σ from
1 to 8 with a factor of 2 and the iteration number from 50k
to 350k with 50k intervals. As shown in Fig. 3, the gener-
ated views tend to converge to the input image regardless
of the σ values. This is because the image reconstruction
loss and the semantic reconstruction loss enforce the net-
work to preserve the quality and semantic information of
the input images as much as possible, respectively. Thus, a
proper iteration number is necessary for training the neural
transformation framework optimally. Besides, larger σ can
effectively diversify the generated views from the given im-
age. These results are aligned with the quantitative perfor-
mance tendency for σ, which corroborates the effectiveness
of style map distribution expansion on view generation.

4.3.3 Ablation study on each part of the method

We validated the effect of each view transformation step in
our method. We mainly verified style distribution expan-
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(a) (b) (c) Encoder pretraining Linear evaluation

51.0 73.1
✓ 53.4 71.5

✓ 62.8 77.2
✓ ✓ 66.5 79.5

✓ ✓ 69.1 82.8
✓ ✓ ✓ 78.2 86.9

Table 3. Ablation study on (a) style distribution expansion, (b)
linear augmentation, and (c) geometric transformation of our neu-
ral transformation framework. We compared encoder training and
linear evaluation performance for various view generation setups.
The performances are evaluated on the CIFAR-10 dataset.

sion, linear augmentation, and combination with geometric
transformation. All the experiments are conducted on the
CIFAR-10 dataset and with ϵmax = 1.0 whenever the lin-
ear augmentation is applied. As shown in Table 3, all the
proposed schemes have a positive effect on both encoder
pretraining and linear evaluation performance, except for
when only the σ = 8 is applied during the linear evalu-
ation. Moreover, the performance between each configu-
ration has a considerable gap, meaning that each transfor-
mation step of our framework contributes significantly to
better the recognition performance. In addition, our neu-
ral transformation method can work in complementary with
geometric transformation to boost recognition performance.

4.3.4 Quantitative diversity comparison.

As a visual comparison, it is not possible to thoroughly
compare the diversity of views generated by each method.
Thus, we evaluate two evaluation metrics called the Con-
ditional Inception Score (CIS) [4] and the Inception Score
(IS) [47]. IS has been adopted to measure the quality of a
generated image. Though both metrics measure the diver-
sity of the generated views, IS tends to measure the over-
all diversity of all the generated views while CIS focuses
more on the diversity of outputs conditioned on a single in-
put image. These properties can also be explained by the
following definitions:

IS = exp(Ex∼p(x)[Ex′∼p(x′|x)[KL(p(y|x′)||p(y))]])
CIS = exp(Ex∼p(x)[Ex′∼p(x′|x)[KL(p(y|x′)||p(y|x))]])

(13)
where x′ represents views generated from x. KL(·) is the
Kullback–Leibler divergence while p(y|x) and p(y) repre-
sent the conditional label and marginal label distributions
respectively.

Table 4 shows the CIS and IS for the expert-designed
views, Viewmaker-based views [48], and our method. Note
that we only considered the style transformation for each
method. Since any sample in the input dataset does not have

Method Diversity metrics

CIS IS

Expert-designed views 1.283 1.999
Viewmaker (weight=0.05) 1.044 5.458
Viewmaker (weight=0.1) 1.108 5.146

Ours (σ = 8) 2.241 4.608

Table 4. Diversity comparison among manually transformed
views, Viewmaker-based views [48], and our views. We measure
conditional inception score (CIS) [4] and inception score (IS) [47]
on the CIFAR-10 dataset.

any other view except itself, the CIS of the input dataset
should be 1.000 regardless of its high inception score. On
the other hand, Expert-designed views did not show any no-
table score on both metric despite frequent use. Viewmaker-
based views show the highest IS after the input dataset, but
its CIS is also lowest after the input dataset. And with in-
creasing additive weight, the IS decreases while the CIS in-
creases. It is also to be noted that IS and CIS also consider
the generation quality of the generative model. Hence, we
can interpret this observation that the noise maps of View-
maker decreased the quality of the generation process while
they differentiate the generated views better.

Besides, our method achieved the best CIS among all
the comparisons, which implies that our neural style trans-
formation network is most specialized in generating diverse
views from a given image. Considering that distinctive
transformations are key aspects for successful contrastive
learning, our method can produce highly transferable rep-
resentations for downstream tasks. Moreover, our method
can also obtain better IS compared to conventional manual
transformations.

5. Conclusion
In this paper, we proposed a novel neural network archi-

tecture along with a two-stage training scheme that learns
to generate diverse views for contrastive learning. Novel
views are generated by disentangling an input image into
its style and content map and then mixing randomly gen-
erated styles. The novel views are then used to learn
representations with self-supervised instance discrimination
tasks. The learned representations are evaluated on down-
stream classification tasks on which our proposed frame-
work produces highly competitive recognition performance
and more diverse views compared to existing view gener-
ation methods. Furthermore, we carried out extensive ab-
lation studies and analyses and qualitatively and quanti-
tatively confirmed the optimal design choices and hyper-
parameter configurations. In the future, we would like to
validate our novel view generation method on additional
self-supervised learning based vision tasks.
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